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Unlike fixed-gain robust control, which trades off performance with modeling uncertainty, direct adaptive control

uses partial modeling information for online tuning. The present paper combines retrospective cost adaptive control

(RCAC), a direct adaptive control technique for sampled-data systems, with online system identification based on

recursive least squares (RLS) with variable-rate forgetting (VRF). The combination of RCAC and RLS-VRF

constitutes data-driven RCAC (DDRCAC), where the online system identification is used to construct the target

model, which defines the retrospective performance variable. This paper investigates the ability of RLS-VRF to

provide the modeling information needed for the target model, especially non-minimum-phase (NMP) zeros.

DDRCAC is applied to single-input, single-output and multiple-input, multiple-output numerical examples with

unknownNMP zeros, as well as several flight control problems, namely, unknown transition fromminimumphase to

NMP lateral dynamics, flexible modes, flutter, and nonlinear planar missile dynamics.

Nomenclature

E = performance-variable selection matrix
Ez, Eu, EΔu = performance, control, and control-move

weighting
FIA = frozen input argument
Il = l × l identity matrix
k = step
�k = fixed step with respect to q
l = dimension of w�t� and wk

ly, lθc , lθm , l�θ = dimensions of ~yk, θc;k, θm;k, and �θk
m = dimension of u�t� and uk
n = dimension of x�t�
nc = controller window length
p = dimension of y�t�, yk, yw;k, yu;k, and y0;k
pc;0 = retrospective cost adaptive control and data-

driven retrospective cost adaptive control
tuning parameter

pm;0 = recursive least squares-based identification
tuning parameter

Qwv = disturbance and sensor noise covariance
matrix for linear-quadratic-Gaussian design

Qxu = state and control weight matrix for linear-
quadratic-Gaussian design

q = dimension of yz;k and rk
q = forward-shift operator

R�q�l1×l2prop
= l1 × l2 proper, discrete-time transfer func-

tions

R�s�l1×l2prop
= l1 × l2 proper, transfer functions

R�z�l1×l2 = l1 × l2 polynomial matrix in z

R�z�l1×l2prop
= l1 × l2 proper, discrete-time transfer func-

tion

Rz, Ru, RΔu = ET
z Ez, E

T
uEu, E

T
ΔuEΔu

rk = command
s = Laplace transform variable
Ts = sample time
t = time
u�t� = control
uk = sampled control
�u = saturation level for recursive least squares-

based adaptive control
v�t� = sensor noise
vec = column-stacking operator
vk = sampled sensor noise
w�t� = disturbance
�wk;i = constant disturbance during intersample

subinterval
x�t� = state
y�t� = noisy measurement
yk = sampled noisy measurement
~yk = input vector of controller
yz;k = performance variable

y0�t� = noise-free system output
y0;k = noise-free sampled output due to u�t� and

w�t�
z = Z-transform variable
zk = command-following error and adaptation

variable
η = recursive least squares-based identification

window length
θc;k = controller coefficient vector

θm;k = model coefficient vector
�θk = minimizer of recursive least squares with

variable-rate forgetting
λc;k = recursive least squares-based adaptive con-

trol variable-rate forgetting factor
λm;k = recursive least squares-based identification

variable-rate forgetting factor
σmax = maximum singular value
τd = denominator window length for variable-

rate forgetting
τn = numerator window length for variable-rate

forgetting
⊗ = Kronecker product
k ⋅ k∞, k ⋅ k, j ⋅ j = H∞ norm, L2 norm, absolute value
\;∪ = set minus, set union
1�⋅� = step function that is 0 for negative arguments

and 1 otherwise
1l1×l2 = l1 × l2 matrix of 1 s
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I. Introduction

I N DIRECT adaptive control, the controller gains are updated in
response to the actual dynamics of the controlled system. Unlike

fixed-gain robust control, which trades off performance with prior
modeling uncertainty, direct adaptive control uses partial modeling
information for online self-tuning. Direct adaptive control is espe-
cially of interest for time-varying systems [1,2]. The theory of direct
adaptive control has been extensively developed [3–6], and numer-
ous successful applications to aerospace systems have been reported
[7,8]. The research challenge in direct adaptive control is to determine
the minimal modeling information needed to facilitate fast, accurate,
and reliable control.
As an alternative to direct adaptive control, indirect adaptive

control performs online identification to update the required model-
ing information for use by a fixed-gain controller ([4] pp. 397, 467
and [5] Chap. 7). The combination of online identification and fixed-
gain control is justified by the certainty equivalence principle ([9
p. 2738). Indirect adaptive control is advantageous for applications
where the required modeling information is either difficult or impos-
sible to obtain before operation due, for example, to unpredictable
changes in the dynamics of the controlled system. By further reduc-
ing the dependence on prior modeling, indirect adaptive control
facilitates control under extremely limited a priori modeling infor-
mation. Indirect adaptive control can thus be viewed as a further step
in the evolution of control from strong model dependence to model-
free control.
Model-free control is a longstanding goal in control theory, and the

challenges are far from trivial. In particular, data-driven control
[10,11] seeks to circumvent the need for a model using data. Fur-
thermore, the interplay between identification and control is a long-
standing problem in control theory [12–14]. This interplay is
addressed by dual control, where the objective is to determine prob-
ing signals that enhance the speed and accuracy of the concurrent
identification [15–17].
The present paper focuses on retrospective cost adaptive control

(RCAC), which is a direct adaptive control technique for discrete-
time and sampled-data systems [18–20]. The modeling information
required by RCAC resides in the target model, which serves as an
essential model of the closed-loop transfer function from the virtual
external control perturbation to the retrospective performance varia-
ble. As shown in [20], the essential modeling information for dis-
cretized single-input, single-output (SISO) plants includes the sign of
the leading numerator coefficient, the relative degree, and all non-
minimum-phase (NMP) zeros. Numerical examples show that, under
sufficiently aggressive tuning, RCAC may cancel unmodeled NMP
zeros [21].
The goal of the present paper is to extend RCAC by incorporating

online model identification; this method is called data-driven RCAC
(DDRCAC). DDRCAC depends on system identification performed
concurrently with controller adaptation, where the modeling details
are extracted from the identifiedmodel in order to construct the target
model. Because RCAC is based on recursive least squares (RLS) to
update the controller coefficients, RLS is also used for system
identification within DDRCAC. Unlike standard least squares,
which uses constant-rate forgetting [22], online identification in the
present paper takes advantage of RLS with variable-rate forgetting
(VRF) [23].
Note that DDRCAC uses online identification to obtain the mod-

eling information needed by RCAC, which is a direct adaptive
control technique. Consequently, DDRCAC is neither a direct adap-
tive control technique, which requires limited but precise modeling
information, nor an indirect adaptive control, which requires model-
ing information in accordance with certainty equivalence. DDRCAC
can thus be viewed as a hybrid direct/indirect adaptive control
method that uses online system identification to obtain approximate,
limited modeling information required by a direct adaptive control
algorithm.
To assist in analyzing the effectiveness of DDRCAC and to obtain

deeper insight into the modeling information required by the target
model, the present paper shows that the retrospective performance

variable can be decomposed into the sumof a performance term and a
model-matching term. The performance term consists of a closed-
loop transfer function, whereas the model-matching term involves
the difference between a closed-loop transfer function and the target
model driven by the virtual external control perturbation. A crucial
insight arises from the observation that, at each step, RLS minimizes
the magnitude of the retrospective performance variable by forcing
the performance term and the model-matching term to have similar
magnitudes but opposite signs. As the controller converges, the
virtual external control perturbation, and thus the model-matching
term, converges to zero, which, in turn, drives the performance term
to zero. By preventing the performance term from divergingwhen the
controller converges, this mechanism prevents RLS from converging
to a controller that is destabilizing or has poor performance. The
decomposition of the retrospective performance variable is used in
this paper to elucidate the mechanism described above and diagnose
the performance of DDRCAC.
As in all applications of system identification, persistency is

needed to guarantee that the identifiedmodel captures the true system
dynamics [24–26]. Persistency may be provided by the commands
and disturbances, or it may be self-generated by the controller.
Beyond persistency, because online identification and learning occur
during closed-loop operation, the control input is correlated with the
measurements due to disturbances and sensor noise. When RLS is
used for closed-loop identification, as in the present paper, this
correlation may obstruct consistency and thus lead to asymptotic
bias in the parameter estimates [27–29]. Alternative identification
methods, such as instrumental variables, provide consistency despite
signal correlation, although at higher computational cost [30].
The present paper describes the elements of DDRCAC and inves-

tigates the effectiveness of this approach on numerical examples.
These examples include synthetic examples that emphasize specific
challenges as well as illustrative flight-control problems. The syn-
thetic examples are focused on three key issues, namely, NMP zeros,
consistency, and persistency. Because, as noted above, RCAC may
cancel unmodeled NMP zeros, the highest priority is to extract
information about the NMP zeros from the identified model; this
information is embedded in the numerator of the identified model,
which, in the case of a multiple-input, multiple-output (MIMO)
system, is a matrix polynomial. These examples are motivated by
the fact, as noted in [8], that the stability of finite transmission zeros is
a standard assumption in output-feedback adaptive control. Further-
more, because lack of consistency may occur when RLS is used for
closed-loop system identification, the effect of bias is examined. In
particular, the bias arising from sensor noise within closed-loop
system identification under DDRCAC is shown to be less severe
than the bias arising from sensor noise within closed-loop system
identification under fixed-gain control. Finally, in cases where the
commands and disturbances provide limited persistency, these exam-
ples highlight self-generated persistency, that is, persistency due to
the controller.
This paper applies DDRCAC to four flight-control examples.

First, adaptive control is applied to roll-angle command following
for a hypersonic aircraft that undergoes an unknown transition from
minimum phase (MP) to NMP dynamics. Second, adaptive control
is applied for pitch-rate command following of a flexible aircraft,
which has 12 lightly damped modes. Third, adaptive control is
applied for flutter suppression of the benchmark active control
technology (BACT) wing. Finally, adaptive control is applied to
normal-acceleration command following for a nonlinear planar
missile.

II. Sampled-Data Adaptive-Control Architecture

All of the examples in this paper consider continuous-time systems
under sampled-data control using discrete-time adaptive controllers.
In particular, consider the adaptive control architecture shown in
Fig. 1, where a realization of G�s� ≜ �Gu�s�Gw�s�� is given by

_x�t� � Ax�t� � Bu�t� � Bww�t� (1)
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y�t� � Cx�t� �Duu�t� � v�t� (2)

where x�t� ∈ Rn is the state, u�t� ∈ Rm is the control, w�t� ∈ Rl is
the disturbance, y�t� ∈ Rp is the noisy measurement of the system
output, v�t� ∈ Rp is the sensor noise, and A;B; Bw; C;Du, are real
matrices. Define

Gu�s� ≜ C�sIn − A�−1B�Du (3)

Gw�s� ≜ C�sIn − A�−1Bw �Du (4)

whereGu ∈ R�s�p×mprop andGw ∈ R�s�p×lprop are proper p ×m and p × l
transfer functions, respectively. The disturbance w�t� is matched if

there exists �U ∈ Rm×m such that Bw � B �U; otherwise, the disturb-
ance is unmatched. The system output y0�t� ∈ Rp is corrupted by
sensor noise v�t� and sampled to produce yk ∈ Rp. The sampling

operation can be realized as yk ≜ y0�kTs� � vk, where vk ≜
v�kTs� ∈ Rp is the sampled sensor noise and Ts ∈ R is the sample
time. In this paper the statistics of the sampled sensor noise vk are
specified. The performance variable is yz;k ≜ Eyk ∈ Rq, where the

matrixE ∈ Rq×p selects components of yk or a linear combination of
the components of yk that are required to follow the command

rk ∈ Rq. The command-following error is thus zk ≜ rk − yz;k ∈
Rq. The inputs to the adaptive feedback controller Gc;k are the

measurement yk and the command-following error zk. The adaptive
feedback controller produces the discrete-time control uk ∈ Rm at
each step k. The continuous-time control u�t� is produced by apply-
ing a zero-order-hold operator to uk. Note that zk serves as the
adaptation variable, as denoted by the diagonal line in Fig. 1 passing
through Gc;k. The objective is to minimize the magnitude of the

command-following error zk in the presence of the disturbance
w�t� and sensor noise v�t�.
Figure 2 shows an equivalent representation of Fig. 1, where w�t�

and yw;k are related by the operator

yw;k ≜ G�w�t�� � C

Z
kTs

�k−1�Ts

eA�kTs−τ�Bww�τ� dτ (5)

Note that Fig. 2 shows two transfer functions in feedback, namely,
Gd�q� and EGd�q�, which are, respectively, the transfer functions

from uk to yk and uk to yz;k. Furthermore,Gd ∈ R�q�p×mprop , where q is

the forward-shift operator, is the exact discretization of Gu�s� using
zero-order-hold and sampling operations. For details, see ([31] p. 11).
Consequently,

yk � G�w�t�� �Gd�q�uk � vk (6)

zk � rk − Eyk (7)

Note that the argument q of Gd in Eq. (6) reflects the fact that

Eq. (6) is a time-domain equation whose solution depends on the

initial conditions of the input-output system. Using the Z-transform
variable z in place of the forward-shift operator q would account for

the forced response of Eq. (6) butwould implicitly assume zero initial

conditions and thus would omit the free response. The distinction

between z and q in accounting for initial conditions and the resulting

free response is discussed in [32,33]. SinceGd�z� andGd�q� have the
same form, the argument has no effect on the algebraic properties of

Gd such as poles and zeros.
To compute the intersample response of Eq. (5), the disturbance

w�t� is assumed to be piecewise constant within each subinterval of

the interval kTs to �k� 1�Ts, where each subinterval has length

Ts∕10. In particular, letting �wk;i denote the approximate value of

w�t� for t ∈
h�

k� i
10

�
Ts;

�
k� i�1

10

�
Ts

i
; for i � 0; : : : ; 9, it follows

that

yw;k�1 � C

Z �k�1�Ts

kTs

eA��k�1�Ts−τ�Bww�τ� dτ (8)

≈ C

�Z
kTs� 1

10
Ts

kTs

eA��k�1�Ts−τ� dτBw �wk;0� · · ·

�
Z �k�1�Ts

kTs� 9
10
Ts

eA��k�1�Ts−τ� dτBw �wk;9

�
(9)

� C

�Z
Ts

9
10
Ts

eAτ dτBw �wk;0� · · · �
Z

1
10
Ts

0

eAτ dτBw �wk;9

�
(10)

Within each subinterval, the MATLAB function ODE45 is used to

integrate the dynamics of G�s�. For all examples in this paper, the

ODE45 relative and absolute tolerances are set to 2.22045 × 10−14

and 10−14, respectively, which determine the variable step lengths

during each subinterval. In the case where w�t� is stochastic, the

standard deviation of �wk;i is specified.

