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mong the multitude of modern control methods, 
model predictive control (MPC) is one of the most 
successful [1]–[4]. As noted in “Summary,” this 
success is largely due to the ability of MPC to 
respect constraints on controls and enforce con-

straints on outputs, both of which are diffi cult to handle with 
linear control methods, such as linear quadratic regulator 

(LQR) and linear quadratic Gaussian (LQG), and nonlinear 
control methods, such as feedback linearization and sliding 
mode control. Although MPC is computationally intensive, 
it is more broadly applicable than Hamilton–Jacobi–Bellman-
based control and more suitable for feedback control than the 
minimum principle. In many cases, the constrained optimi-
zation problem for receding-horizon optimization is convex, 
which facilitates computational effi ciency [5].

MPC uses a model of the plant with constrained reced-
ing-horizon optimization to compute a sequence of 
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future control inputs. The first element of the optimized 
sequence is implemented, and the remaining elements are 
discarded. At a first glance, this strategy seems ad hoc and 
wasteful. However, receding-horizon optimization is 
known to be asymptotically stabilizing for a sufficiently 
long prediction horizon or with terminal constraints, 
and, if the initial state is feasible and the model matches 
the plant, it is recursively feasible with respect to con-
straints [6]–[9].

MPC handles convex control and output constraints ef-
ficiently compared to conventional feedback control meth-
ods that treat control constraints as input nonlinearities. In 
particular, linear dynamics with control magnitude and 
move-size (rate) saturation comprise a Hammerstein system 
[10]–[12], whose importance is reflected by the vast litera-
ture on bounded control and antiwindup strategies [13]–
[15]. Within the context of MPC, however, magnitude and 
move-size control constraints are treated as optimization 
constraints rather than explicit nonlinearities, which simpli-
fies the treatment of this problem.

From the perspective of classical control and modern 
optimal state-space control, MPC is a paradigm shift. For 
example, conventional feedback methods use integral ac-
tion to asymptotically follow step commands and reject 
step disturbances, and it is common practice to embed inte-
grators within LQR and LQG controllers. MPC, however, 
performs numerical optimization at each step, and thus no 
integrator per se appears [8]. Without integral action, MPC 
lacks one of the key strengths of classical control, namely, 
the ability to follow setpoint commands and reject step dis-
turbances without knowledge of the dc gain of the plant. 
On the other hand, by eschewing integral action, MPC is 
not degraded by integrator windup.

Since MPC uses model-based prediction to determine 
future control inputs, it follows that these predictions require 
knowledge of future commands and disturbances. Future com-
mands are sometimes known; this is the aim of preview control 
and trajectory-tracking methods [16], [17]. On the other hand, 
except for disturbance-feedforward control architectures [18], 
disturbances are rarely known, especially in the future. The 
lack of future knowledge of commands and disturbances thus 
represents a potential obstacle for MPC.

Although MPC is often based on linear models, this tech-
nique is also applicable to nonlinear systems [19]. An addition-
al challenge is the case of output feedback, where not all of the 
plant states are measured. In this case, state estimation can be 
used to provide estimates of unmeasured states, where the 
state estimates serve as ersatz states for the receding-horizon 
optimization [20]–[24]. Transient errors in the state estimates, 
however, can impede the ability to enforce constraints on un-
measured states. Output-feedback MPC that does not rely on a 
state estimator is developed in [25]–[30] and [8, Ch. 5].

In addition to the lack of knowledge about future commands 
and disturbances, a potential weakness of MPC is the need for a 
sufficiently accurate model for effective predictive optimization. 

This dependence is mitigated by robust MPC techniques [31], 
[32], minimax techniques for minimizing the loss of a worst-case 
scenario, and robust tube-based MPC [33]–[35].

As an alternative to robust MPC, extensions of MPC to in-
clude online identification and learning are considered in [36]–
[39]. These techniques can potentially overcome the worst-case 
considerations of robust MPC by allowing MPC to learn the 
true plant dynamics and disturbances. For system identifica-
tion, the commands, disturbances, and control inputs must 
provide sufficient persistency to facilitate identification. Concur-
rent learning with MPC can be viewed as a form of indirect 
adaptive control [40]. Within this context, the role of persistency 
is a longstanding issue [41]. More generally, indirect adaptive 
control can be viewed as a specialized version of data-driven 
control [42]–[48].

Beyond persistency, since online identification and learning 
occur during closed-loop operation, the control input is corre-
lated with the measurements due to disturbances and sensor 
noise. When recursive least squares (RLS) is used for closed-
loop identification, this correlation may obstruct consistency and, 
thus, lead to asymptotic bias in the parameter estimates [49]–
[51]. Alternative identification methods, such as the prediction 
error method (PEM) [52] and instrumental variables (IV) [53], 

Summary

Model predictive control, which is based on receding-

horizon optimization, is a widely used modern control 

technique with numerous successful application in diverse 

areas. Much of this success is due to the ability of reced-

ing-horizon optimization to enforce state and control con-

straints, which are crucial in many applications of control. 

To avoid the need for an observer, predictive cost adaptive 

control (PCAC) uses the block observable canonical form, 

whose state consists of past values of the control inputs and 

measured outputs. PCAC also uses recursive least squares 

(RLS) with variable-rate forgetting for online identification. 

The article describes the algorithmic details of PCAC 

and numerically investigates its performance through a col-

lection of numerical examples that highlight various control 

challenges, such as model-order uncertainty, sensor noise, 

prediction horizon, stabilization, magnitude and move-size 

saturation, and stabilization. The numerical examples are 

used to probe the performance of PCAC in terms of persis-

tency, consistency, and exigency. Since, unlike dual con-

trol, PCAC does not employ a separate control perturbation 

to enhance persistency, the focus is on self-generated per-

sistency during transient operation. For closed-loop iden-

tification using RLS, sensor noise gives rise to bias in the 

identified model, and the goal is to determine the effect of 

the lack of consistency. Finally, the numerical examples are 

used to assess exigency, which is the extent to which the 

online identification emphasizes model characteristics that 

are most relevant to meeting performance objectives.
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provide consistency despite signal correlation. Using numerical 
examples to examine asymptotic bias, RLS, PEM, and IV are ap-
plied to open-loop identification, closed-loop identification us-
ing a fixed-gain linear controller, and MPC control, where the 
identified plant model is updated at each step.

Since MPC is an inherently discrete-time control technique, 
its application to plants with continuous-time dynamics entails 
a sampled-data plant with analog-to-digital sampling and dig-
ital-to-analog input reconstruction. As in any sampled-data 
controller implementation, the sampling rate must be chosen to 
minimize aliasing and folding effects [54], [55]. Within this con-
text, MPC provides direct digital control of discretized plants 
without the need to discretize continuous-time controllers. The 
present article considers examples with sampled-data dynam-
ics to assess the intersample response [56]–[58].