Figure 3 shows the intersample response of

Gw�s� �
s − 1

s2 − 3s� 2

where �wk;i is zero-mean, Gaussian white noise with standard

deviation 1 simulated with Ts � 0.01 s∕step. In all subsequent

numerical examples, the intersample response is computed but

not shown.

Fig. 1 Command following and disturbance rejection under sampled-
data adaptive control. The objective is to follow commands rk to the
performance variable yz;k � Eyk. All sample-and-hold operations are

synchronous.

Fig. 2 Equivalent representation of Fig. 1. The exact discretization
Gd�q� of Gu�s� operates on uk to generate yu;k.

0 0.02 0.04 0.06 0.08 0.1
-12

-10

-8

-6

-4

-2

0

2
10-3

Fig. 3 Numerical integration of Gw�s� using ODE45 within each sub-

interval of size Ts∕10, where Ts � 0.01 s∕step. The intersample
response is plotted in orange, and the blue dash-dots show the sampled
response.
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Sections III–V consider SISO continuous-time transfer functions
with Gu�s� � Gw�s� of the form

Gu�s� � 10e−ndTss
�s − a��s − b��s − c�Q3

i�1�s2 � 2�ζi �ωis� �ω2
i �Q

5
i�1�s2 � 2ζiωis� ω2

i �
(11)

where nd is a nonnegative integer, the parameters a, b, c, nd are given

in Table 1, and �ζ1 � 0.96, �ζ2 � 0.22, �ζ3 � 0.8, �ω1 � 54, �ω2 � 38,
�ω3 � 8, ζ1 � 0.4, ζ2 � 0.15, ζ3 � 0.05, ζ4 � 0.06, ζ5 � 0.05,
ω1 � 4, ω2 � 25, ω3 � 35, ω4 � 65, and ω5 � 96. The transfer
function Eq. (11) with the parameters in Table 1 are used to inves-
tigate the performance of RCAC, recursive least squares-based iden-
tification (RLSID), and DDRCAC in later sections.
The time delay of ndTs, where nd is a nonnegative integer, is

included inGu�s� as e−ndTs . Choosing the time delay to be a multiple
of Ts facilitates investigation of the effect of uncertain discrete-time
relative degree on the performance of the closed-loop discrete-time
system. Note that Eq. (11) can be exactly discretized by separately
considering the rational and exponential factors. In particular, the
rational part of Eq. (11) is exactly discretized with a zero-order-hold
(ZOH) discretization computed using MATLAB command c2d,
whereas the exponential part of Eq. (11) is exactly discretized by
the factor q−nd inGd�q�. Note that the exact discretization of Eq. (11)
has relative degree nd � 1.
For all examples in this paper, Eq. (11) is simulated by using a

minimal realization whose initial state is zero. Hence, E � 1,
p � q � m � l � 1, and B � Bw in Eqs. (1) and (2).

III. Retrospective Cost Adaptive Control

A. Controller Structure and Definition of the Retrospective Perfor-
mance Variable

Consider the strictly proper, discrete-time dynamic compensator

uk �
Xnc
i�1

Pi;kuk−i �
Xnc
i�1

Qi;k ~yk−i (12)

where k ≥ 0, uk ∈ Rm is the requested control, nc is the con-

troller window length, ~yk ∈ Rly , and Q1;k; : : : ; Qnc;k ∈ Rm×ly and

P1;k; : : : ; Pnc;k ∈ Rm×m are the numerator and denominator con-

troller coefficient matrices, respectively. For convenience, a
“cold” startup is assumed, where Q1;0; : : : ; Qnc;0, P1;0; : : : ; Pnc ;0,

u−nc ; : : : ; u−1, and ~y−nc ; : : : ; ~y−1 are defined to be zero, and thus

u0 � 0. The controller (12) can be written as

uk � ϕc;kθc;k (13)

where

ϕc;k ≜

266666664

uk−1
..
.

uk−nc
~yk−1
..
.

~yk−nc

377777775

T

⊗ Im ∈ Rm×lθc (14)

is the controller regressor, lθc ≜ ncm�m� ly�, and the controller

coefficient vector is defined by

θc;k ≜ vec�P1;k · · · Pnc ;k Q1;k · · · Qnc ;k � ∈ Rlθc (15)

In terms of q, the controller (12) can be expressed as

uk � Gc;k�q� ~yk (16)

where

Nc;k�q� ≜ Q1;kq
nc−1� · · · �Qnc;k (17)

Dc;k�q� ≜ Imq
nc − P1;kq

nc−1− · · · −Pnc;k (18)

Gc;k�q� ≜ D−1
c;k�q�Nc;k�q� (19)

The signal ~yk is constructed from zk, yk, and rk. In the simplest case,

~yk � zk, whereas, when additional measurements are available,

~yk � � zTk yTk �T . Alternatively, feedforward action can be included

by setting ~yk � � zTk rTk �T . More generally, the components of ~yk
can be arbitrary, fixed linear combinations of the components of zk,
yk, and rk. Fixed, nonlinear functions of zk, yk, and rk can also be

included in ~yk; however, this is outside the scope of this paper.
Next, define the filtered signals

uf;k ≜ Gf�q�uk (20)

ϕf;k ≜ Gf�q�ϕc;k (21)

where, for startup, uf;k and ϕf;k are initialized at zero and thus are

computed as the forced responses of Eqs. (119) and (120), respec-

tively. Unless specified otherwise, the same filter initialization is for

all filters in the subsequent development. The q ×m filter Gf�q� has
the form

Gf�q� ≜ Df�q�−1Nf�q� (22)

where

Nf�q� ≜ Nf;0q
nf � Nf;1q

nf−1� · · · �Nf;nf (23)

Df�q� ≜ Iqq
nf �Df;1q

nf−1� · · · �Df;nf (24)

nf is the filter window length, and Nf;0; : : : ; Nf;nf ∈ Rq×m and

Df;1; : : : ; Df;nf ∈ Rq×q are the numerator and denominator coeffi-

cients of Gf�q�, respectively.
Equivalently, Eqs. (20) and (21) can be written as

uf;k � −DUf;k � NUk (25)

ϕf;k � −DΦf;k � NΦc;k (26)

where

Uf;k ≜

2664
uf;k−1

..

.

uf;k−nf

3775 ∈ Rnfq; Uk ≜

2664
uk
..
.

uk−nf

3775 ∈ R�nf�1�m (27)

Φf;k ≜

2664
ϕf;k−1

..

.

ϕf;k−nf

3775 ∈ Rnfq×lθc ; Φc;k ≜

2664
ϕc;k

..

.

ϕc;k−nf

3775 ∈ R�nf�1�m×lθc

(28)

Table 1 Special cases of Gu�s� given by Eq. (11)

Case a b c nd Zeros

1 10 −30 −20 2 1 real NMP

2 10 −30 −20 0 1 real NMP

3 10� 10j 10 − 10j −20 2 2 complex NMP

For each case, the values of a, b, c, nd and the type of zeros are shown.
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N ≜ �Nf;0 · · · Nf;nf � ∈ Rq×m�nf�1�;

D ≜ �Df;1 · · · Df;nf � ∈ Rq×qnf (29)

Next, in order to update the controller coefficient vector (15),

define the retrospective performance variable

ẑk�θc� ≜ zk − �uf;k − ϕf;kθc� (30)

where zk is given by Eq. (7) and θc is a generic variable for opti-

mization. Note that uf;k depends on uk and thus on the current

controller coefficient vector θc;k. The retrospective performance var-

iable ẑk�θc� is used to determine the updated controller coefficient

vector θc;k�1 byminimizing a function of ẑk�θc�. The optimized value

of ẑk is thus given by

ẑk�θc;k�1� � zk − �uf;k − ϕf;kθc;k�1� (31)

which shows that the updated controller coefficient vector θc;k�1 is

“applied” retrospectively with the filtered controller regressor ϕf;k.

Furthermore, note that the filter Gf�q� is used to obtain ϕf;k from ϕk

by means of Eq. (21) but ignores past changes in the controller

coefficient vector, as can be seen by the product ϕf;kθc;k�1 in

Eq. (31). Consequently, the filtering used to construct Eq. (31)

ignores changes in the controller coefficient vector over the window

�k − nf ; k�. The effect of the actual time dependence of θc;k is analyzed
in later sections.
Using Eqs. (25) and (26), Eq. (30) can be expressed as

ẑk�θc� � zk �D�Uf;k −Φf;kθc� − N�Uk −Φc;kθc� (32)

In the case where Gf�q� is a finite-impulse-response (FIR) transfer

function, and thus D � 0, it follows from Eq. (32) that

ẑk�θc� � zk − NUk � NΦc;kθc (33)

To account for the control effort, define

zc;k�θc� ≜
�
Ezẑk�θc�
Euϕc;kθc

�
∈ Rq�r1 (34)

where the performance weighting Ez ∈ Rq×q is nonsingular, and

Eu ∈ Rr1×m is the control weighting. If Eu � 0, then all expressions
involvingEu in Eq. (34), as well as in all subsequent expressions, are

omitted, and r1 � 0. Using Eq. (30), it follows that Eq. (34) can be

expressed as

zc;k�θc� � yc;k − ϕfc;kθc (35)

where

yc;k ≜
�
Ezzk − Ezuf;k

0r×1

�
∈ Rq�r1 ; ϕfc;k ≜

�
−Ezϕf;k

−Euϕc;k

�
∈ R�q�r1�×lθc

(36)

Using Eq. (34), define the retrospective cost

Jk�θc� ≜
Xk
i�0

zc;i�θc�Tzc;i�θc� � �θc − θc;0�TP−1
c;0�θc − θc;0� (37)

and note that

zc;k�θc�Tzc;k�θc� � ẑk�θc�TRzẑk�θc� � θTcϕ
T
c;kRuϕc;kθc (38)

where Rz ≜ ET
z Ez ∈ Rq×q is positive definite and Ru ≜ ET

uEu ∈
Rm×m is positive semidefinite. For all k ≥ 0, the minimizer θc;k�1

of Eq. (37) is given by the RLS solution [22]

Pc;k�1 � Pc;k − Pc;kϕ
T
fc;k�Iq�r1 � ϕfc;kPc;kϕ

T
fc;k�−1ϕfc;kPc;k (39)

θc;k�1 � θc;k � Pc;k�1ϕ
T
fc;k�yc;k − ϕfc;kθc;k� (40)

Using the updated controller coefficient vector given by Eq. (40), the
requested control at step k� 1 is given by

uk�1 � ϕc;k�1θc;k�1 (41)

Although θc;0 can be chosen arbitrarily, θc;0 � 0 is chosen in all

examples in order to reflect the absence of additional modeling
information. Finally, Pc;0 � pc;0Ilθc , where pc;0 ∈ �0;∞� is a tuning
parameter.

B. Decomposition of the Retrospective Performance Variable

This subsection shows that the retrospective performance variable
can be decomposed into the sum of a performance term and a model-
matching term. Amore restrictive version of the results in this section
is given in [34]. For simplicity, this section focuses on the case
where ~yk ≜ zk.
Because the optimized controller coefficient vector is time depen-

dent, the retrospective performance variable defined by Eq. (30)must
be modified to ignore the time dependence of θc;k�1. To do this, the
terms uf;k − ϕf;kθc in Eq. (30) are replaced by a filtered version of

uk − ϕc;kθc inwhich the controller coefficient vector is constrained to
be θc;k�1 over the filtering window. By defining

~uk�θc� ≜ uk − ϕc;kθc (42)

the filtered signal ~uf;k�θc;k�1� is given by a fixed-input-argument

(FIA) filter with input ~uk�θc;k�1� as defined in Appendix B. In

particular, ~uf;k�θc;k�1� is defined to be the output of the FIA filter

~uf;k�θc;k�1� ≜ Gf�q� ~uk�θc;k�1
� (43)

which ignores the change in the argument θc;k�1 of ~uk over the

interval �k − nf ; k� in accordance with retrospective optimization.
Note that, by the definition of FIA filtering, the filtered signal
~uf;k�θc;k�1� is a function of the time-dependent controller coefficient

vector θc;k�1. Equivalently, Eq. (43) can be written as

~uf;k�θc;k�1� � −DeUf;k � NeUk�θc;k�1� (44)

where

eUf;k ≜

266664
~uf;k−1�θc;k�

..

.

~uf;k−nf �θc;k−nf�1�

377775 ∈ Rnfq;

eUk�θc� ≜

266664
~uk�θc�
..
.