The present article focuses on MPC for constrained linear 
plants with two nonstandard features. First, only a limited num-
ber of states of the plant are assumed to be measured; this is the 
case of output feedback rather than full-state feedback. Instead of 
using an observer to provide estimates of unmeasured states, the 
present article takes advantage of the block observable canonical 
form (BOCF) [59], which is a state-space realization whose state 
is a function of measured inputs and outputs. This realization 
thus removes the need to build an observer to estimate unmea-
sured states. Within this framework, a key assumption is the 
availability of measurements of all constrained outputs.

The second feature of the present article is the use of online 
identification to construct and refine a model for the constrained 
receding-horizon optimization. Concurrent identification is 
performed with RLS [60], [61] with the additional benefit of vari-
able-rate forgetting (VRF) [62], [63].

The present article describes predictive cost adaptive con-
trol (PCAC), which incorporates the two features described 
previously. No attempt is made in this article to derive stability 
or performance guarantees for this approach. Instead, the goal 
is to systematically investigate PCAC through a collection of 
numerical examples. These examples are chosen to highlight 
the stability and performance of PCAC for a diverse collection 
of plants and scenarios. These scenarios include the effect of 
model order; sensor noise; unknown step, harmonic, and 
broadband disturbances; stabilization; sampled-data effects; 
magnitude and move-size control constraints; output con-
straints; and abrupt and gradual changes in the plant.

The numerical examples in this article provide a venue for 
investigating the interplay between identification and control, a 
longstanding problem in control theory [64]–[66]. This inter-
play is addressed by dual control, where the objective is to de-
termine probing signals that enhance persistency and, thus, the 
speed and accuracy of the concurrent identification [67]–[69]. In 
contrast to dual control, PCAC does not require a separate 
probing input, such as the dither signal used by extremum-
seeking control to estimate gradients [70]. Instead, the present 
article investigates the phenomenon of self-generated persistency, 
where PCAC automatically increases the persistency of the 
control signal in response to the closed-loop performance. 

Within the context of PCAC, the interplay between identifi-
cation and control is embodied by exigency, which refers to the 
ability of the identification to prioritize features of the identified 
model that impact closed-loop performance. A key goal of the 
numerical examples is, thus, to explore manifestations of per-
sistency, consistency, and exigency within PCAC. This article 
extends the preliminary investigation of PCAC given in [71] 
and [72] through refinements of the control algorithm; more 
extensive numerical examples; and an investigation of persis-
tency, consistency, and exigency. Table 1 lists the key takeaways 
from each numerical example.

The next section describes the control architecture within 
which this article is framed. Next, elements of PCAC are de-
scribed, which include input–output models, the BOCF for an 
input–output predictive model, and quadratic programming 
(QP). Linear single-input, single-output (SISO) Examples 1–5 
are then presented, followed by linear multiple-input, multiple-
output (MIMO) Examples 6 and 7, which are followed by linear 
time-varying Examples  8–10. Conclusions and directions for 
future research are then presented.

NOTATION
The n n#  identity matrix is denoted by ,In  the nm#  matrix of 
ones by ,1m n#  the nm#  matrix of zeros by ,0m n#  and the Kro-
necker product by .7  The infinity norm of a vector 

[ ]x x x Rn
n

1
Tf !=  is defined by || || (| |, ,| |) .maxx x xn1 f=3

9

CONTROL ARCHITECTURE AND OBJECTIVES
The examples in this article consider the control architecture 
shown in Figure 1. In some cases, the continuous-time plant G 
is specified as a transfer function or state-space model. In these 

Example Key Takeaways 

1 •  Robustness to model order
•  Self-generated persistency
•  Exigency

2 •  Stabilization
•  Self-generated persistency

3 •  Stabilization of unstably stabilizable plants

4 • � Harmonic and broadband disturbance rejection
•  Exigency

5 •  Output constraints
•  Role of relaxation weight

6 • � Unmatched broadband disturbance rejection  
for MIMO plants 

7 • � Stabilization and output constraints for MIMO 
plants

8 • � Importance of VRF for abruptly changing systems

9 •  Tuning VRF in the presence of sensor noise

10 • � Enforcement of constraints for abruptly changing 
systems

TABLE 1  The key takeaways from each example. MIMO: 
multiple-input, multiple-output; VRF: variable-rate 
forgetting.
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cases, G is discretized according to the sample-and-hold oper-
ations, and, to capture intersample behavior, the Matlab func-
tion ode45 is used to simulate the continuous-time dynamics 
between sampling times. In other cases, the dynamics of the 
plant are specified as a discrete-time transfer function or in-
put–output model.

In Figure 1, let a representation of G be given by

	 ( ) ( ) ( ) ( ),x t Ax t Bu t D w t1= + +o � (1)

	 ( ) ( ) ( ),y t Cx t Du t= + � (2)

where ( )x t Rlx!  is the state, ( )w t Rlw!  is the disturbance, 
( )y t Rp!  is the output of G, ,A Rl lx x! #  ,B Rl mx! #  ,C Rp lx! #  

,D Rp m! #  and .D Rl l
1

x w! #  The disturbance w(t) is matched if 
there exists U Rm m! #r  such that ;D BU1 = r  otherwise, the dis-
turbance is unmatched. Note that, if ,B D1=  then the distur-
bance is matched, and .U I=r  The disturbance w(t) is assumed 
to be piecewise constant within each interval kTs  to ( ) ,k T1 s+  
at the value ,wk  where .T 0s2  In the case where w(t) is stochas-
tic, the standard deviation of wk  is specified. The output y(t) of 
G is corrupted by sensor noise v(t). The sample operation yields 

( ) ,y y kT vk ks= +
9  where ( )v v kT Rk

p
s !=

9  is the sampled sensor 
noise, and Ts  is the sampling time. For each example, the statis-
tics of the sampled sensor noise vk  are specified.

The tracking output y R,k
p

t
t!  is defined by

	 ,y C y,k kt t=
9 � (3)

where .C Rp p
t

t! #  The performance objective is to have y ,kt  fol-
low a commanded trajectory ,r Rk

pt!  whose future values may 
or may not be known, and, thus, the command preview may or 
may not be available.

In addition to the performance objective, the constrained 
output y R,k

p
c

c!  is defined by

	 ,y C y,k kc c=
9 � (4)

where .C Rp p
c

c! #  The objective is to enforce the inequali-
ty constraint

	 C D ,y 0,k n 1c c#+ # � (5)

where C ,Rn pc c! #  and D .Rnc!  Note that (5), where “#” is in-
terpreted componentwise, defines a convex set.

In physical systems, the control is constrained in both mag-
nitude and rate. The magnitude control constraint has the form

	 ,u u umin maxk# # � (6)

where u Rmin
m!  is the vector of the minimum control magni-

tudes, and u Rmax
m!  is the vector of the maximum control 

magnitudes. In addition, the move-size control constraint has 
the form

	 ,u u u umin maxk k 1T T# #- - � (7)

where u Rmin
mT !  is the vector of minimum control move siz-

es, and u Rmax
mT !  is the vector of maximum control move 

sizes. As shown in Figure 1, the inputs to PCAC are the com-
mand ,rk  tracking output ,y ,kt  and constrained output .y ,kc  Us-

ing these signals, PCAC produces the discrete-time control 
u Rk

m!  at each step k.