~uk−nf �θc�

377775 ∈ R�nf�1�m (45)

Using Eq. (43), the definition Eq. (30) of ẑk�θc� is replaced by

ẑext;k�θc;k�1� ≜ zk − ~uf;k�θc;k�1� (46)

Using Eqs. (42), (44), and (45), it follows that Eq. (46) can bewritten
as

ẑext;k�θc;k�1� � zk �DeUf;k − N�Uk −Φc;kθc;k�1� (47)

Note that the difference between ẑk�θc;k�1� given by Eq. (32) and

ẑext;k�θc;k�1� given by Eq. (47) is becauseUf;k −Φf;kθc in Eq. (32) is
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replaced by eUf;k in Eq. (47). Hence, ẑext;k�θc;k�1� is not generally
ẑk�θc;k�1�. However, if, for all k, θc;k�1 � θc, then ~uf;k�θc;k�1� �
uf;k − ϕc;kθc, and thus ẑext;k�θc;k�1� � ẑk�θc�.
The following result presents the retrospective performance-

variable decomposition, which shows that the retrospective perfor-

mance variable is a combination of the closed-loop performance and

the extent to which the updated closed-loop transfer function from

~uk�θc;k�1� to zk matches the filterGf�q�. Henceforth,Gf�q� is called
the target model because it serves as the target for the closed-loop

transfer function from ~uk�θc;k�1� to zk.
Proposition 1: Assume that, for all k ≥ 0, ~yk ≜ zk, andGd�q� and

Gf�q� are strictly proper. Then, for all k ≥ 0,

ẑext;k�θc;k�1� � zopp;k�θc;k�1� � ztmp;k�θc;k�1� (48)

where the one-step predicted performance zopp;k�θc;k�1� and the

target-model matching performance ztmp;k�θc;k�1� are defined by

zopp;k�θc;k�1� ≜ eGzw;k�1�q�
�
rk − Evk − EG�w�t��

�
(49)

ztmp;k�θc;k�1� ≜
heGz ~u;k�1�q� − Gf�q�

i
~uk�θc;k�1

� (50)

and

eGzw;k�1�q� ≜
h
Iq � EGd�q�Gc;k�1�q�

i−1
(51)

eGz ~u;k�1�q� ≜ −qnc

h
Iq � EGd�q�Gc;k�1�q�

i−1
EGd�q�D−1

c;k�1�q�
(52)

Proof: It follows from Eqs. (49) and (51) that

zopp;k�θc;k�1� � rk − Evk − EG�w�t��
− EGd�q�Gc;k�1�q�zopp;k�θc;k�1� (53)

Furthermore, defining the FIA filter output (see Definition 8 in

Appendix B)

~ztmp;k�θc;k�1� ≜ eGz ~u;k�1�q� ~uk�θc;k�1
� (54)

it follows from Eqs. (52) and (54) that

~ztmp;k�θc;k�1� � −EGd�q�D−1
c;k�1�q�qnc ~uk�θc;k�1�

− EGd�q�Gc;k�1�q� ~ztmp;k�θc;k�1� (55)

Now, replacing qnc ~uk�θc;k�1
� with ~uk�nc�θc;k�1� in Eq. (55) yields

~ztmp;k�θc;k�1� � −EGd�q�D−1
c;k�1�q� ~uk�nc�θc;k�1�

− EGd�q�Gc;k�1�q� ~ztmp;k�θc;k�1� (56)

Combining Eqs. (53) and (54) yields

zopp;k�θc;k�1� � ~ztmp;k�θc;k�1�
� rk − Evk − EG�w�t�� − EGd�q�D−1

c;k�1�q� ~uk�nc�θc;k�1�
− EGd�q�Gc;k�1�q�

h
zopp;k�θc;k�1� � ~ztmp;k�θc;k�1�

i
(57)

Next, replacing k with k� nc in Eq. (42) and setting θc � θc;k�1

yields

~uk�nc�θc;k�1� � uk�nc − ϕc;k�ncθc;k�1 (58)

Hence, using

ϕc;k�ncθc;k�1 �
Xnc
i�1

Pi;k�1uk�nc−i �
Xnc
i�1

Qi;k�1zk�nc−i

it follows from Eq. (58) that

~uk�nc�θc;k�1� � uk�nc −
Xnc
i�1

Pi;k�1uk�nc−i −
Xnc
i�1

Qi;k�1zk�nc−i

(59)

Using Eqs. (17) and (18), note that Eq. (60) can be written as

~uk�nc�θc;k�1� � Dc;k�1�q�uk − Nc;k�1�q�zk

which can be combined with Eq. (57) to obtain

zopp;k�θc;k�1� � ~ztmp;k�θc;k�1�
� rk − Evk − EG�w�t�� − EGd�q�uk � EGd�q�Gc;k�1�q�zk
− EGd�q�Gc;k�1�q�

h
zopp;k�θc;k�1� � ~ztmp;k�θc;k�1�

i
(60)

Using Eqs. (6) and (7), it follows from Eq. (60) that

�Iq � EGd�q�Gc;k�1�q��
h
zopp;k�θc;k�1� � ~ztmp;k�θc;k�1�

i
� �Iq � EGd�q�Gc;k�1�q��zk (61)

which implies that

zk � zopp;k�θc;k�1� � ~ztmp;k�θc;k�1� (62)

Next, substituting Eq. (62) into Eq. (46) yields

ẑext;k�θc;k�1� � zopp;k�θc;k�1� � ~ztmp;k�θc;k�1� − ~uf;k�θc;k�1� (63)

Hence, substituting Eqs. (43) and (54) into Eq. (63) and using

Eq. (50) yields

ẑext;k�θc;k�1� � zopp;k�θc;k�1� � eGz ~u;k�1�q� ~uk�θc;k�1
�

−Gf�q� ~uk�θc;k�1
�

� zopp;k�θc;k�1� �
heGz ~u;k�1�q� −Gf�q�

i
~uk�θc;k�1

�
� zopp;k�θc;k�1� � ztmp;k�θc;k�1�

In the case where ~yk � zk, yk, and uk are scalar, that is,

ly � q � p � m � 1, Eqs. (51) and (52) have the form

eGzw;k�1�q� �
Dd�q�Dc;k�1�q�

Dd�q�Dc;k�1�q� � ENd�q�Nc;k�1�q�
(64)

eGz ~u;k�1�q� �
−qncENd�q�

Dd�q�Dc;k�1�q� � ENd�q�Nc;k�1�q�
(65)

where

Gd�q� ≜
Nd�q�
Dd�q�

(66)

C. Analysis of the Retrospective Performance-Variable Decomposition

AssumingEz � I,Eu � 0, and using Eqs. (34) and (48), it follows
from Eq. (37) that
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Jk�θc;k�1� �
Xk
i�0

ẑTi �θc;i�1�ẑ;i�θc;i�1�

� �θc;i�1 − θc;0�TP−1
c;0�θc;i�1 − θc;0� (67)

In the casewhere pc;0 is large, using RLS to minimize Eq. (67) yields

ẑk�θc;k�1� ≈ 0 (68)

Furthermore, it is observed numerically and shown in Example 1 that

using RLS to minimize Eq. (68) yields

ẑext;k�θc;k�1� ≈ ẑk�θc;k�1� (69)

which, using Eq. (48), implies that

zopp;k�θc;k�1� � ztmp;k�θc;k�1� ≈ 0 (70)

that is,

zopp;k�θc;k�1� ≈ −ztmp;k�θc;k�1� (71)

The following example illustrates this property.
Example 1: Minimization of ẑext;k�θc;k�1� and its decomposition

for a SISO system. Let

Gu�s� �
100�s − 10��s� 8�

�s� 11��s2 − 0.6s� 900� (72)

and, for Ts � 0.01 s∕step, let Gd�q� denote the ZOH discretization

ofGu�s�. Assume that thew is matched, that is,Gu�s� � Gw�s�, and
let �wk;i be zero-mean, Gaussian white noise with standard deviation

1. For disturbance rejection with nonnoisy measurements, that is,

with rk � 0 and vk � 0, adaptive control is applied with Ez � 1,
Eu � 0, E � 1,

Gf�q� � −0.9988
�q − 1.1628�

q2

nc � 16, and pc;0 � 10. Figures 4f and 4h show that, for all

0.04 ≤ t ≤ 0.7, zopp;k�θc;k�1� and ztmp;k�θc;k�1� have large magni-

tudes and approximately sum to zero. In particular, Fig. 4h shows

jzopp;k � ztmp;kj
jzopp;kj � jztmp;kj

which is small when zopp;k�θc;k�1� and ztmp;k�θc;k�1� have large

magnitudes with opposite signs, and close to 1 when zopp;k�θc;k�1�
and ztmp;k�θc;k�1� have small magnitudes. Figure 4g shows thateGz ~u;400�q� and Gf�q� have similar frequency responses, and thus

the controller update promotes matching between the closed-loop

transfer function eGz ~u;k�1�q� and the target model Gf�q�.
Next, in order to compare ẑk�θc;k�1� and ẑext;k�θc;k�1� for the case

where Gf�q� is infinite-impulse-response (IIR), the simulation is
repeated with

Gf�q� � −0.9988
�q − 1.1628�

q2 � 0.1q� 0.01

Figure 5 shows that the error between ẑk�θc;k�1� and ẑext;k�θc;k�1� is
less than 10−1 for all t. ⋄

Proposition 2: Assume that �θc ≜ limk→∞ θc;k�1 exists and ϕc;k�1

is bounded. Then limk→∞ ~uk�θc;k�1� � 0.
Proof: Equations (14) and (42) imply that

~uk�θc;k�1� � ϕc;k�θc;k − θc;k�1�

Defining α � supk≥0 σmax�ϕc;k�, it follows that

k ~uk�θc;k�1�k ≤ σmax�ϕc;k�kθc;k − θc;k�1k
≤ αkθc;k − θc;k�1k

where σmax denotes the maximum singular value. Hence,

lim
k→∞

k ~uk�θc;k�1�k ≤ α lim
k→∞

kθc;k − θc;k�1k � 0

□
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Fig. 4 Example 1: a) open- and closed-loop responses; b) jẑext;k − zopp;k − ztmp;kj < 3.01 × 10−9 for all t, confirming Eq. (48).
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Proposition 5 and Eq. (50) suggest that the convergence of θc;k
implies that ztmp;k�θc;k�1� converges to zero, as illustrated in Fig. 4g.
Therefore, Eq. (71) implies that jzopp;k��θc�j ≈ 0, and thus, if θc;k
converges, then the one-step predicted performance jzopp;k��θc�j is
small. This mechanism underlies the convergence of RCAC in Fig. 4

to a stabilizing controller that rejects the unknown disturbance. Note,

however, that the convergence of θc;k and the consequent conver-

gence of ~uk�θc;k�1� to zero do not imply that ztmp;k�θc;k�1� converges
to zero. In fact, Example 5 demonstrates that a poor choice of Gf�q�
may cause ztmp;k�θc;k�1� to diverge while θc;k converges.

D. Feasibility of Gf�q�
The following definition concerns the case where there exists a

controller parameter vector that exactly matches the transfer functioneGz ~u;k�1�q� to Gf�q�.
Definition 1: Assume that, for all k ≥ 0, ~yk � zk ∈ Rq.

Then, Gf�q� ∈ R�q�q×mprop is feasible if there exists θc �
vec�P1 · · · Pnc Q1 · · · Qnc � ∈ Rlθc such that

eGz ~u�q� � Gf�q� (73)

where

eGz ~u�q� ≜ −qnc

h
Iq � EGd�q�Gc�q�

i−1
EGd�q�Dc�q�−1 (74)

with

Dc�q� ≜ Imq
nc − P1q

nc−1− · · · −Pnc (75)

Nc�q� ≜ Q1q
nc−1� · · · �Qnc (76)

Gc�q� ≜ D−1
c �q�Nc�q� (77)

Definition 2:Let θc;k begivenbyEq. (40), and eGz ~u;k�q�begiven by
Eq. (65). Then the asymptotic feasibility distance is

f∞ ≜ lim sup
k→∞

keGz ~u;k�q� −Gf�q�k∞ (78)

For the SISO case, the following result identifies several features ofeGz ~u�q� that are determined by Gd�q�.

Proposition 3: For all k ≥ 0, assume that ~yk � zk, yk, and uk are
scalar. Furthermore, let θc ∈ Rlθc and Gf�q� ∈ R�q�prop. Then the

following statements hold:
i) The leading numerator coefficient of eGz ~u�q� is equal to the

leading numerator coefficient of −EGd�q�.
ii) The relative degree of eGz ~u�q� is equal to the relative degree

of Gd�q�.
iii) The zeros of eGz ~u�q� consist of the zeros ofGd�q� as well as nc

zeros at zero.
Proof: Since ~yk � zk and uk are scalar, it follows that E is scalar

and the closed-loop transfer function (74) specializes to

eGz ~u�q� �
−qncENd�q�

Dd�q�Dc�q� � ENd�q�Nc�q�
(79)

which implies point (i). To prove point (ii), let dd denote the degree of
Dd�q�, and let ξ ≥ 0 denote the relative degree of Gd�q�, so that

the degree of Nd�q� is dd − ξ. Because the degree of qncENd�q� is
nc � dd − ξ and the degree of Dd�q�Dc�q� � ENd�q�Nc�q� is

nc � dd, it follows that the relative degree of eGz ~u�q� is ξ. Finally,
point (iii) follows from the fact that the numerator of Eq. (79) is the

numerator of EGd�q� multiplied by qnc. □

The following result, which is an immediate consequence of

Proposition 4.4, provides necessary conditions for feasibility in the

SISO case.
Proposition 4: For all k ≥ 0, assume that ~yk � zk, yk, and uk are

scalar. Furthermore, let θc ∈ Rlθc , letGf�q� ∈ R�q�prop, and assume

that Gf�q� is feasible. Then the following statements hold:
i) The leading numerator coefficient of Gf�q� is equal to the

leading numerator coefficient of −EGd�q�.
ii) The relative degree of Gf�q� is equal to the relative degree

of Gd�q�.
iii) The zeros ofGf�q� consist of the zeros ofGd�q�, as well as nc

zeros at zero.

E. RCAC with Feasible and Infeasible Gf�q� for SISO Systems

This subsection investigates the effect of feasible and infeasible

target models on the convergence of θc;k given by Eq. (40). For all of
the examples in this and the following subsection, letGu�s� be given
by Eq. (72), and, for Ts � 0.01 s∕step, let Gd�q� denote the ZOH

discretization of Gu�s�. In particular,

Gd�q� �
0.9988�q − 1.1628��q − 0.7393�

�q − 0.9048��q2 − 1.905q� 0.994� (80)

Assume thatw ismatched, that is,Gu�s� � Gw�s�, and let �wk;i and vk
be zero-mean, Gaussian white noise with standard deviations 1 and

0.01, respectively. For various choices of the target modelGf�q�, the
following examples consider disturbance rejection with noisy mea-

surements with rk � 0, Ez � 1, Eu � 0, and E � 1.
Example 2: Feasible Gf�q�. A linear-quadratic-Gaussian (LQG)

controllerGLQG�q� is designed forGd�q� given by Eq. (80) using the
MATLAB command lqg with Qxu � I4 and Qwv � I4. The LQG

controller

GLQG�q� ≜
NLQG�q�
DLQG�q�

(81)

is used to construct

Gf;LQG�q� �
−qnNd�q�

Dd�q�DLQG�q� � Nd�q�NLQG�q�
(82)

The corresponding closed-loop target model is given by

Gf;LQG�q� �
−0.9988q3�q − 1.1628��q − 0.7393�

�q − 0.8878��q − 0.2118��q2 − 1.199q� 0.3738��q2 − 0.0926q� 0.1148� (83)

10-4

10-2

100

a)

0 1 2 3 4

10-6
10-4
10-2
100

b)

Fig. 5 Example 1: For an IIR Gf�q�, a) shows the absolute value of the
retrospective cost variable and its extension, and b) shows the absolute
error between the retrospective cost variable and its extension.
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Note that Eq. (83) is feasible by construction. Since Gf;LQG�q� is
feasible, Proposition 3 implies that its leading numerator coefficient

−0.9988 and relative degree 1 are the same as those of −EGd�q�
and that its zeros 0, 0.7393 and 1.1628 are the zeros ofGd�q� as well
as n � 3 zeros at zero. Next, adaptive control is applied with

Gf�q� � Gf;LQG�q�, pc;0 � 107, and nc � n � 3. Figure 6d shows

that eGz ~u;1000�q� and Gf�q� have similar frequency responses, which

is consistentwith the fact thatGf;LQG�q� is feasible.Moreover, Fig. 6b

shows that Gc;1000�q� and GLQG�q� have similar frequency

responses, which suggests that the adaptive controller approximately

converges to the LQG controller. ⋄

Example 3: Robustness to infeasible Gf�q�. To investigate the

robustness of the feasible target model Eq. (83), the target model is

chosen to be various infeasible perturbations of the feasible target

model given by

Gf�q� � αLNCGf;LQG�q� (84)

Gf�q� �
1

qαRD
Gf;LQG�q� (85)

Gf�q� �
−0.9988q3�q − 1.1628��q − αMP�

�q − 0.8878��q − 0.2118��q2 − 1.199q� 0.3738��q2 − 0.0926q� 0.1148� (86)

Gf�q� �
−0.9988q3�q − αNMP��q − 0.7393�

�q − 0.8878��q − 0.2118��q2 − 1.199q� 0.3738��q2 − 0.0926q� 0.1148� (87)

which reflect uncertainty in αLNC, αRD, αMP, and αNMP, respectively.

Note that Eqs. (84–87) are equal to Eq. (83) for the nominal values

αLNC � 1, αRD � 0, αMP � 0.7393, and αNMP �
1.1628, respectively.

The suppression metric gs is defined as the ratio of the root-mean-
square of the last 1000 subinterval steps of the open-loop response
and the closed-loop response in dB. The case gs > 0 corresponds to
disturbance suppression relative to the response of the open-loop
system. Simulations where either gs ≤ 0 or the output of the closed-
loop system diverges are indicated as failures.
To investigate the closed-loop performance with an off-nominal

target model, αLNC, αRD, αMP, and αNMP are varied from their
nominal values, and RCAC is applied with nc � n � 3, pc;0 �
1000, for 0 ≤ t ≤ 20 s. Figure 7 shows that the adaptive controller
can be applied with the target models (84–87), where αLNC, αMP, and
αNMP are off-nominal. In particular, Fig. 7 shows the suppression
metric gs and asymptotic feasibility distance f∞ for target models
with various sources of infeasibility. Figures 7a and 7e show gs and
f∞, respectively, for Eq. (84), where αLNC ∈ �−0.5; 6�, which shows
that infeasibility due to the sign of the leading numerator coefficient
of the target model causes failure. However, the adaptive controller is
robust to infeasibility due to the magnitude of the leading numerator
coefficient of the target model. Figures 7b and 7f show gs and f∞,
respectively, for Eq. (85), where αRD ∈ f0; 1; 2; 3g, which shows that
infeasibility due to the relative degree of target model causes failure.
Figures 7c and 7g show gs and f∞, respectively, for Eq. (87), where

αMP ∈ �−1.2; 1.2�, which shows that the adaptive controller is robust
to infeasibility due to an incorrectly modeled MP zero in the target

model. However, note that the adaptive controller fails when an MP

zero of Gd�q� is replaced with a positive NMP zero in the target

10-2

100

102

a)

0 2 4 6 8 10

10-4

100

c)

-30

-20

-10

0

b)

0 /4 /2 3 /4
-5

0

5

d)

Fig. 6 Example 2: a) open- and closed-loop responses; b) frequency response ofGLQG�q� andGc;1000�q�; c) jzopp;kj and jztmp;kj; d) frequency response of
Gf�q� and eGz ~u;1000�q�.

0

5

0 2 4 6
0

10

20

30

0 1 2 3 -1 0 1 1 1.2 1.4

a) b) c) d)

e) f) g) h)

Fig. 7 Example 3: For Gf�q� given by Eqs. (84–87), a–d) show gs, and e–h) show f∞. The dashed lines indicate nominal values of αLNC, αRD, αMP, and
αNMP; the shaded regions indicate values for which gs ≤ 0.
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model. Figures 7d and 7h show gs and f∞, respectively, for Eq. (87),
where αNMP ∈ �0.9; 1.5�, which shows that the adaptive controller is
robust to infeasibility due to an incorrectly modeled NMP zero in the

target model. Note that the adaptive controller fails when αNMP < 1 in
the targetmodel (87), that is, when theNMP zero in the feasible target

model (83) is replaced with an MP zero. ⋄

F. Construction of Gf�q� for SISO Systems

Example 3 shows that RCAC can reject disturbances with an

infeasible Gf�q� as long as Gf�q� shares certain properties with

−EGd�q�, as described by the following definition.
Definition 3: Assume that EGd�q� is SISO, and let Gf�q� be a

proper SISO transfer function. Then Gf�q� is quasi-feasible if the

following statements hold:
i) The leading numerator coefficients ofGf�q� and−EGd�q� have

the same sign.
ii) Gf�q� and −EGd�q� have the same relative degree.
iii) Gf�q� and −EGd�q� have the same NMP zeros.
Note that a quasi-feasible target model may be feasible; however,

most quasi-feasible target model are infeasible
Definition 4: The nominal target model is the minimal-order,

quasi-feasible FIR target model whose leading numerator coefficient

is equal to the leading numerator coefficient of −EGd�q�.
Note that the nominal target model is uniquely defined. Further-

more, the nominal target model may be feasible; however, in most

cases, the nominal target model is infeasible The rationale for choos-

ing the nominal target model to be FIR is the fact that the target

location for each closed-loop pole is the center of the open unit disk.

For details, see [20].Note that the nominal targetmodel for−EGd�q�,
with Gd�q� given by Eq. (80), is

Gf;n�q� � −0.9988
q − 1.1628

q2
(88)

The following example investigates the efficacy of the nominal target

model when the required modeling information is uncertain.
Example 4: Robustness to perturbations from the nominal target

model.To investigate the robustness of the nominal targetmodel, first

consider the case whereGf�q� given by Eq. (88). Figure 8 shows the
suppression metric gs and the asymptotic feasibility distance f∞ for

this choice of target model, marked with the vertical red dashed lines.
Next, the targetmodel is chosen to be a perturbation of the nominal

target model given by the off-nominal target models

Gf�q� � αLNCGf;n�q� (89)

Gf�q� � −0.9988
q − 1.1628

q2�αRD
(90)

Gf�q� � −0.9988
q − αNMP

q2
(91)

which reflect uncertainty in αLNC, αRD, and αNMP, respectively. Note
that Eqs. (89), (90), and (91) are equal to Gf;n�q� for the nominal

values αLNC � 1, αRD � 0, and αNMP � 1.1628, respectively. To
investigate the closed-loop performance with an off-nominal target
model, αLNC, αRD, and αNMP are varied from their nominal values,
and adaptive control is applied with nc � 10, pc;0 � 1000, for

0 ≤ t ≤ 20 s. Figure 8 shows that the adaptive controller can be
applied with the target models Gf;LNC�q� and Gf;NMP�q�, where
αLNC and αNMP are off-nominal. ⋄

Example 4 suggests that Gf�q� can be constructed as

Gf�q� � −Gξ

QNz

i�1�q − αz;i�
qNz�ξ (92)

whereGξ, αz;i, Nz, ξ, are the leading numerator coefficient, all NMP

zeros, number of NMP zeros, and relative degree of EGd�q�, respec-
tively. Note that the minus sign in Eq. (92) is due to the minus sign
in Eq. (7).
Example 5: Unmodeled NMP zeros and the retrospective perfor-

mance-variable decomposition. Let Gf�q� � −�0.9988∕q�, which
has the same leading numerator coefficient and relative degree as
−EGd�q�; however, it does not have the NMP zero of Gd�q�.
Adaptive control is applied with Ez � 1, Eu � 0, E � 1, nc � 16,
and pc;0 � 1000.
As shown by Examples 1 and 2, the minimization of the retro-

spective performance variable ẑk�θc;k�1� leads to matching betweeneGz ~u;k�1�θc;k�1� andGf�q�. Figure 9h shows that this is what happens
for this example as well. Because Eq. (65) has an NMP zero at
1.1628 rad∕step and Gf�q� does not, the optimization attempts to
cancel this NMP zero using the denominator of Eq. (65). This results
in a controller pole at theNMP zero as shown in Fig. 9g,which results
in a hidden instability, demonstrated by the lack of divergence of jzkj
and the exponential divergence of jukj, as shown in Figs. 9e and 9a,
respectively.
Additionally, as shown in Fig. 9b, the spectral radius of

Du�q�Dc�q� � Nu�q�Nc�q�, which is the denominator polynomial
of all closed-loop transfer functions, converges to a value greater than
1, which shows that all the closed-loop transfer functions are unsta-
ble. However, since Gf�q� is asymptotically stable, and jzkj and
~uk�θc;k�1� remain small, it follows from Eq. (46) that ẑext;k�θc;k�1�
remains small, as shown in Fig. 9d. This in turn implies that
zopp;k�θc;k�1� ≈ −ztmp;k�θc;k�1�, which can be seen in Fig. 9f. ⋄

G. MIMO Example

To investigate the role of the target model Gf�q� in MIMO case,

note that the closed-loop transfer function from rk to yk is given by

eGyr�q� � �Ip �Gd�q�Gc�q��−1Gd�q�Gc�q� (93)

� Gd�q��Im �Gc�q�Gd�q��−1Gc�q� (94)

� Gd�q�Gc�q��Ip �Gd�q�Gc�q��−1 (95)

0

5

10

a) b) c)

0.8 0.9 1 1.1 1.2 1.3
0

5

10

d)
0 1 2 3

e)
1 1.2 1.4

f)

Fig. 8 Example 4: ForGf�q� given byEqs. (89–91), a–c) showgs, and d–f) show f∞. The dashed lines indicate nominal values ofαLNC,αRD, andαNMP; the
shaded regions indicate values for which gs ≤ 0.
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assume thatGd�q� andGc�q� have full normal rank, and consider the

definitions and propositions in Appendix A. Note that, if Gd�q� is
square, then Proposition 8 implies that CZ�Gd; Gc� and CZ�Gc; Gd�
are both empty. Alternatively, consider the case where p ≠ m, and

thus Gd�q� in Fig. 2 is rectangular. Note that both products GdGc ∈
R�q�p×pprop andGcGd ∈ R�q�m×m

prop appear in Eqs. (93–95). In particular,

in the case where m > p, Gc�q�Gd�q� is up-squared, and thus

CZ�Gc; Gd� is empty, whereas Gd�q�Gc�q� is down-squared, and
thus CZ�Gd; Gc� may be nonempty. On the other hand, in the case

m < p, Gd�q�Gc�q� is up-squared, and thus CZ�Gd; Gc� is empty,

whereasGc�q�Gd�q� is down-squared, and thus CZ�Gc; Gd�may be

nonempty. As shown in the next example, cascade zeros of the down-

squared loop transfer function may be cancelled by RCAC.
Example 6:Cancellation of anNMPcascade zero. ConsiderGu�s�

and Gw�s� given by Eqs. (3) and (4) with

A�

2666664
−80 0 0 0

0 −20 0 0

−80 0 −10 −40

−80 0 40 −10

3777775; B�

2666664
−1.8 1.35 −0.85

1.02 −0.22 −1.12

0.13 −0.59 2.53

0.71 −0.29 1.66

3777775;

Bw �

2666664
0

1

0

0

3777775 (96)

C �
�

1.31 −0.87 0.79 −8.33
−1.26 −2.18 −1.33 −6.45

�
; D � 02×3 (97)

and Ts � 0.01 s∕step. Note that A is asymptotically stable. Let

�Ad; Bd; Cd; Dd� be a minimal realization of Gd�q�. The objective

is to reject the effect of a white, zero-mean, Gaussian disturbance on

both components of yk � � y1;k y2;k �T , and thus E � I2. For

Eqs. (96) and (97), EGd�q� has no transmission zeros and no NMP

channel zeros. Let �wk;i and vk be zero-mean, Gaussian white noise

with standard deviations 1 and 0.001, respectively. Using theMarkov

parameters H1 � CdBd and H2 � CdAdBd of Gd�q�, let

Gf�q� � −
H1

q
−
H2

q2
(98)

This choice ofGf�q� ensures that uk is not restricted to a subspace of
Rm, where m � 3, as shown in [35]. With Gf�q� given by Eq. (98)

and pc;0 � 103, Ez � I2, Eu � 0, nc � 20, Fig. 10 shows that a

controller pole cancels an NMP cascade zero of �Gd; Gc;509� at

1.168 rad∕step, which causes the control uk to diverge. Note that

Gd�q�Gc;509�q� does not have a transmission zero at 1.168 rad∕step
due to pole-zero cancellation, and thus the zero at 1.168 rad∕step is
an evanescent NMP zero of �Gd; Gc;509�.⋄

IV. Online IdentificationUsingRecursive Least Squares

This section investigates the performance of RLS for online,

closed-loop identification. The goal is to estimate key features of

the open-loop transfer function −EGd�q� from uk to zk needed to

construct Gf�q�, which, as shown in Sec. III, serves as the target

model for eGz ~u;k�q�. Because closed-loop identification may lead to

biased estimates, open-loop identification is also considered in order

to provide a baseline comparison.