PREDICTIVE COST ADAPTIVE CONTROL

Input–Output Models
For online system identification and prediction, consider 
MIMO input–output models of the form

	 ,y F y G uk i
i

n

k i i
i

n

k i
1 0

=- +
=

-

=

-t t t t
t t

/ / � (8)

where k 0$  is the time step, n 1$t  is the data window for esti-
mation, u Rk

m!  is the control, y Rk
p!t  is the model output, 

and , ,F F Rn
p p

1 f ! #t t t  and , ,G G Rn
p m

0 f ! #t t
t  are the coefficient 

matrices to be estimated. Based on the structure of (8), the 
1-step predicted output is given by

	 ,y F y G u G u| , , | ,k i k
i

n

k i k k i k
i

n

k i1 1
1

1 0 1 1 1
1

1=- + ++

=

+ - + +

=

+ -
t t t

t t

/ / � (9)

where u R|k
m

1 !  is the 1-step computed input, and , ,F , k1 1 f+
t  

F R,n k
p p

1 ! #
+

t t  and , ,G G R, ,k n k
p m

0 1 1f ! #
+ +

t t
t  are the estimated 

coefficient matrices at step k. As explained below, the coefficient 
matrices , , , , ,F F G G, , , ,k n k k n k1 1 1 0 1 1f f+ + + +

t t t t
t t  are available at step 

k. Similarly, using the 1-step predicted output y |k1  and the 
2-step computed control ,u |k2  the 2-step predicted output is 
given by

	
.

y F y F y G u

G u G u

| , | , , |

, | ,

k k k i k
i

n

k i k k

k k i k
i

n

k i

2 1 1 1 1
2

2 0 1 2

1 1 1 1
2

2

=- - +

+ +

+ +

=

+ - +

+ +

=

+ -

t t t

t t

t

t

/

/
�

(10)

Hence, for all ,j 1$  the j-step predicted output is given by

	
,

y F y F y G u

G u

| , | , , |

,

j k i k
i

j

j i k i k
i j

n

k j i i k
i

j

j i k

i k
i j

n

k j i

1
1

1

1 1
0

1

1

=- - +

+

+

=

-

- +

=

+ - +

=

-

-

+

=

+ -

t t t

t

t

t

/ / /

/
�

(11)

where the first term is zero for ,j 1=  and the second and fourth 
terms are zero for all .j n2 t

PCAC combines online identification with receding-hori-
zon optimization, particularly: 

»» Identification: RLS is used to estimate the coefficients of 
the model (8).

FIGURE 1 Command following and disturbance rejection under 
sampled-data adaptive control. The objective is to follow com-
mands rk  to the tracking output y C y,k kt t=  while enforcing con-
straints on the constrained output ,y C y,k kc c=  control ,u k  and 
control move-size .u uk k 1- -  All sample-and-hold operations are 
synchronous.

PCACCt
yt,k

yc,k
Cc

ZOH
G

w (t )
y (t )

v (t )

u (t )

rk

uk

Ts yk

PCAC: Predictive Cost Adaptive Control
ZOH: Zero-Order Hold
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»» Receding-horizon optimization: Using the identified model 
(8), QP is used to perform receding-horizon optimization 
to determine the next control input.

Recursive Least Squares With Variable-Rate  
Forgetting for Online Identification
For online identification, RLS is used to estimate the coefficients 
of the input–output model (8). To do this, RLS minimizes the 
cumulative cost

	 ( ) ( ) ( ) ( ) ( ),J z z P1
k

k

i

i

k

i i
k0

0 0
1

0
T Ti

t

t
i i

t
i i i i= + - -

=

-t t t t t/ � (12)

where, for all ,k 0$  ,Rk jj
k 1

0 !t mP=
9

=
-  ( , ]0 1k !m  is the forget-

ting factor, P R[ ( ) ] [ ( ) ]np m p mp np m p mp
0 ! #+ + + +t t  is positive definite, 

and R ( )np m p mp
0 !i + +t  is the initial estimate of the coefficient vec-

tor. The performance variable ( )z Rk
p!it  is defined by

	 ( ) ,z y F y G uk k i
i

n

k i i
i

n

k i
1 0

i = + -
9

=

-

=

-
t t t

t t

/ / � (13)

where the vector R ( )np m p mp!i + +t t  of coefficients to be estimated 
is defined by

	 .F F G Gvec n n1 0f fi =
9t t t t t

t t6 @ � (14)

Defining the regressor matrix R [ ( ) ]
k

p np m p mp!z # + +t  by

Open- and Closed-Loop Identification Using the Prediction  
Error Method and Instrumental Variables

This sidebar compares the accuracy of the prediction error 

method (PEM) and instrumental variables (IV) with recur-

sive least squares (RLS) in open- and closed-loop frameworks. 

All of the examples in this sidebar consider the asymptotically 

stable nonminimum-phase (NMP) plant

	 ( )
.

( . )
,G z

z z
z

0 8
4 1 2
2=
- +

-
� (S1)

with matched disturbance .wk  The output yk  of (S1) is cor-

rupted by sensor noise ,vk  and the noisy output is used for 

identification. The input uk  of (S1) is assumed to be known and 

is also used for identification.

For RLS, let n 2=t  and .P 10000 =  PEM is implemented 

using the Matlab function recursiveBJ with initial parameter 

covariance 1000, a second-order identification model, and a 

zeroth-order noise model. Numerical tests with higher-order 

noise models yielded less accurate results and, thus, are not 

shown. IV is implemented using the Matlab function iv4 with a 

second-order identification model.

Example S1: Open-Loop Identification Using Recursive 

Least Squares and the Prediction Error Method

Let , ,u wk k  and vk  be zero-mean, Gaussian white noise 

sequences with a standard deviation of one. Figure S1 

shows the error of the estimate of each coefficient of (S1) 

versus the time step. Note that all of the PEM coefficient 

errors approach zero, which indicates consistency. How-

ever, the RLS estimates are biased, which shows that RLS 

lacks consistency.� 

Example S2: Open-Loop Identification Using Recursive 

Least Squares and Instrumental Variables

Let , ,u wk k  and vk  be as in Example S1. Figure S2 shows the 

error of the estimate of each coefficient of (S1) versus the time 

step. Note that all of the IV coefficient errors approach zero, 
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the prediction error method (PEM) and recursive least squares 
(RLS). Note that PEM coefficient errors approach zero. 
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	 ,y y u u IT T
k k k n k k n p1

T T 7f fz = - -
9

- - -t t6 @ � (15)

it follows that the performance variable (13) can be rewritten as

	 ( ) .z yk k ki z i= -t t � (16)

Note that, with (16), the cost function (12) is strictly convex and 
quadratic and, thus, has a unique global minimizer. The unique 
global minimizer

( )argmin J F F G Gvec
R

, , , ,

( )

k k k n k k kn

np m p mp

1 1 1 1 0 1 1f f

!

i i= =
9

i+ + + + +

+ +

t t t t tt t t

t

6 @
� (17)
is computed by RLS as:

Recursive Least Squares Online Identification

	 ,L Pk k k
1

m= - � (18)

	 ( ) ,P L L I L Lk k k k p k k k k k1
1T T

z z z z= - ++
- � (19)

	 ( ).P yk k k k k k k1 1
T

i i z z i= + -+ + � (20)

Note that k 1i +  computed using (20) is available at step k. 
Thus, , , ,F F, ,k n k1 1 1f+ +

t t t  , ,G G, ,k n k0 1 1f+ +
t t

t  are available at step k.
The step-dependent parameter km  is the forgetting factor. In 

the case where km  is constant, RLS uses constant-rate forgetting 
(CRF); otherwise, RLS uses VRF [62]. For VRF, km  is given by

which indicates consistency. However, the RLS estimates are 

biased, which shows that RLS lacks consistency.� 

Example S3: Closed-Loop Identification  

Using Recursive Least Squares and the  

Prediction Error Method

Let wk  and vk  be zero-mean, Gaussian white noise sequenc-

es with a standard deviation of 0.1. For closed-loop identifi-

cation examples, the input uk  is given by a linear quadratic 

Gaussian controller designed using the Matlab command lqg 

with weights .Q Q Ixu wv 3= =  Figure S3 shows the error of the 

estimate of each coefficient of (S1) versus the time step. Note 

that, after convergence, the PEM coefficient errors are uni-

formly smaller than the RLS coefficient errors; the improve-

ment ranges from 0.71 to 9.05. However, all of the PEM and 

RLS estimates are biased, which shows that neither method 

is consistent for this example.� 

Example S4: Closed-Loop Identification Using Recursive 

Least Squares and Instrumental Variables 

Let , ,u wk k  and vk  be as in Example S3. Figure S4 shows the 

error of the estimate of each coefficient of (S1) versus the time 

step. Note that the RLS estimates are biased, and IV produces 

large estimation errors.� 

These numerical examples, although limited, demonstrate 

that PEM is more accurate than RLS for both open-loop and 

closed-loop identification. Furthermore, although IV showed 

clear advantages over RLS for open-loop identification, its per-

formance for closed-loop identification is poor, at least for the 

instruments implemented using the Matlab command iv4. Note 

that these closed-loop identification examples are based on a 

linear time-invariant controller. The performance of PEM within 

the context of adaptive control, where the controller is linear time 

varying, is considered in “Closed-Loop Identification Under Pre-

dictive Cost Adaptive Control With the Prediction Error Method.”
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(PEM). Note that the PEM coefficient errors are uniformly 
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	 ( , , ) ( , , ) ,
g z z g z z1

1
1k

k k k kd df f
m

h
=
+ x x- -6 @ � (21)

where  :  ,0 11 R " " , is the unit step function, where ( )x 01 =  
for all x 01  and ( )x 11 =  for ,x 0$  and
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In (21) and (22), 0$h  and 0 n d1 1x x  are numerator and de-
nominator window lengths, respectively. Define ( , , )g 0 0f =

9  .0  
If the sequence , ,z zk kd fx-  is zero-mean noise, then the nu-
merator and denominator of (22) approximate the average 
standard deviation of the noise over the intervals [ , ]k knx-  
and [ , ],k kdx-  respectively. In particular, by choosing ,d n&x x  
it follows that the denominator of (22) approximates the long-
term average standard deviation of ,zk  whereas the numera-

tor of (22) approximates the short-term average standard 
deviation of .zk  Consequently, the case ( , , )g z z 0k kd f 2x-  im-
plies that the short-term average standard deviation of zk  is 
greater than the long-term average standard deviation of .zk  
The function ( , , )g z zk kd fx-  used in VRF suspends forgetting 
when the short-term average standard deviation of zk  drops 
below the long-term average standard deviation of .zk  This 
technique prevents forgetting in RLS-based online identifica-
tion due to zero-mean sensor noise with a constant standard 
deviation rather than due to the magnitude of the noise-free 
identification error.

Receding-Horizon Optimization
Note that (11) can be applied recursively to predict the out-
put over the prediction horizon. A simpler approach that 
avoids recursion is to use the BOCF state-space realization of 
(8) given by

Closed-Loop Identification Under Predictive Cost Adaptive  
Control With the Prediction Error Method

This sidebar investigates the performance of predictive cost 

adaptive control (PCAC) when the prediction error method 

(PEM) is used instead of recursive least squares (RLS). Nu-

merical examples are presented to compare the performance 

of PCAC/PEM and PCAC/RLS. Note that, unlike the numerical 

examples considered in “Open- and Closed-Loop Identification 

Using the Prediction Error Method and Instrumental Variables,” 

where the controller is linear time invariant, the PCAC control-

ler is adaptive. The examples in this sidebar involve discrete-

time plants with matched disturbances .wk  For each plant, the 

output yk  is corrupted by sensor noise ,vk  and the noisy output 

is used for identification. The control input ,uk  which is given by 

receding-horizon optimization, is also used for identification.

For PCAC/PEM, PEM-based identification is combined  

with receding-horizon optimization. PEM is implemented using  

the Matlab function recursiveBJ with a zeroth-order noise 

model, model order ,nt  and initial parameter covariance .P0  

Furthermore, the identification model in PEM is initialized at  

.0i  Both PCAC/PEM and PCAC/RLS use , ,u u1 1min max=- =  

, ,u u1 1min maxT T=- =  , , ,Q I P50 50 501, = = =,-
r r  ,R I10= ,  
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FIGURE S5 Example S5: Adaptive control of the asymptotically 
stable plant (S1) using predictive cost adaptive control (PCAC)/
prediction error method (PEM) and PCAC/recursive least 
squares (RLS). PCAC/PEM and PCAC/RLS have 2.03- and 
1.70-dB suppression relative to the open-loop response, 
respectively.
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DECEMBER 2021  «  IEEE CONTROL SYSTEMS  71

	 ,x A x B u|k k k k k1 = +
9 t t t � (23)

	 ,y C x D uk k k k k= +t t � (24)

where x R|k
np

1 !
t  is the 1-step predicted state, [ ]x x x, ,k k n k1

T T Tf !=
9t t t t  

,Rnpt  and
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	 , .C I D G0 0 ,p p p p p k k0 1g= =# #
9 9

+
t t6 @ � (28)

The model structure (8) and its realization (27), (28), which ex-
tends the SISO construction given in [59], provides the basis for 
the output prediction described below. Note that (25) and (26) 
depend on past values of the measurement yk  and control uk  
rather than the 1-step predicted output y |k1  given by (9) and 
1-step computed input u |k1  given in the next section.

Using (23), the 1-step predicted output given by (9) can be 
rewritten as

	 .y Cx D u| | |k k k k1 1 1= + t � (29)

Similarly, defining the i-step predicted state

	 , ,x A x B u i 2| | |i k k i k k i k1 1 $= +
9

- -
t t � (30)

, , ,n1 2 10 1 n0
2

2 1$m i= = = #
-t t  ,P I10 n0

3
2= t  and a strictly proper 

identification model.