A. Recursive Least Squares-Based Identification

In this subsection, RLSID is used to identify EGd�q�. The transfer
function EGd�q� from uk to yz;k is given by
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Fig. 9 Example 5: a) open- and closed-loop responses; b) spectral radius ofDuDc �NuNc; h) k eGz ~u;k�1�q� −Gf�q�k∞, coded by color for the stability of
eGz ~u;k�1�q�.
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EGd�q���Iqqn�F1q
n−1� ···�Fn�−1�G0q

n�G1q
n−1� ···�Gn�

(99)

where G0; : : : ; Gn ∈ Rq×m, and F1; : : : ; Fn ∈ Rq×q are the

numerator and denominator coefficients of the transfer function,

respectively.
Consider the sampled-data identification architecture shown in

Fig. 11, which is based on Fig. 2.
Since E is known, yz;k � Eyk can be computed internally by

RLSID. Furthermore, at each step k, the requested control input uk
and the measurement yk are assumed to be available. To identify

EGd�q�, a model of the form

yz;k � −
Xη
i�1

Fi;kyz;k−i �
Xη
i�0

Gi;kuk−i (100)

is fit to data where η is the RLSID window length, and

G0;k; : : : ; Gη;k ∈ Rq×m, and F1;k; : : : ; Fη;k ∈ Rq×q are numerator

and denominator coefficient matrices that are to be estimated.
Next, note that Eq. (100) can be written as

yz;k � ϕm;kθm;k (101)

where

ϕm;k ≜

2666666664

−yz;k−1
..
.

−yz;k−η
uk
..
.

uk−η

3777777775

T

⊗ Iq ∈ Rq×lθm (102)

θm;k ≜ vec
h
F1;k · · · Fη;kG0;k · · · Gη;k

i
∈ Rlθm (103)

is the model coefficient vector, and lθm � ηq2 � �η� 1�qm. The

model-output error is defined by

zm;k�θm� ≜ yz;k − ϕm;kθm (104)

where θm is an argument for optimization of the form

θm ≜ vec
h
F1 · · · FηG0 · · · Gη

i
∈ Rlθm (105)

Next, to apply RLSID, note that the minimizer θm;k�1 of the

quadratic cost function

Jk�θm� ≜
Xk
i�0

zm;i�θm�Tzm;i�θm� � �θm − θm;0�TP−1
m;0�θm − θm;0�

(106)

is given recursively by

Pm;k�1 � Pm;k − Pm;kϕ
T
m;k�Iq � ϕm;kPm;kϕ

T
m;k�−1ϕm;kPm;k (107)

θm;k�1 � θm;k � Pm;k�1ϕ
T
m;k�yz;k − ϕm;kθm;k� (108)

Note that θm;0 � 0 is chosen to reflect the absence of additional

modeling information, and Pm;0 � pm;0Ilθm , where pm;0 ∈ �0;∞�
is a tuning parameter. As shown by Example 7, the regularization

term �θm − θm;0�TP−1
m;0�θm − θm;0� in Eq. (106), which is a required

feature of RLS [36–39], causes the estimates to be biased. Although

the regularization-induced bias can beminimized by choosingpm;0 to

be large, it cannot be entirely avoided. The RLSID model at step k is
given by

EGd;k�q� ≜ �Iqqη � F1;kq
η−1� · · · �Fη;k�−1�G0;kq

η� · · · �Gη;k�
(109)

Unless stated otherwise, for all of the examples in this paper RLSID is

applied with a strictly proper model, which is enforced by removing

uk and G0;k from the definitions (102) and (103), respectively, and

redefining lθm � ηq�q�m�.

B. Relative Degree and Leading Numerator Coefficient of SISO

Systems

In the case where uk and yz;k are scalar, the transfer function

EGd�q� from uk to yz;k can be expressed as

EGd�q� �
ENd�q�
Dd�q�

� G0q
n� · · · �Gn

qn � F1q
n−1� · · · �Fn

(110)

where n is the order of EGd�q�, and G0; : : : ; Gn ∈ R and

F1; : : : ; Fn ∈ R are numerator and denominator coefficients,

respectively. The leading numerator coefficient of Eq. (110) is the

leftmost nonzero coefficient of ENd�q�, and the relative degree of

Eq. (110) is ξ ≜ degDd�q� − degENd�q�. Note that Gξ is leadingFig. 11 Online identification using RLSID.

Fig. 10 Example 6: a) EZ�Gd;Gc;509� and controller poles, where an NMP element of CZ�Gd;Gc;509� is cancelled by a controller pole. b,d) Closed-loop
response; c,e,g) all components of uk diverge; f) θc;k.
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numerator coefficient of EGd�q�, and, in the case where ξ ≥ 1,
G0 � · · ·� Gξ−1 � 0.

C. Numerical Examples

For all of the examples in this section, let Gu�s� be given by Case
1 in Table 1, and let Gd�q� denote the ZOH discretization of G�s�
with Ts � 0.03 s∕step, and EGd�q� is a SISO 12th-order transfer

function with an NMP zero at 1.4901 rad∕step. Furthermore, G0 �
G1 � G2 � 0 and G3 � 0.2972, and thus the relative degree of

EGd�q� is 3 and G3 is its leading numerator coefficient. To assess

the ability of RLSID to estimate the relative degree and leading

numerator coefficient of EGd�q�, Gi;k and Gi are compared for

i � 1; 2; 3. Furthermore, to assess the accuracy of the estimate of

the NMP zero of Gd�q�, the smallest distance dz;k between the zeros

of the RLSID model and the NMP zero of EGd�q� is computed at

each step. To assess the accuracy of open- and closed-loop identi-

fication, let η � 12, which is the order of EGd�q�. Each example in

this section involves 100 trials for 0 ≤ t ≤ 1000 s.
Example 7: Open-loop RLSID with no disturbance, no sensor

noise, showing regularization-induced bias. Let the input uk of

Gd�q� be zero-mean, Gaussian white noise with standard deviation

1, and let �wk;i � 0 and vk � 0. To demonstrate the effect of regu-

larization, RLSID is applied to the input-output datawith two choices

of pm;0, namely, pm;0 � 10−3 and pm;0 � 104, where pm;0 � 10−3

and pm;0 � 104 correspond to large and small regularization, respec-

tively. A detailed treatment of regularization-induced bias in RLS is

found in [40]. The averaged results from 100 trials are shown in

Fig. 12. As shown in Fig. 12, the errors in the estimates of the first

three numerator coefficients and the NMP zero are larger for trials

with larger regularization. ⋄

Example 8: Open-loop RLSID with disturbance and sensor noise.
Let the input uk of Gd�q� be zero-mean, Gaussian white noise with

standard deviation 1; let andpm;0 � 104. To demonstrate the effect of

disturbance and sensor noise, RLSID is applied to the input-output
data, with �wk � 0, vk � 0, and with �wk;i, vk being zero-mean,

Gaussian white noise with standard deviations 10,1, respectively.
The averaged results from 100 trials are shown in Fig. 13. As shown
in Fig. 13, the errors in the estimates of the first three numerator
coefficients and the NMP zero are larger for the trials with disturb-
ance and sensor noise present.⋄
Example 9: Closed-loop RLSID with LQG Control. To demon-

strate the effect of closed-loop control, RLSID is applied to the input-
output data for open- and closed-loop scenarios. In particular, for
open-loop simulations, uk is zero-mean, Gaussian white noise with
standard deviation 1, and for closed-loop simulations uk is given by
an LQG feedback controller designed using theMATLAB command
lqg with Qxu � Qwv � I13. Let �wk;i and vk be zero-mean, Gaussian

white noisewith standard deviations 0.05 and 0.005, respectively. For

RLSID set pm;0 � 104. The averaged results from 100 trials are

shown in Fig. 14. As shown in Fig. 14, the errors in the estimates
of the first three numerator coefficients and the NMP zero are larger
for closed-loop input-output data relative to open-loop input-output
data. ⋄

V. Data-Driven Retrospective Cost Adaptive Control

This section describes DDRCAC [41], which combines RLSID
withRLS-based adaptive control (RLSAC). The online identification
uses RLS to fit an IIR model based on data yz;k and uk collected
during closed-loop operation. At each step, the identified IIR
model is used to construct a time-dependent target model Gf;k�q�.

100 101 102 103
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100

a)

100 101 102 10310-4

10-3

10-2

10-1

100

b)

100 101 102 103

10-2

10-1

100

c)

Fig. 12 Example 7: Regularization in RLSID. Averaged a) estimation errors for G1, G2; b) estimation error for G3; and c) dz;k. The accuracy of the
identification is poor when the regularization is large.
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Fig. 13 Example 8:Disturbance and sensor noise inRLSID.Averageda) estimation errors forG1,G2; b) estimation error forG3; and c)dz;k. Disturbance
and sensor noise degrade identification accuracy.
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Fig. 14 Example 9: Closed-loop RLSID. Averaged a) estimation errors forG1,G2; b) estimation error forG3; and c) dz;k. The closed-loop identification
accuracy is poor compared with open-loop identification.
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In particular,Gf;k�q� is constructed as an FIR filter whose numerator

is chosen to be the numerator of the latest identified IIR model. Note

that this online technique for constructingGf;k�q� is a variation of the
offline technique described in Sec. III, whereGf�q�was constructed
using only the NMP zeros ofEGd�q�. This approach avoids the need
to computeNMP zeros during online operation and can be used in the

MIMO case, where the numerator of the RLSID model is a q ×m
polynomial matrix. This target model is then used by RLSAC to

update the coefficients of an IIR controller. For DDRCAC, both RLS

implementations use VRF, as given by the following result [23].
Proposition 5: For all k ≥ 0, let �yk ∈ Rl �y , ϕk ∈ Rl �y×l�θ , λk ∈ �0; 1�,

and define ρk ≜
Q

k
j�0 λj. Let �θ0 ∈ Rl�θ , and let �P0 ∈ Rl�θ×l�θ be pos-

itive definite. Furthermore, for all k ≥ 0, denote the minimizer of

Jk��θ� ≜
Xk
i�0

ρk
ρi

� �yi − ϕi
�θ�T� �yi − ϕi

�θ� � ρk��θ − �θ0�T �P−1
0 ��θ − �θ0�

(111)

where �θ ∈ Rl�θ , by �θk�1 ≜ argmin
�θ∈Rl�θ

Jk��θ�. Then, for all k ≥ 0, �θk�1 is

given by

�Pk�1 �
1

λk
�Pk −

1

λk
�Pkϕ

T
k �λkIl �y � ϕk

�Pkϕ
T
k �−1ϕk

�Pk (112)

�θk�1 � �θk � �Pk�1ϕ
T
k � �yk − ϕk

�θk� (113)

For RLSID andRLSAC, a technique for specifying λk is given later in
this section.

A. Recursive Least Squares-Based Identification

To identify EGd�q�, an IIR model of the form Eq. (100) is fit to

data. Since E is known, yz;k � Eyk can be computed internally by

RLSID. Using Proposition 6, for all k ≥ 0 the model coefficient

vector θm;k is updated recursively using

Pm;k�1 �
1

λm;k

Pm;k

−
1

λm;k

Pm;kϕ
T
m;k�λm;kIq � ϕm;kPm;kϕ

T
m;k�−1ϕm;kPm;k

(114)

θm;k�1 � θm;k � Pm;k�1ϕ
T
m;k�yz;k − ϕm;kθm;k� (115)

where ϕm;k and θm;k are given by Eqs. (102) and (103), respectively,

andPm;0 ∈ Rlθm×lθm is positive definite. TheRLSIDmodel at step k is
given by

EGd;k�q� � �Iqqη � F1;kq
η−1� · · · �Fη;k�−1�G0;kq

η� · ·

· �Gη;k� (116)

B. Recursive Least Squares-Based Adaptive Control

Define the strictly proper dynamic compensator

uk ≜ sat �u�ϕc;kθc;k� (117)

where ϕc;k and θc;k are given by Eqs. (14) and (15), respectively. The
definition (117) represents an IIR controller whose output is saturated

componentwise by the scalar saturation function sat �u defined by

sat �ui�xi� ≜
�
xi; jxij < �ui;
sign�xi� �ui; jxij ≥ �ui

(118)

Next, define the filtered signals

uf;k ≜ Gf;k�q�uk (119)

ϕf;k ≜ Gf;k�q�ϕc;k (120)

where, for startup, uf;k and ϕf;k are initialized at zero and thus are

computed as the forced responses of Eqs. (119) and (120), respec-
tively, and where Gf;k�q� is the time-dependent target model con-

structed using the updated numerator coefficientsG0;k�1; : : : ; Gη;k�1

of the model (100). In particular,

Gf;k�q� ≜ −
Xη
i�0

Gi;k�1

1

qi (121)

which has the same form as Eq. (92) except that Eq. (121) is time
varying, generalizes to MIMO systems, and includes all of the zeros
of EGd;k�q�. In the case where q � m � 1, it follows from G0;k � ·

· ·� Gξ−1;k � 0 andGξ;k � Gξ that Eq. (121) and−EGd�q� have the
same leading numerator coefficient and relative degree. Note that, at
each step k, the numerator of Eq. (121) is chosen to be the numerator
of Eq. (116). If there exists k ≥ 0 such that G0;k � · · ·� Gη;k �
0q×m, then Gf;k�q� is chosen to be

Gf;k�q� ≜ −1q×m (122)

The retrospective performance variable is defined to be

ẑk�θc� ≜ zk − uf;k � ϕf;kθc (123)

Using Eqs. (121) and (122), Eq. (123) can be expressed as

ẑk�θc� ≜ zk − NkUk � NkΦc;kθc (124)

where

Nk ≜

8<: �−1q×m0 · · · 0�; G0;k�1 � · · ·� Gη;k � 0;

�−G0;k�1 · · · −Gη;k�1�; otherwise

(125)

Nk ∈ Rq×�η�1�m, �uk and �ϕc;k are given by Eqs. (27) and (28) with

nf � η, respectively, andG0;k�1; : : : ; Gη;k�1 ∈ Rq×m are the numer-

ator coefficients of the RLSID model. Note that, by performing the
RLSID update at step k before the RLSAC update, it follows thus the
estimated numerator coefficients G0;k�1; : : : ; Gη;k�1 are available

for constructing Nk at step k.
Next, define the controller cost variable

zc;k�θc� ≜
24 Ezẑk�θc�

Euϕc;kθc
EΔu�ϕc;kθc − uk�

35 ∈ Rq�r1�r2 (126)

where the performance weighting Ez ∈ Rq×q is nonsingular and
Eu ∈ Rr1×m, EΔu ∈ Rr2×m are the control weighting and control-
move weighting, respectively. If Eu � 0 and EΔu � 0, then r1 � 0
and r2 � 0, respectively, and all expressions involving Eu and EΔu
are omitted from Eq. (126), as well as from all subsequent expres-
sions. Note that

zc;k�θc�Tzc;k�θc� � ẑk�θc�TRzẑk�θc� � θTcϕ
T
c;kRuϕc;kθc

� �ϕc;kθc − uk�TϕT
c;kRΔuϕc;k�ϕc;kθc − uk�

(127)

where Rz ≜ ET
z Ez ∈ Rq×q is positive definite, and Ru ≜ ET

uEu ∈
Rm×m, RΔu ≜ ET

ΔuEΔu ∈ Rm×m are positive semidefinite.