Example S5: An Asymptotically Stable Plant

Let G(z) be given by (S1), and let wk  and vk  be as in Example 

S3. Figure S5 shows yk  and uk  for PCAC/PEM and PCAC/RLS. 

Figure S6 shows the error of each coefficient of (S1) versus the 

time step obtained with PCAC/PEM and PCAC/RLS. Note that 

all of the PEM and RLS estimates are biased, which shows that, 

for this example, neither method is consistent. However, RLS is 

uniformly faster in reducing the identification errors.� 

Example S6: An Unstable Plant

Let G(z) be given by

	 ( )
.

( . )
,G z

z z
z

1 2
4 1 2
2=
- +

-
� (S2)

which is unstable, and let wk  and vk  be as in Example S3. 

Figure S7 shows yk  and uk  for PCAC/PEM and PCAC/RLS. 

Figure S8 shows the error of each coefficient of (S2) versus the 

time step obtained with PEM and RLS operating within PCAC/

PEM and RLS in PCAC. Note that PCAC/PEM fails to stabilize 

the plant.� 
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FIGURE S7 Example S6: Adaptive control of the unstable plant 
(S2) using predictive cost adaptive control (PCAC)/prediction 
error method (PEM) and PCAC/recursive least squares (RLS). 
Note that PCAC/PEM fails to stabilize the plant.
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the i-step predicted output is given by

	 , .y Cx D u i 2| | |i k i k k i k $= + t � (31)

Note that the i-step prediction at step k uses the current esti-
mates ,Ak

t  ,Bk
t  and Dk

t  at each intermediate stage of the predic-
tion horizon. It follows that
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t t � (32)
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where, for all , , ,i H1 1 R,k i
p mf , != - #t  is defined by
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FIGURE 2 Example 1: Command following for the discrete-time asymptotically stable single-input, single-output plant (46) using n n 2= =t  
with a strictly proper model, that is, with .G 0,k0 =t  (a) The single-step command is .r 1k /  The output yk  approaches the step command 
with a decreasing command-following error, which is . e5 6 6-  at .k 60=  Note that, although the impulse-response error IRT  stops 
decreasing after the initial transient, the dc gain estimation error approaches zero, which indicates exigency within the closed-loop 
identification; the identification of the dc gain is prioritized by recursive least squares to decrease the command-following error. The 
bottom-most plot compares the poles and zero of the identified model at k 60=  to the poles and zero of the plant. (b) The multistep 
command rk  is given by (47). For each step command, yk  approaches the command with a decreasing command-following error, which 
is . e1 6 4-  at , .k e19 1 2 4-=  at ,k 39=  and . e1 6 4-  at .k 60=  Note that, although IRT  stops decreasing after each transient, the dc gain 
estimation error approaches zero. The bottom-most plot compares the poles and zero of the identified model at k 60=  to the poles and 
zero of the plant. :DGD  the absolute value of the difference between the dc gain of the plant and model; :IRT  the L norm-2  difference 
between the 30-step impulse response of the plant and model. 
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p

1
T T T tf !=, ,
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+ +  be the vector of , future com-

mands; define ,C I C R,t t
p pt7 !=, ,
,9 #,  let ,Y C Y, | , , | ,k k1 1t t=, , ,

9  
where Y | ,k1 ,  is given by (32), be the -, step propagated tracking-
output vector; and define the sequence of differences of the 
computed control inputs by
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To facilitate the implementation of linear inequality constraints 
over the horizon ,,  define C C( )I C R n p

c
c7 != #

, ,
, ,9  and 

DD .1 R n
1

c7 != #, ,
,9  With this notation, QP-based receding-

horizon optimization is given by:

Quadratic Programming-Based Receding-Horizon 
Optimization
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r8 B  is the positive definite output 
weight; Q R( ) ( )p p1 1t t! #, ,- -r  is the positive definite cost-to-go 
output weight; P Rp pt t! #r  is the positive definite terminal 
output weight; R R m m! #, ,  is the positive definite control 
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FIGURE 3 Example 1: Command following for the discrete-time asymptotically stable single-input, single-output plant (46) using 
n n3 22= =t  with a strictly proper model. (a) The single-step command is .r 1k /  The output yk  approaches the step command with a 
decreasing command-following error, which is . e4 7 7-  at .k 60=  (b) The multistep command rk  is given by (47). For each step command, 
yk  approaches the command with a decreasing command-following error, which is e2 4-  at , .k e19 1 3 4-=  at ,k 39=  and . e1 7 4-  at .k 60=  
Note that, in (b), the estimates of the poles and zeros, including the pole-zero cancellation, are more accurate than in (a) due to the 
persistency arising from the changing step command. :DGT  the absolute value of the difference between the dc gain of the plant and 
model; :IRT  the L norm-2  difference between the 30-step impulse response of the plant and model.
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move-size weight; ,U u1 R m
1min min7 != #,

,9  U 1max 1 7= #,
9  

,u Rmax
m! ,  ,U u1 Rmin min

m
1 7 T !D = #,

,9  and U 1max 1 7D = #,
9  

.u Rmax
mT ! ,  Since R is positive definite, QP-based reced-

ing-horizon optimization is a strictly convex optimiza-
tion problem. 

It may occur in practice that the constraint (38) on the 
predicted output cannot be satisfied for all values of the 
control input that satisfy (6) and (7). In this case, QP-based 
receding-horizon optimization is infeasible. To overcome 
this problem, a standard technique is to introduce a slack 
variable R nc!f ,  to relax the constraint (38). With this 
modification, the QP-based receding-horizon optimiza-
tion becomes:

Quadratic Programming-Based Receding-Horizon 
Optimization With Output-Constraint Relaxation
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FIGURE 4 Example 1: Command following for the discrete-time asymptotically stable single-input, single-output plant (46) using 
n n1 21= =t  with a strictly proper model. (a) The single-step command is .r 1k /  The output yk  approaches the step command with a 
decreasing command-following error, which is . e7 8 4-  at .k 60=  (b) The multistep command rk  is given by (47). For each step command, 
yk  approaches the command with a decreasing command-following error, which is . e5 3 3-  at , .k e19 5 7 3-=  at ,k 39=  and . e1 8 2-  at 

.k 60=  Note that the accuracies of the impulse response and the poles and zeros of the identified model in both (a) and (b) are poor, 
due to the fact that .n n1t  Nevertheless, in both (a) and (b), the estimate of the dc gain is sufficiently accurate to allow predictive cost 
adaptive control to approach the step command. :DGT  the absolute value of the difference between the dc gain of the plant and model; 

:IRT  the L norm-2  difference between the 30-step impulse response of the plant and model.
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where S R n nc c! #, ,  is the positive definite constraint relaxation 
weight. Since R and S are positive definite, (41)–(45) is a strictly 
convex optimization problem. 