Using Proposition 6, for all k ≥ 0 the controller coefficient vector
θc;k is updated recursively using
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Pc;k�1 �
1

λc;k
Pc;k

−
1

λc;k
Pc;kϕ

T
fc;k�λc;kIq�r1�r2 � ϕfc;kPc;kϕ

T
fc;k�−1ϕfc;kPc;k

(128)

θc;k�1 � θc;k � Pc;k�1ϕ
T
fc;k�yc;k − ϕfc;kθc;k� (129)

where

yc;k ≜

26664
Ezzk − EzNk

�Uk

0

−EΔuuk

37775 ∈ Rq�r1�r2 ;

ϕfc;k ≜

26664
−EzNkΦc;k

−Euϕc;k

−EΔuϕc;k

37775 ∈ R�q�r1�r2�×lθc (130)

and Pc;0 ∈ Rlθc×lθc is positive definite.

For all of the examples in this paper, θm;k and θc;k are initialized as
0, and thus Eq. (122) is invoked at startup. This assumption reflects
the absence of additional prior modeling information; however, θm;k

and θc;k can be initialized based on any available modeling informa-

tion. To initialize RLSAC and RLSID, Pc;0 � pc;0Ilθc and Pm;0 �
pc;0Ilθm are chosen, where, for convenience, pc;0 > 0 is a common

tuning parameter.

C. Data-Dependent Variable Rate Forgetting

For data-dependent VRF, set

λm;k �
1

1� εe�zm;k−τd ; : : : ; zm;k�1�e�zm;k−τd ; : : : ; zm;k��
(131)

λc;k �
1

1� εe�zk−τd ; : : : ; zk�1�e�zk−τd ; : : : ; zk��
(132)

where

e�xk−τd ; : : : ; xk� ≜
�������������������������������
1
τn

P
k
i�k−τn x

T
i xi

q
�������������������������������
1
τd

P
k
i�k−τd x

T
i xi

q − 1.2 (133)

“1” is the step function that is 0 for negative arguments and 1 for

nonnegative arguments, and e�0; : : : ; 0� ≜ 0. In Eqs. (131–133),
ε ≥ 0, 0 < τn < τd are numerator and denominator window lengths,
respectively. If the sequence xk−τd ; : : : ; xk is zero-mean noise,

then the numerator and denominator of Eq. (133) approximate the
average standard deviation of the noise over the intervals �k − τn; k�
and �k − τd; k�, respectively. In particular, by choosing τd ≫ τn,
it follows that the denominator of Eq. (133) approximates the
long-term-average standard deviation of xk, whereas the numerator
of Eq. (133) approximates the short-term-average standard deviation
of xk. Consequently, the case e�xk−τd ; : : : ; xk� > 0 implies that the

short-term-average standard deviation of xk is greater than the long-
term-average standard deviation of xk plus a threshold of 0.2. The
function e�xk−τd ; : : : ; xk� used in VRF suspends forgetting when

the short-term-average standard deviation of xk drops below1.2 times
the long-term-average standard deviation of xk. This technique
thus prevents forgetting in RLSID and RCAC due to zero-mean
sensor noise with constant standard deviation rather than due to the
magnitude of the noise-free identification error and command-
following error.
A list of parameters to be selected for DDRCAC is presented in

Table 2.

D. Numerical Examples

This subsection demonstrates DDRCAC, which uses no prior
knowledge of EGd�q� and thus, in particular, no prior knowledge
of the leading numerator coefficient, NMP zeros, or relative degree of
EGd�q�. Unless stated otherwise, all of the examples in this sub-

section use the same tuning parameters, namely, pc;0 � 103, η � 4,
nc � 20, E � 1, Ez � 1, Eu � 0.1, EΔu � 0, ε � 0.001, τn � 200,
τd � 600, and �u � 1. Furthermore, for all of the examples in this

section ~yk ≜ zk. As in Sec. IV.C, the ability of RLSID to estimate the
leading numerator coefficient and relative degree of EGd�q� is
investigated by comparing the first ξ numerator coefficients of the
RLSIDmodel andEGd�q�. For all of the examples in this subsection,
RLSID and RLSAC are applied with a strictly proper RLSID model
and target model, respectively, which is enforced by removing uk and
G0;k from the definitions (102) and (103), respectively, redefining

lθm � ηq�q�m� and

Nk ≜
� �−1q×m0 · · · 0�; G0;k�1 � · · ·� Gη;k � 0;
�−G1;k�1 · · · −Gη;k�1�; otherwise

(134)

where Nk ∈ Rq×ηm.
Example 10: Interaction between RLSID and RLSAC. Let

Gu�s� �
100�s − 10��s� 30�

�s� 10��s2 − 10s� 1000� (135)

which is unstable and NMP, and, for Ts � 0.01 s∕step, let Gd�q�
denote the ZOH discretization of Gu�s�. Then the NMP zero,
leading numerator coefficient, and relative degree of Gd�q� are
1.1056 rad∕step, Gξ � G1 � 1.079, and ξ � 1, respectively. Let

�wk;i � 0, and let vk be zero-mean, Gaussian white noise with stan-

dard deviation 0.001.
For command following with rk � sin 0.23Tsk, control is applied

using an LQG controller designed for �Ad; Bd; Cd; Dd� augmented
with a model of the harmonic command, using the MATLAB com-
mand lqg, with weightsQxu � Qwv � I6. Figures 15a and 15c show
the response and control uk for the LQG controller, respectively.
RLSID with VRF given by Eqs. (114) and (115) is used for closed-
loop identification with the time-invariant LQG controller, as shown
in Figs. 15e and 15h. In this case, the leading numerator coefficient
and NMP zero ofGd�q� are estimated poorly, as shown by Figs. 15g
and 15h.
Next, adaptive control is applied with η � 10, where Figs. 15k and

15m show that, at t ≈ 0.1 s, the leading numerator coefficient is
correctly estimated, but the estimate of the NMP zero of Gd�q� is
erroneous. The initially poor RLSID model at t ≈ 0.1 s results in a
poor, infeasible target model, which induces a large transient response
in yz;k and uk for 0 ≤ t ≤ 1 s. The additional persistency of this

transient response, however, facilitates subsequent identification of
the NMP zero of Gd�q� at t ≈ 0.85 s, as shown in Fig. 15g. Note
that θm;k is converged for t > 0.41 s, and thus the time-dependent

target model is also converged. With the converged time-dependent
target model, Fig. 15g shows that RLS with VRF facilitates further
adaptation of θc;k for t > 0.41 s, and θc;k is converged for t > 1 s. This

Table 2 Tuning parameters that need to be selected for DDRCAC

Parameter Description Selection

η Model window length Integer ≥1 (1–10)

nc Controller window length Integer ≥1 (2–40)

Eu Control weighting scaled m×m identity

EΔu Control move weighting scaled m×m identity

�u Control saturation-limit vector 95% actuator saturation limit

pc;0
Initial RLS covariance scaling

for RLSAC and RLSID
pc;0>0

ε Forgetting parameter 0≤ ε<1 (0.001–0.2)

τn, τd Forgetting window lengths
Integers τd> τn

(τn ∈ [1–400], τd∼3τn)
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example thus illustrates mutually beneficial interaction between

RLSID and RLSAC. ⋄

Example 11: RCAC,DDRCAC, and ẑk�θc;k�1� decomposition.Let
Gu�s� be given by Case 2 in Table 1 with Ts � 0.01 s∕step. To avoid
numerical issues arising from the need for multiple discretized sys-

tems, the disturbance wk is assumed to be constant within each

sampling interval �kTs; �k� 1�Ts�. BecauseGu�s� is lightly damped,

high-precision arithmetic is used to compare the left- and right-hand

sides of Eq. (48).
For disturbance rejection, let rk � 0, and let wk and vk be zero-

mean, Gaussian white noise with standard deviations 0.1 and 0.001,

respectively. Three scenarios are considered, namely, i) RCAC with

the nominal target model

Gf�q� � −0.153
�q − 1.1078�

q2

which assumes knowledge of the true leading numerator coefficient,

NMP zeros, and relative degree of EGd�q�; ii) RCAC with the off-

nominal target model

Gf�q� � −0.35
�q − 1.2�

q2

where the leading numerator coefficient is erroneous by a factor of

2.29 and the NMP zero is erroneous by a factor of 1.08; and

iii) DDRCAC. RCAC is applied with nc � 20, Eu � 0.1, Ez � 1,

and pc;0 � 103, which are identical to the tuning parameters for

DDRCAC specified above.
The first, second, and third columns of Fig. 16 correspond to

scenarios (i), (ii), and (iii), respectively. Note that the closed-loop
performance degrades significantly due to the use of the off-nominal
target model. However, with no prior knowledge of the system
dynamics, DDRCAC achieves closed-loop performance similar to
RCAC with the nominal target model.
Figure 17 shows the RLSID coefficients θm;k; the true and esti-

mated leading numerator coefficients Gξ and Gξ;k, respectively; the

VRF factors λm;k, λc;k; and the closest distance dz;k between the zeros
of the RLSID model and the NMP zero ofEGd�q�. Note that RLSID
approximates the leading numerator coefficient, NMP zero, and
relative degree of EGd�q�, and thus the time-dependent target model
(121) approximates the nominal target model. ⋄

Example 12: Effect of sensor noise andpc;0. LetGu�s� be given by
Case 3 in Table 1 with Ts � 0.01 s∕step. Then the NMP zeros,
leading numerator coefficient, and relative degree of Gd�q� are
f1.106� 0.106jg rad∕step, Gξ � 0.128, and ξ � 3, respectively.

Hence, G1 � 0, G2 � 0, and Gξ;k � G3 � 0.128. The time-depen-

dent target model (121) has the same leading numerator coefficient
and relative degree as −EGd�q�, and is thus equal to the nominal
target model, if G0;k � · · ·� Gξ−1;k � 0 and Gξ;k � Gξ.

Let rk � 0, let �wk;i be Gaussian white noise with standard
deviation 0.1 and mean 0.5, and consider three scenarios, where vk
is zero-mean, Gaussian white noise with standard deviations 0.001,
0.01, and 0.1; these scenarios correspond to the first, second, and

-0.2

0

0.2

0.4

a) b)

-0.1

0

0.1

0.2

c) d)

-1

0

1

e) f)

-2

0

2

g)

0.9995

1

h) i)

0

0.5

1

j) k)

10-2

100

0 0.5 1 1.5 2 2.5 3
l)

0 0.5 1 1.5 2 2.5 3
m)

Fig. 15 Example 10:RLSIDwithLQGyields biased estimates ofGξ and theNMPzero ofGd�q�; for adaptive control, thebiases in (k) and (m) are smaller.
The vertical dashed lines denote the settling times of θm;k and θc;k.

ISLAM ETAL. 1747

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

M
IC

H
IG

A
N

 o
n 

Ja
nu

ar
y 

12
, 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

57
78

 



third columns of Fig. 18, respectively. The measurement signal-to-
noise ratio (SNR) is defined to be the ratio of the root-mean-square of
the last 1000 subinterval steps of yk to the root-mean-square of the
last 1000 subinterval steps of vk. Note that the suppression metric gs
decreases as SNR increases.
Next, to investigate the effect of pc;0, three disturbance rejection

scenarios with rk � 0 are considered, where pc;0 is 10, 10
2, and 103;

these scenarios correspond to the first, second, and third columns
of Fig. 19, respectively. Note that, although the transient response
of identified numerator coefficients increases with pc;0, the level of

asymptotic disturbance suppression is largely insensitive to the
choice of pc;0.⋄

Example 13: Example 6 revisited using DDRCAC. As shown in
Example 6, the control of nonsquare MIMO systems using RCAC
can cause the creation of NMP cascade zeros of �Gd; Gc;k� that are
cancelled by poles ofGc;k, leading to the divergence of uk. DDRCAC
is appliedwithEu � 0, and thus the tuning parameters are identical to
the RCAC tuning parameters in Example 6. As in Example 6, Fig. 20
shows that the controller gives rise to NMP cascade zeros. However,
unlike Example 6, these NMP zeros are not cancelled by the con-
troller, and thus uk does not diverge. ⋄

Example 14: Time-varying relative degree and NMP zeros with
abrupt and smooth transitions. Let �wk;i and vk be zero-mean, Gaus-
sian white noise with standard deviations 0.1 and 0.01, respectively,
and rk � 0. LetG1�s�,G2�s�, andG3�s� be given by Case 1, Case 2,
and Case 3 in Table 1, respectively, with minimal realizations
�A1; B1; C1; D1�, �A2; B2; C2; D2�, and �A3; B3; C3; D3�, respec-
tively. Furthermore, at each intersample time step t � �k∕10�Ts, let
Gu�s� be given by Eqs. (1) and (2) with

A�t� ≜ f�A2; A1; A3; t�; Bw�t� � B�t� ≜ f�B2; B1; B3; t�;
C�t� ≜ f�C2; C1; C3; t�; D�t� ≜ f�D2; D1; D3; t� (136)

f�M1;M2;M3; t� ≜

8>>>>>>><>>>>>>>:

M1; t ≤ 10 s;

M2; 10 < t ≤ 15 s;

M2 � �M2 −M1�
t − 10

5
; 15 < t ≤ 20 s;

M3; t > 20 s

(137)

Note that, at t � 10 s the relative degree of the discretization of
Eq. (136) changes from 1 to 3, and during 15 ≤ t < 20 s, the dynam-
ics of the discretization of Eq. (136) smoothly transition from a single
real NMP zero at 1.1078 rad∕step to a pair of complex NMP zeros
at f1.106� 0.106jg rad∕step.
Figure 21 shows that the adaptive controller rejects the disturbance

despite the unknown, abrupt, and smooth transitions in the dynamics
Eq. (136). Note that in Fig. 21f, Gξ;k is equal to G1;k for t ≤ 10 s
and equal to G3;k for t > 10 s. Furthermore, note that Gξ−1;k, Gξ−2;k
are undefined for t ≤ 10 s, and are thus plotted for t > 10 s in
Fig. 21d. ⋄

VI. Adaptive Flight Control

In this section, DDRCAC is applied to several flight-control
problems, namely, i) roll control of a hypersonic aircraft with an

Fig. 16 Example 11: Columns 1–3 correspond to RCAC with the nominal target model, RCAC with an off-nominal target model, and DDRCAC. The
performance of DDRCAC is similar to the performance RCAC in column 1.

-2

0

2

a)

-0.1

0

0.1

0.2

b)

0.9995

1

0 5 10
c)

0 5 1010-2

10-1

100

d)

Fig. 17 Example 11: a) RLSID coefficients θm;k; b) identified and true
leading numerator coefficients, Gξ;k, and Gξ , respectively; c) forgetting

factors λm;k and λc;k for RLSID and RLSAC, respectively; d) dz;k.
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Fig. 18 Example 12: Columns 1–3 correspond to vk with standard deviations 0.001, 0.01, and 0.1. The insets in (m), (n), and (o) show the full range of the

transient response.

Fig. 19 Example 12: Columns 1–3 correspond to pc;0 � 10, pc;0 � 102, pc;0 � 103. The inset in (o) shows the full range of the transient response.
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unknown transition fromMP toNMP dynamics, ii) pitch-rate control

of a flexible aircraft, iii) flutter suppression, and iv) normal-accel-

eration control a nonlinear planar missile. For consistency in apply-

ing DDRCAC, an exactly proper model structure is used for RLSID

for all of the examples in this section. Furthermore, the signal-to-

noise ratio (SNR) between yk and vk is computed for all of the

subinterval steps of each example. Note that the first three examples

are linear, whereas the last example is nonlinear.
Example 15: Roll control of a hypersonic aircraft with an unknown

transition fromMP to NMP dynamics.Consider the linearized lateral

dynamics of a hypersonic aircraft [42–44], given by Eqs. (1) and (2)

with

A�t� ≜

26666664
−0.0771 0.269 −0.9631 0.0397

l�t;−25.6;−108.8� 0.0218 0.0995 0

l�t; 0.6160; 0.4107� 0.0376 −0.2687 0

0 1 −0.4202 0.0058

37777775;

B�t� � Bw�t� ≜

26666664
−0.0002

2.519

l�t;−0.0222;−0.0665�
0

37777775 (138)

C ≜ � 0 0 0 1 �; D � 0;

l�t; a; b� ≜

8>>><>>>:
a; t < 80 s;

a� t − 80

20
�b − a�; 80 ≤ t ≤ 100 s;

b; t > 100 s

(139)

where the components of x�t� ≜ � β�t� �p�t� �r�t� ϕ�t� �T are

sideslip angle in rad, body x-axis angular velocity in rad∕s, body z-
axis angular velocity in rad∕s, and roll angle in rad, and the dynamics

transition from MP to NMP. Note that, in the case of full-state feed-

back, that is, C � I4, Eqs. (138) and (139) possess no zeros and thus
no NMP zeros. For this example, however, output feedback is

assumed, and thus Eqs. (138) and (139) may have NMP zeros. In

addition, the measurements of the roll angle ϕ�t� are assumed to be

noisy. The roll-angle command is given by

rk �

8>>>>>><>>>>>>:

10 sin 0.28Tsk deg; t < 250 s;

12 sin 0.21Tsk deg; 250 ≤ t < 400 s;

−10 deg; 400 ≤ t < 450 s;

10 deg; 450 ≤ t < 500 s;

−10 deg; t > 550 s

(140)

which is a harmonic signal that abruptly changes frequency, followed

by a sequence of step commands. The instantaneous poles and zeros

Fig. 20 Example 13: Example 4.7 revisited using DDRCAC. Unlike Example 4.7, no NMP cascade zeros are cancelled by the controller.

Fig. 21 Example 14:Disturbance rejection for Eq. (136). The relative degree changes from1 to 3 at t � 10 s, and, during t ∈ �15;20� s, the discretization
of Eq. (136) transitions from one real NMP zero to two complex NMP zeros.
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of EGu�s� and EGd�q� as functions of t are shown in Figs. 22a and

22b, respectively. The dynamics (138) and (139) and their discreti-

zation transition from MP to NMP.

The signal u�t� � δa�t� represents the asymmetric deflection of

the split flaps in radians. The actuator rate-saturation andmagnitude-

saturation limits are 300 deg ∕s and 30 deg, respectively. Let �wk;i

be Gaussian white noise with standard deviation 0.01 and mean

0.02, and let vk be zero-mean, Gaussian white noise with standard

deviation 0.001. The onset, duration, and time-dependence of the

transition from MP to NMP dynamics, which occurs during

�80; 100� s, are assumed to be unknown to the control algorithm.

Adaptive control is applied with E � 1, Ts � 0.25 s∕step,
~yk ≜ zk, pc;0 � 10, η � 12, nc � 12, Ez � 1, Eu � 0, EΔu �
0.1, ε � 0.01, τn � 60, τd � 300, and �u � 30 deg. The response

to the command (141) in the presence of disturbance is shown in

Fig. 23. By adapting to the unknown, changing dynamics in

80 ≤ t < 100 s, RLSID and RLSAC are able to follow commands.

Example 16: Pitch-rate control of a flexible aircraft. Consider the

pitch dynamics of a flexible aircraft [45] given by

Gu�s� � −0.417
s�s − 0.0143��s − 0.4�Q4

i�1�s2 � 2�ζi �ωis� �ω2
i �Q

6
i�1�s2 � 2ζiωis� ω2

i �
(141)

where �ζ1 � 0.0423, �ζ2 � 0.147, �ζ3 � 0.0136, �ζ4 � 0.0125, �ω1 �
4.883, �ω2 � 17.79, �ω3�22.04, �ω4�23.59, ζ1�0.0951, ζ2�
0.0358, ζ3 � 0.0374, ζ4 � 0.149, ζ5 � 0.021, ζ6 � 0.0136,
ω1 � 0.0551, ω2 � 1.830, ω3 � 12.40, ω4 � 18.03, ω5 � 21.25,
andω6 � 22.04. This system represents a flexible aircraft cruising at

Mach 0.6 at 5000 ft, and includes aeroelastic effects. The transfer

function (141) is lightly damped, asymptotically stable, andMP. This

transfer function relates the elevator deflection δe in degrees to the

pitch rate �q measured at the cockpit in rad∕s. The actuator rate-

saturation and magnitude-saturation limits are 300 deg ∕s and

30 deg, respectively.
Assume that Gu�s� � Gw�s� and let �wk;i and vk be zero-mean,

Gaussian white noise with standard deviations 0.1 and 0.001, respec-

tively. The pitch-rate command is

rk �

8>>>>>>>>><>>>>>>>>>:

4 deg ∕s; t < 30 s;

0 deg ∕s; 30 ≤ t < 60 s;

−4 deg ∕s; 60 ≤ t < 90 s;

0 deg ∕s; 90 ≤ t < 120 s;

4 deg ∕s; 120 ≤ t < 150 s;

0 deg ∕s; t ≥ 150 s

(142)

For this example, the adaptive controller is configured for command

feedforward by defining

~yk ≜
�
zk
rk

�
(143)

Adaptive control is applied with Ts � 0.1 s∕step, E � 1, pc;0 �
104, η � 8, nc � 30, Ez � 1, Eu � 0, EΔu � 0.01, ε � 0.02,
τn � 60, τd � 240, and �u � 30 deg. The response to a sequence

Fig. 23 Example 15: Response of the lateral dynamics of a hypersonic aircraft to harmonic and step commands with an unknown transition fromMP to
NMP dynamics, which occurs within the shaded regions.

Fig. 22 Example 15: Instantaneous a) continuous- and b) discrete-time
poles and zeros of the hypersonic aircraft during the transition from80 to
100 s. The details of the transition are assumed to be unknown.
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of step commands in the presence of zero-mean, Gaussian white-

noise disturbance is shown in Fig. 24. ⋄

Example 17: Flutter suppression.Consider the Benchmark Active

Control Technology (BACT) forActive Control DesignApplications

[46,47], which represents a wind-tunnel mounted wing that can

translate vertically and pitch, and has a trailing edge flap as a control

surface, as shown in Fig. 25. Various control techniques have been

used to demonstrate flutter suppression inBACT [48–52]. TheBACT

model incorporates a vertical spring and damper to model vertical

aerodynamic forces, as well as a rotational spring and damper to

model aerodynamic torques.
Accelerometers mounted on the leading and trailing edges of the

wing measure the leading-edge normal acceleration aLE and trailing-
edge normal acceleration aTE, respectively. The flutter-suppression
objective is to drive aLE and aTE to 0 using the control surface

deflection δTE, in the presence of turbulence. Second-order actuator

dynamics and a second-order Dryden wind turbulence model are

included in BACT. The disturbance �wk;i represents the input to the

second-order Dryden wind-turbulence model. BACT is an eighth-

order, two-output-one-input, continuous-time, unstable, NMP, linear

time-varying system with direct feedthrough, whose state-space

matrices are functions of the freestream velocityU0. For this example

the freestream velocity is varied as

U0 �

8><>:
300 ft∕s; t < 2 s;

300� 25�t − 2� ft∕s; 2 ≤ t < 6 s;

400 ft∕s; t ≥ 6 s

(144)

The onset, duration, and time-dependence of the change of free-

stream velocity, which occurs during �2; 6� s, are assumed to be

unknown to the control algorithm. The details of BACT are found
in [47].
Let �wk;i and vk be zero-mean, Gaussian white noise with standard

deviations 1 and 0.05, respectively. Adaptive control is applied with

Ts � 0.02 s∕step, E � I2, ~yk ≜ zk, rk � � 0 0 �T , pc;0 � 100,
η � 2, nc � 12, Ez � I2, Eu � 1, EΔu � 0, ε � 0.01, τn � 40,
τd � 200, and �u � 12 deg. The open- and closed-loop responses
to a zero-mean, Gaussian white-noise disturbance are shown in
Fig. 26. As noted in Fig. 26, the signal-to-noise ratio between the
sampled noisy acceleration measurements and the sensor noise is
approximately 13 dB. Therefore, the root-mean-squared level of the
sensor noise is approximately 23% as large as the root-mean-squared
level of the acceleration measurements. ⋄

Example 18: Normal-acceleration control of a nonlinear planar
missile. Consider a tail-controlled interceptor missile, which is
equipped with a strapdown accelerometer placed da meters forward
of the center ofmass of themissile, where the distanceda is unknown.
The missile [53–55] considered in this paper represents a missile in
planar flight whose dynamics are given by

_V � 1

�m
�fd�CXα cos α� CZα sin α� � T cos α − �mg sin γ�

� 1

�m
fd sin�α�CZδδ (145)

_α � 1

�mV
�fd�CZα cos α − CXα sinα� − T sin α� �mV �q� �mg cos γ�

� 1

�mV
fd cos�α�CZδδ�w (146)

_�q � d

Iyy
fd�CMα � CMq �q� �

d

Iyy
fdCMδδ (147)

_γ � 1

�mV
�fd�CXα sinα − CZα cos α� � T sin α − �mg cos γ�

−
1

�mV
fd cos�α�CZδδ (148)

_h � V sin γ (149)

where arguments of t are omitted for brevity,V�t� is themissile speed
in m∕s, T is the thrust in N, g is the acceleration due to gravity in

m∕s2, α�t� is the angle of attack in rad, �q�t� is the y-axis angular
velocity in rad∕s, γ�t� is the flight-path angle in rad, h�t� is

the altitude in m, δ�t� is the applied fin angle in rad, fd ≜ 1
2
ρV�t�2S

is the dynamic force in N, ρ�t� � ρ�h�t�� is the air density in kg∕m3

at an altitude h�t� m given by the International Standard Atmosphere

Fig. 25 Example 17: BACT wing. Leading- and trailing-edge acceler-
ometers measure aLE and aTE. The wing can plunge and pitch. The
actuator is a trailing-edge control surface with deflection δTE.

Fig. 24 Example 16: Response of the flexible aircraft to a sequence of pitch-rate step commands.
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model, S is the reference surface area inm2, d is the reference length
in m, �m is the mass of the missile in kg, and Iyy is the moment of

inertia of the missile relative to its center of mass and around a

transverse axis in kg ⋅m2. The angles α, γ, θ, and δf are shown in
Fig. 27. The values of the aerodynamic coefficients and parameter
values are given in Tables 3 and 4, respectively.
Note that the aerodynamic coefficients are nonlinear functions of

the missile speed V�t�, angle of attack α�t�, and the local speed of
sound as, which depends on the altitude h�t�.
The applied fin angle δ�t� is related to the requested fin angle uk �

δr�kTs� by means of second-order actuator dynamics with natural
frequency 150 rad∕s, damping ratio 0.7, and magnitude and rate

limits 30 deg and 500 deg ∕s, respectively. The gravity-corrected

normal acceleration measured by an accelerometer placed at a dis-

tance da forward of the center of mass of the missile is given by

nz � fd�μCZα − μyCMα − μyCMq �q� � fd�μCZδ − μyCMδ�δ (150)

where μ � �1∕ �m�, and μy � �dda∕Iyy�. A noisy measurement yk �
nz�kTs� � vk, of the normal acceleration nz�t�, is used by the con-

troller. The output equation (150) shows that there is a direct feed-

through of the applied fin δ�t� to the normal acceleration used by the

controller.
For this example, the adaptive controller is configured for

command feedforward by defining

~yk ≜
�
zk
rk

�
(151)

where the normal-acceleration command is rk�100sin0.025k1.2m∕s2.
Let �wk;i and vk be zero-mean, Gaussian white noise with standard

deviations 0.01 and 0.1, respectively. Furthermore, let V�0� �
985.7 m∕s, α�0� � 0 rad, �q�0� � 0 rad∕s, γ�0� � �π∕4� rad, and
h�0� � 3000 m. Adaptive control is applied with Ts � 0.05 s∕step,
E � 1, pc;0 � 103, η � 4, nc � 4, Ez � 1, Eu � 0, EΔu � 0.005,

ε � 0.5, τn � 20, τd � 60, and �u � 30 deg. Thecommand-following

response of the nonlinear planar missile is shown in Fig. 28. After

an initial transient, the command-following error is less than 5 g. Note

that, starting with no prior knowledge of the nonlinear dynamics

(145–149), the adaptive controller converges to a controller that facili-

tates command following.