The accelerated dual gradient-projection algorithm is used 
to solve (37)–(40) and (41)–(45), where the previously comput-
ed Lagrange multipliers provide a warm start for the next itera-
tion. For real-time implementation, the control computed 
between k and k 1+  is implemented at step .k 1+

LINEAR SINGLE-INPUT, SINGLE-OUTPUT EXAMPLES
This section considers linear time-invariant SISO plants, where 

.y y y, ,k k kt c= =  None of the examples in this article consider 
command preview. In particular, for all command-following 

examples, ,R r1,k k1 7= #, ,  which implies that future com-
mands over the prediction horizon are assumed to be equal to 
the current command.

Discrete-time and sampled-data plants are considered in 
this section. For all sampled-data examples, in this and later 
sections, the analog-to-digital conversion is an instantaneous 
sampler, and the digital-to-analog conversion is a zero-order 
hold (ZOH) device. PCAC is run between sampling times, and 
the continuous-time dynamics are integrated by ode45 to cap-
ture intersample behavior. All commands are discrete-time 
signals, all deterministic disturbances are discretized at the in-
tegration step size, and all stochastic disturbances are modeled 
as constant between sampling times.
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FIGURE 5 Example 1: Command following and disturbance rejection for the discrete-time asymptotically stable single-input, single-output 
plant (46) using r 1k /  and n n 2= =t  with a strictly proper model. (a) The single-step disturbance is . .d 0 8k /  The output yk  approaches 
the step command with a decreasing command-following error, which is e3 3-  at .k 60=  Note that, although IRT  stops decreasing after 
the initial transient, recursive least squares (RLS) continues to refine the estimate dk

t  of the disturbance for the remainder of the simula-
tion. This refinement indicates exigency within the closed-loop identification, where the estimation of dk

t  is prioritized to decrease the 
command-following error. The bottom-most plot shows a pole-zero cancellation in the identified model at .k 60=  (b) The multistep distur-
bance dk  is given by (52). For each step disturbance, yk  approaches the command with a decreasing command-following error, which is 

. e1 3 2-  at , .k e19 2 4 2-=  at ,k 39=  and . e8 8 2-  at .k 60=  Note that, although IRT  stops decreasing within a few steps after each change 
in the disturbance, RLS continues to refine the estimate dk

t  of the disturbance while dk is constant. Note that, in both (a) and (b), the step 
disturbances induce self-generated persistency, which facilitates the ability of RLS to effectively construct an estimate dk

t  of the distur-
bance ,dk  which, in turn, facilitates disturbance rejection. The bottom-most plot shows a pole-zero cancellation in the identified model at 

60,k =  due to the step disturbance. :IRT  the L norm-2  difference between the 30-step impulse response of the plant and model.



76  IEEE CONTROL SYSTEMS  »  DECEMBER 2021

All of the subsequent examples involving PCAC are based 
on RLS for closed-loop identification. “Open- and Closed-Loop 
Identification Using the Prediction Error Method and Instru-
mental Variables” compares the accuracy of PEM and IV with 
RLS for open-loop identification as well as for closed-loop iden-
tification with a linear time-invariant controller. In addition, 
“Closed-Loop Identification Under Predictive Cost Adaptive 
Control With the Prediction Error Method” compares the per-
formance of PCAC using PEM and RLS for PCAC control, 
where the identified plant model is updated at each step.

Example 1: A Discrete-Time Asymptotically  
Stable Minimum-Phase Plant
The goal of this example is to investigate the ability of PCAC to 
follow step commands and reject step disturbances for an as-
ymptotically stable minimum-phase plant for various choices 

of model order .nt  Consider the discrete-time input–output 
SISO plant

	 . . . .y y y u u0 5 0 1 0 4k k k k k1 2 1 2=- + + -- - - - � (46)

Let ,u 10min =-  ,u 10max =  ,u 10minT =-  ,u 10maxT =  and .v 0k =  
No output constraint is considered in this example. The plant 
(46) is initialized with y y 01 2= =- -  and .u u u 00 1 2= = =- -  
Note that the order of the plant is .n 2=  At each time step, 
PCAC uses (37)–(40) with ,5, =  ,Q I2 1= ,-r  ,P 5=r  and .R I= ,  
Let ,1m =  ,10 1 n0

2
2 1$i = #

-
t  and .P I10 n0

3
2= t

Figures 2–4 show the response of PCAC for ,n 2=t  ,n 3=t  
and ,n 1=t  respectively, using a strictly proper model, that is, 
using .G 0,k0 =t  The absolute value of the command-following 
error, the L -2 norm difference between the 30-step impulse re-
sponse of the plant and model ( ),IRT  the absolute value of the 
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FIGURE 6 Example 1: Command following and disturbance rejection for the discrete-time asymptotically stable single-input, single-out-
put plant (46) using r 1k /  and n n3 22= =t  with a strictly proper model. (a) The single-step disturbance is . .d 0 8k /  The output yk  
approaches the step command with a decreasing command-following error, which is . e1 3 3-  at .k 60=  (b) The multistep disturbance dk  
is given by (52). For each step disturbance, yk  approaches the command with a decreasing command-following error, which is . e7 4 3-  
at ,k e19 2 2-=  at ,k 39=  and . e7 1 2-  at .k 60=  Note that, although the accuracies of the poles and zeros of the identified model in both 
(a) and (b) are poor, the estimate of the disturbance is sufficiently accurate to allow predictive cost adaptive control to approach the 
command and reject the disturbance. :IRT  the L norm-2  difference between the 30-step impulse response of the plant and model.
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difference between the dc gain of the plant and model ( ),DGT  
and the pole-zero location of the plant and model identified at 
k 60=  are computed as diagnostics. Figures 2(a), 3(a), and 4(a) 
show the response of PCAC for the constant command ,r 1k /  
and Figures 2(b), 3(b), and 4(b) show the response of PCAC for 
the three-step command

	
,

,
,

,
,

.
r

k
k

k

1
1

3
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20 40

40
k

1
1

#

#

$

= -* � (47)

Figures 2–4 show that, for asymptotically stable minimum-
phase plants, PCAC follows step commands and is robust to 
the choice of model order .nt

Next, a matched disturbance d Rk !  is applied to the plant 
(46), for which the plant output is given by

	 ( ),y F y G u dk i
i

n

k i i
i

n

k i k i
1 1

=- + +
=

-

=

- -/ / � (48)

where ,n 2=  . ,F 0 51 =  . ,F 0 12 =-  ,G 11 =  and . .G 0 42 =-  In the 
case of a constant matched disturbance ,d Rk !t  the plant out-
put is given by

	 ,y F y G u G dk i
i

n

k i i
i

n

k i i
i

n

k
1 1 1

=- + +
=

-

=

-

=

t/ / / � (49)

and for a given model order ,nt  the output of the model identi-
fied by RLS at step k is given by

	 .y F y G u, ,k i k
i

n

k i i k
i

n

k i
1 1

=- +
=

-

=

-
t t

t t

/ / � (50)