V

Fig. 27 Example 18: �î;k̂� and �îB;k̂B� are Earth-fixed and body-fixed
unit vectors, δ is the fin deflection, α is the angle of attack,V is the missile
velocity vector, γ is the flight-path angle, and θ is the pitch angle.

Table 3 Aerodynamic coefficients

Aerodynamic
coefficient Value Unit

CXα −0.3005 ——

CZα
9.717

�
V

3as
− 2

	
α − 31.023αjαj � 19.373α3

——

CMα
2.922

�
8V

3as
− 7

	
α − 64.015αjαj � 40.440α3

——

CZδ −1.948 ——

CMδ −11.803 ——

CMq −1.719 s

α is the angle of attack in rad, V is the missile speed inm∕s, and as � as�h� is the local
speed of sound given by the Internal Standard Atmosphere model at the altitude h.

Table 4 Parameter values for the
nonlinear planar missile

Parameter Value Unit

�m 204.0227 kg

Iyy 247.4366 kg ⋅m2

g 9.81 m∕s2

S 0.0409 m2

d 0.2286 m

T 1000 N

da 0.5 m

-1

0

1

0

2

-2

0 2 4 6 8 10
-10
-5
0
5

-2

0

2

-2
-1
0
1

0 2 4 6 8 10
0.99
0.995

1

a)
b)

c)

d)

e) f)

Fig. 26 Example 17: Open- and closed-loop responses of aLE and aTE. The freestream velocity U0 is varied in the shaded region.
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VII. Conclusions

In the presence of sensor noise and actuator magnitude and rate
limits, DDRCAC was shown to be effective for plants with a priori
unknown NMP zeros, in contrast with standard output-feedback
adaptive control methods, which are confined to MP systems.
DDRCAC was also shown to avoid cancellation of NMP squaring
zeros, which are created due to the cascade of a nonsquare system and
a controller. Using RLS with VRF, DDRCAC was found to provide
self-generated persistency, thus facilitating system identification.
Furthermore, although closed-loop identification can entail param-
eter-estimate bias, it was found that, in DDRCAC, identification and
control interact so as reduce the effect of bias. Finally, flight-control
examples showed that DDRCAC is effective for both linear and
nonlinear applications as either a standalone embedded controller
or as a simulation-based offline tuning technique for assessing
achievable performance without requiring explicit knowledge of
the underlying equations of motion.

Appendix A: Products of MIMO Transfer Functions
and Pole-Zero Cancellations

This appendix considers pole-zero cancellation in products of
MIMO transfer functions as these are present during control of
MIMO systems.
Definition 5: Let P ∈ R�z�l1×l2 . Then the normal rank of P is

defined by

rankP ≜ max
z∈C

rank P�z� (A1)

Definition 6: Let (A, B, C, D) be a realization of G ∈ R�z�l1×l2prop ,

where A ∈ Rn×n. Then the Rosenbrock system matrix R�A;B;C;D� ∈
R�z��n�l1�×�n�l2� of (A, B, C, D) is the polynomial matrix

R�A;B;C;D��z� ≜
�
zI − A B
C −D

�
(A2)

and z0 ∈ C is an invariant zero of (A, B, C, D) if

rankR�A;B;C;D��z0� < rankR�A;B;C;D� (A3)

If, in addition, (A, B, C, D) is minimal, thenR�A;B;C;D� is denoted
by RG, and z0 ∈ C is a transmission zero of G if

rankRG�z0� < rankRG (A4)

Definition 7: Let (A, B, C, D) be a realization of G ∈ R�z�l1×l2prop .

Then IZ�A;B; C;D� is the multiset of invariant zeros of (A,B,C,D),

and TZ�G� is the multiset of transmission zeros of G.
Definition 8: LetG1 ∈ R�z�l1×l2prop andG2 ∈ R�z�l2×l3prop with minimal

realizations �A1; B1; C1; D1� and �A2; B2; C2; D2�, respectively.

Define G12 ≜ G1G2, and consider its realization

A12 ≜

"
A1 B1C2

0 A2

#
; B12 ≜

"
B1D2

B2

#
;

C12 ≜
h
C1 D1C2

i
; D12 ≜ D1D2 (A5)

Then z0 ∈ C is a cascade zero ofG1G2, if, counting repetitions, it is

an invariant zero of Eq. (A5) but not a transmission zero of eitherG1

or G2. The multiset of cascade zeros of G1G2 is denoted by

CZ�G1; G2� ≜ IZ�A12; B12; C12; D12� \ �TZ�G1� ∪ TZ�G2�� (A6)

Related results are found in [56,57]. Squaring is discussed in [58–

60] and used in [61] to eliminate NMP zeros. The following result

shows that cascade zeros of square transfer functionsG1G2 exist only

in the case l1 ≤ l2.
Proposition 6: Let G1 ∈ R�z�l1×l2prop and G2 ∈ R�z�l2×l1prop with mini-

mal realizations �A1; B1; C1; D1� and �A2; B2; C2; D2�, respectively,
where A1 ∈ Rn1×n1 and A2 ∈ Rn2×n2 , and assume that G1 and G2

have full normal rank. Define G12 ≜ G1G2 and consider its realiza-

tion (A5). If CZ�G1; G2� is not empty, then l1 < l2.
Proof:Suppose that l1 ≥ l2, and let z ∈ CZ�G1; G2�. Since z is not

a transmission zero of either G1 or G2, G1 has full column rank, and

G2 has full row rank, it follows from ([62] Proposition 16.10.3) that

rank

�
zIn1 − A1 B1

C1 −D1

�
� n1 � l2 (A7)
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Fig. 28 Example 18: Normal-acceleration command-following response of the nonlinear planar missile.
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rank

�
zIn2 − A2 B2

C2 −D2

�
� n2 � l2 (A8)

Next, note that

R�A12;B12;C12;D12��z� �

26664
zIn1 − A1 −B1C2 B1D2

0 zIn2 − A2 B2

C1 D1C2 −D1D2

37775
� N1�z�N2�z� (A9)

where

N1�z� ≜

264 zIn1 − A1 0 −B1

0 In2 0

C1 0 D1

375 ∈ R�z��n1�n2�l1�×�n1�n2�l2�

(A10)

N2�z� ≜
24 In1 0 0

0 zIn2 − A2 B2

0 C2 −D2

35 ∈ R�z��n1�n2�l2�×�n1�n2�l1�

(A11)

It follows from Eqs. (A7) and (A8) that

rankN1�z� � rankN2�z� � n1 � n2 � l2 (A12)

Next, Sylvester’s inequality ([62] pp. 292, 294) implies

rankN1�z� � rankN2�z� − n1 − n2 − l2 ≤ rankN1�z�N2�z�
≤ minfrankN1�z�; rankN2�z�g (A13)

It follows from Eqs. (A9–A13) that

rankR�A12;B12;C12;D12��z� � n1 � n2 � l2 (A14)

which shows that there are no values of z such that
rankR�A12;B12;C12;D12��z� < rankR�A12;B12;C12;D12�, and thus, z ∈=
CZ�G1; G2�, which is a contradiction. □

Definition 9: Let G1 ∈ R�z�l1×l2prop and G2 ∈ R�z�l2×l3prop . Then the

product G1G2 ∈ R�z�l1×l1prop is down squared if l1 < l2 and up squared
if l1 > l2.
Definition 10: Let G1 ∈ R�z�l1×l2prop and G2 ∈ R�z�l2×l3prop with mini-

mal realizations �A1; B1; C1; D1� and �A2; B2; C2; D2�, respectively.
DefineG12 ≜ G1G2, and consider its realization (A5). Then z0 ∈ C is
an evanescent zero of G1G2, if, counting repetitions, it is a cascade
zero of Eq. (A5) but not a transmission zero of G12. The multiset of
evanescent zeros of Eq. (A5) is denoted by

EZ�G1; G2� ≜ CZ�G1; G2� \ TZ�G12� (A15)

Example 19: Cascade and evanescent zeros. Consider the transfer
functions

G1�z� �
1

z�z − 3� � z −1 �; G2�z� �
1

z�z − 4�
�
z − 1

4z − 6

�
(A16)

which have minimal realizations �A1; B1; C1; D1� and
�A2; B2; C2; D2�, respectively, where

A1 ≜
�
0 0

1 3

�
; B1 ≜

�
0 −1
1 0

�
; C1 ≜ � 0 1 �; D1 ≜ � 0 0 �

(A17)

A2 ≜
�
4 0

1 0

�
; B2 ≜

�
2

0

�
; C2 ≜

�
0.5 −0.5
2 −3

�
; D2 ≜

�
0

0

�
(A18)

The Rosenbrock system matrices for �A1; B1; C1; D1� and
�A2; B2; C2; D2� are

RG1
�z� ≜

2664
z 0 0 −1

−1 z − 3 1 0

0 1 0 0

3775;

RG1
�z� ≜

2666664
z − 4 0 2

−1 z 0

0.5 −0.5 0

2 −3 0

3777775 (A19)

which show that rankRG1
�z� � rankRG1

and rankRG2
�z� �

rankRG2
, and thus TZ�G1� and TZ�G2� are empty. Next, consider

the product G12 ≜ G1G2 with the realization (A5), which has the
Rosenbrock system matrix

R�A12;B12;C12;D12��z� ≜

2666664
z 0 2 −3 0

−1 z − 3 −0.5 0.5 0

0 0 z − 4 0 2

0 0 −1 z 0

0 1 0 0 0

3777775 (A20)

It can be shown that rankR�A12;B12;C12;D12� �2� < rankR�A12;B12;C12;D12�
and rankR�A12;B12;C12;D12� �3� < rankR�A12;B12;C12;D12�. Since TZ�G1�
and TZ�G2� are empty, it follows that z � 2 and z � 3 are elements
ofCZ�G1; G2�. Next, consider the product of the transfer functions in
Eq. (A16)

G12�z� ≜ G1�z�G2�z� �
�z − 2��z − 3�
z2�z − 3��z − 4� �

z − 2

z2�z − 4� (A21)

where the cascade zero at 3 is cancelled by a pole of G1, and thus
z � 3 is not an element off TZ�G12�. Therefore, z � 3 is an element
of EZ�G1; G2�. ⋄

Appendix B: Discrete-Time Filtering

This appendix reviews notation and terminology for discrete-time
filtering in terms of the forward-shift operator q. Define the proper
discrete-time filter

G�q� ≜ D�q�−1N�q� (B1)

where N�q� � N0q
n� · · · �Nn ∈ R�q�p×m and D�q� � Ipq

n�
D1q

n−1� · · · �Dn ∈ R�q�p×p are polynomial matrices and
detD�q� ≠ 0.
Definition 11: The output �yk�∞k�−n ⊂ Rp of Eq. (B1) with input

�uk�∞k�−n ⊂ Rm is given by the data filter

yk �D1yk−1� · · · �Dnyk−n � N0uk� · · · �Nnuk−n (B2)

For convenience, Eq. (B2) is written as either

D�q�yk � N�q�uk (B3)

or

yk � G�q�uk (B4)

Example 20: Data filtering. Let N�q� � 2q� 3 and D�q� �
q2 � 4q� 5, which yields the input-output difference equation
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yk � −4yk−1 − 5yk−2 � 2uk−1 � 3uk−2 (B5)

With the data �uk�0k�−2 � �6; 7; 8� and �yk�−1k�−2 � �10; 11�, Eq. (B4)
yields

y0 � −4y−1 − 5y−2 � 2u−1 � 3u−2 � −62 (B6)

y1 � −4y0 − 5y−1 � 2u0 � 3u−1 � 230 (B7)

⋄

Definition 8 is now extended to the case where the input uk is a
function of an independent variable xk.
Definition 12: Let D1; : : : Dn ∈ Rp×p, let N0; : : : Nn ∈ Rp×m, let

yk−n; : : : ; y−1 ∈ Rp be initial output data, let �xk�∞k�−n ⊂ Rr, and, for

all k ≥ −n, let uk:Rr → Rm. Then, the FIA sequence �yk�xk��∞k�0 is

given by the fixed-input-argument (FIA) filter

yk�xk� �D1yk−1�xk−1�� · · · �Dnyk−n�xk−n�
� N0uk�xk�� · · · �Nnuk−n�xk� (B8)

where, for all k ∈ �−n;−1�, yk�xk� ≜ yk.
Note that, at each step k, the arguments of uk−n; : : : ; uk in Eq. (B8)

are fixed at the current input value xk over the interval �k − n; k�. In
contrast, the left-hand side defines the current output yk�xk�, which
depends on the past output values yk−n�xk−n�; : : : ; yk−1�xk−1�. For
convenience, Eq. (B8) is written as either

D�q�yk�xk� � N�q�uk�x �k� (B9)

or

yk�xk� � G�q�uk�x �k� (B10)

As a special case, note that

uk�r�xk� � qruk�x �k� (B11)

Example 21: FIA filtering. Let N�q� � 2q� 3 and D�q� �
q2 � 4q� 5, and for all k ≥ −n, define

uk�x� ≜ zkx� 1 (B11)

The corresponding FIA filter is thus given by

yk�xk� � −4yk−1�xk−1� − 5yk−2�xk−2� � 2�zk−1xk � 1�
� 3�zk−2xk � 1� (B12)

With the data �zk�0k�−2 � �14; 15; 16�, �xk�1k�0 � �19; 20�, and

�yk�−1k�−2 � �10; 11�, Eq. (B12) yields

y0�x0� � −4y−1 − 5y−2 � 2�z−1x0 � 1� � 3�z−2x0 � 1� � 1279

(B13)

y1�x1� � −4y0�x0�− 5y−1 � 2�z0x1 � 1� � 3�z−1x1 � 1� � −3626
(B14)

⋄
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