Using (50) in (49), the disturbance dk
t  estimated by RLS is 

given by
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FIGURE 7 Example 1: Command following and disturbance rejection for the discrete-time asymptotically stable single-input, single-out-
put plant (46) using r 1k /  and n n1 21= =t  with a strictly proper model. (a) The single-step disturbance is . .d 0 8k /  The output yk  
approaches the step command with a decreasing command-following error, which is . e2 9 2-  at .k 100=  (b) The multistep disturbance 
dk  is given by (52). For each step disturbance, yk  approaches the command with a decreasing command-following error, which is . e1 2 1-  
at , .k e19 2 1 1-=  at ,k 39=  and . e1 7 1-  at .k 100=  Note that, in both (a) and (b), yk  approaches the command more slowly than in the 
cases n 2=t  and n 3=t  considered in Figures 5 and 6, respectively. :IRT  the L norm-2  difference between the 30-step impulse response 
of the plant and model.
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.d F y G u F y G u G, ,k i k
i

n

k i i k
i

n

k i i
i

n

k i i
i

n

k i i
i

n

1 1 1 1

1

1
= - + + -

=

-

=

-

=

-

=

-
-

=

t t t
t t

= G/ / / / /
� (51)

Figures 5–7 show the response of PCAC for ,n 2=t  ,n 3=t  
and ,n 1=t  respectively, with constant command ,r 1k /  
where the error of the disturbance estimate dk

t  is comput-
ed. In Figures 5(a), 6(a), and 7(a), the constant disturbance 

.d 0 8k /  is applied, and in Figures 5(b), 6(b), and 7(b), the 
three-step disturbance
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= -* � (52)

is applied. Figures 5–7 show that, for the asymptotically stable 
minimum-phase plant (46), PCAC rejects step disturbances 
with .n n$t  Note that self-generated persistency is evident in 
the control input arising from the step-command changes and 
step disturbances. Furthermore, it is seen that, although the 
impulse-response error IRT  stops decreasing after each tran-
sient, RLS keeps refining the dc gain of the model for the re-
mainder of the simulation. This indicates exigency within 
identification, as RLS prioritizes the identification of the dc gain 
over the impulse response to achieve command following.� G

Example 1 showed that PCAC can follow step commands 
and reject step disturbances. This ability is further investigated 
within the context of fixed-gain integral control in “Following 
Step Commands Without an Integrator.”

Following Step Commands Without an Integrator

S ince receding-horizon optimization determines control in-

puts without using an explicit feedback controller, it is de-

sirable to compare the performance of predictive cost adaptive 

control (PCAC) with the performance of linear time-invariant 

controllers. In particular, within the context of linear time-invari-

ant control, asymptotic step-command following is achievable 

if and only if the controller or plant includes an integrator. To 

investigate asymptotic step-command following under PCAC, 

the performance of PCAC using online identification is com-

pared with linear time-invariant integral control as well as with 

PCAC using a fixed model with erroneous dc gain. To do this, 

consider the discrete-time plants

	 ( ) ( . ) ( . )
. ,G z z z

z
0 2 0 8

0 5=
- -
- � (S3)

	 ( ) ( . ) ( . )
. ( . )

,G z z z
z

0 2 0 8
0 1 0 5

=
- -

-
� (S4)

	 ( ) ( . ) ( . )
( . )

,G z z z
z

0 2 0 8
5 0 5

=
- -

-
� (S5)

	 ( ) ( . ) ( . )
. ( . )

,G z z z
z

0 5 0 9
0 1953 0 2

=
- -

-
� (S6)

which are asymptotically stable and have dc gains 3.125, 0.3125, 

15.625, and 3.125, respectively. Note that (S3)–(S5) have the 

same poles and zeros and that (S3) and (S6) have the same dc 

gains but different poles and zeros. Disturbance and sensor noise 

are not considered in these examples. A strictly proper model is 

used for identification in PCAC; that is, G 0,k0 =t  is enforced.

Example S7: Linear Time-Invariant Integral Control

Consider the basic servo loop shown in Figure S9 with the in-

tegral controller

	 ( ) . .G z z 1
0 1

c =
-

� (S7)

Figure S10 shows the closed-loop response with the controller 

(S7) and plants (S3)–(S6). The closed-loop dynamics are as-

ymptotically stable for G(z) given by (S3), (S4), and (S6), and, 

thus, the command-following error converges to zero. On the 

other hand, the closed-loop dynamics are unstable for G(z) 

given by (S5), and, thus, yk  diverges.� 

Example S8: Predictive Cost Adaptive  

Control With Fixed Models

Let the true plant G(z) be given by (S3). PCAC is applied with the fixed 

models (S3)–(S6) with  , , , ,u u u u1 1 1 1min max min maxT T=- = =- =  

, , ,Q I P50 11, = = =,-
r r  and .R I= ,  Figure S11 shows that the 

command-following error approaches zero in the cases where 

−
Gc (z)

rk uk yk
G (z)

FIGURE S9 Basic servo loop with step command rk  and integral 
controller .Gc
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FIGURE S10 Example S7: Linear time-invariant integral control for 
G(z) given by (S4)–(S6) with the controller (S7). For plants (S3), 
(S4), and (S6), the closed-loop system is asymptotically stable, 
and, thus, asymptotic step-command following is achieved. For 
the plant (S5), the closed-loop system is unstable.
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Example 2: A Discrete-Time Unstable  
Nonminimum-Phase Plant
The goal of this example is to investigate the ability of PCAC to 
follow step commands for various choices of initial models; 
various levels of zero-mean, Gaussian white sensor noise; and 
various model orders .nt  Furthermore, this example compares 
the identification accuracy of RLS within PCAC and in the case 
where the closed-loop data are from an LQG controller with a 
built-in integrator. Consider the discrete-time input–output 
SISO plant

	 . . . .y y y u u1 4 0 3 1 3k k k k k1 2 1 2= - + -- - - - � (53)

Let ,u 50min =-  ,u 50max =  ,u 10minT =-  ,u 10maxT =  and 
.v 0k =  No output constraint is considered in this example. The 

plant (53) is initialized with y y 01 2= =- -  and u u0 1= =-  
.u 02 =-  At each time step, PCAC uses (37)–(40) with ,20, =  

,Q I2 1= ,-r  ,P 5=r  and .R I= ,  Let 1m =  and .P I10 n0
3

2= t

Figure 8 shows the response of PCAC for n n 2= =t  
using a strictly proper model, where ,0 0 0 10

Ti a= 6 @  
, , . , . , , .10 1 0 1 0 1 1 10!a - - -" ,  Note that the initial model is a 

finite-impulse response (FIR) model. Figure 8(a) uses the con-
stant command ,r 1k /  and Figure 8(b) uses the three-step com-
mand rk  given by (47).

Figure 9 shows the response of PCAC for r 1k /  and 
n n 2= =t  using a strictly proper model with a randomly cho-
sen initial estimate .0i  In particular, in Figure 9, parts(a) and (b) 
each shows 100 responses of PCAC with 0i  sampled from a 
zero-mean, Gaussian distribution with standard deviations of 
one and two, respectively.

PCAC uses the fixed models (S3) and (S6), both of which have 

the correct dc gain. However, in the case where PCAC uses 

the fixed models (S4) and (S5), both of which have an incor-

rect dc gain, the command-following error remains bounded 

but does not approach zero.� 

Example S9: Predictive Cost Adaptive Control With Various 

Initial Models That Are Different From the True Plant

Let the true plant G(z) be given by (S3). PCAC is applied 

with , , , , , ,u u u u Q I1 1 1 1 50min max min max 1,T T=- = =- = = = ,-
r  

,P 1=r  ,R I= ,  , ,n1 2m = =t  and P I10 n0
3

2= t  for the initial models 

(S4)–(S6) as well as the initial model given by .10 1 n0
2

2 1i = #
-

t  

Figure S12 shows that, for all four initial models, the 

command-following error approaches zero. Furthermore, 

the dc gain of the identified model approaches the dc 

gain of (S3).� 

These examples demonstrate that using ( )U R U, ,k k1 1
TT T, ,; ;  

in (41) does not yield integral action, and, in addition, that esti-

mation of the dc gain of the plant is necessary for asymptotic 

step-command following.
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FIGURE S11 Example S8: Step-command following using pre-
dictive cost adaptive control with fixed models (S3)–(S6). 
Asymptotic command following is achieved in the cases (S3) 
and (S6), where the dc gain of the model is the same as the dc 
gain of the plant. Note that asymptotic command following is 
achieved in the case of (S6) despite the fact that all of the poles 
and zeros of the fixed model are incorrect relative to the true 
plant (S3). For (S4) and (S5), where the dc gain of the model is 
not equal to the dc gain of the plant, the command-following 
error remains bounded but does not approach zero.
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FIGURE S12 Example S9: Step-command following using pre-
dictive cost adaptive control with the initial models (S4)–(S6) 
as well as the initial model given by .10 1 n0
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-
t  For all four 

initial models, the command-following error approaches zero. 
:DGT  the absolute value of the difference between the dc gain 

of the plant and model.



80  IEEE CONTROL SYSTEMS  »  DECEMBER 2021

Next, let vk  be a zero-mean, Gaussian white noise sequence. 
In particular, in Figure 10, parts(a) and (b) each shows the re-
sponse of PCAC using ,r 1k /  the strictly proper FIR model 

0 1( )n0 2 1 1
T T

i = #-t6 @  with ,n 2=t  ,n 3=t  and ,n 4=t  for vk  with 
standard deviations of 0.05 and 0.15, respectively. Figure 11 
shows the accuracy of the model identified by RLS as the stan-
dard deviation of vk  increases for , , ,n 1 2 6f!t " , with uk  giv-
en by receding-horizon optimization and LQG with a built-in 
integrator. The accuracy of the model is determined by IRT  at 
k 014=  averaged over 100 simulation runs. 

Figures 8–10 show that, for the unstable nonminimum-
phase (NMP) plant (53), the output approaches the step 
commands despite the presence of bias in the estimation of 
the model coefficients. Figure 11 shows ,IRT  and, thus, the 
predictive error of the identified model is smaller with 
RLS within PCAC than with RLS that uses data from an 

LQG controller with an integrator. This implies that self-
generated persistency facilitates improvement in the iden-
tification accuracy.� G

Example 3: An Unstably Stabilizable Plant
The goal of this example is to investigate the ability of PCAC to 
stabilize unstably stabilizable plants. Consider the discrete-
time unstable SISO plant

	 ( )
( . ) ( . . )

( . ) ( . )
.G z

z z z
z z

1 2 1 2 0 57
1 1 0 4

2=
- + +

- -
� (54)

Note that the order of the plant is ,n 3=  and its relative degree 
is one. The damping ratio and natural frequency of the complex 
poles of (54) are approximately 0.1 and .0 8r  rad/step, respec-
tively. Since there is an unstable pole on the right side of an 

20

20

–20

–20

–2

–4

15
10
5
0

0.1

–0.1

0

–40

0

0

0

0 10

0 0.5 1 1.5 2 2.5

20 30 40 50 60
k (Step)

Im
 (

z)
lo

g 
∆

IR


lo
g 

y
k 

 – 
  r k


u k

y k

Re (z)
(a)

10

10

–10

–10

0

–1

15
10
5
0

0.1

–0.1

0

–20

0

0

1

0 10

0 0.5 1 1.5 2 2.5

20 30 40 50 60
k (Step)

Im
 (

z)
lo

g 
∆

IR


lo
g 

y
k 

 – 
  r k


u k

y k

Re (z)
(b)

Plant Pole
Plant Zero
Model Pole
Model Zero

Plant Pole
Plant Zero
Model Pole
Model Zero

rk rk

α = –10

α = 10

α = –0.1
α = 0.1

α = –1

α = 1

α = –10

α = 10

α = –0.1
α = 0.1

α = –1

α = 1

FIGURE 8 Example 2: Command following for the discrete-time unstable nonminimum-phase single-input, single-output plant (53) using 
r 1k /  and n n 2= =t  with a strictly proper finite-impulse response model initialized with [ ] , { , , . , . , , }.0 0 0 1 10 1 0 1 0 1 1 100

T !i a a= - - -  
(a) The single-step command is r 1k / . The output yk  approaches the step command with a decreasing command-following error, which 
is in the interval [ . , . ]e e2 1 3 1 0 2- -  at .k 60=  Note that, for all , IRTa  approaches asymptotic values for .k 25$  The bottom-most plot com-
pares the poles and zero of the identified model at k 60=  to the poles and zero of the plant. (b) The multistep command rk  is given by 
(47). For , y10 k!a -  approaches the three-step command with a decreasing command-following error, which is in the interval [ . , . ]e4 3 1 1 1-  
at , [ . , . ]k e e19 3 3 2 6 7 2- -=  at k 39= , and [ , . ]e e8 2 1 2 1- -  at .k 60=  For , y10 ka =-  approaches the last command with a decreasing com-
mand-following error, which is . e1 3 1-  at .k 60=  Note that, for all , IRTa  approaches asymptotic values for .k 25$  The bottom-most plot 
compares the poles and zero of the identified model at k 60=  to the poles and zero of the plant. :IRT  the L norm-2  difference between 
the 30-step impulse response of the plant and model.
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NMP zero, pole-zero interlacing fails in the open right-half 
plane, and, thus, the plant is unstably stabilizable. That is, it can 
be stabilized by a discrete-time unstable linear time-invariant 
controller but cannot be stabilized by a discrete-time asymp-
totically stable linear time-invariant controller [73].

Let ,u 50min=-  ,  u 50max=  ,u 10minT =-  ,u 10maxT =  ,50,=  
,Q I4 1= ,-r  ,P 4=r  ,R I= ,  ,1m=  ,P I10 n0

3
2= t  and .0 1( )n0 2 1 1

T T
i = #-t6 @  

A strictly proper model is used for identification in PCAC. 
No output constraint is considered in this example. The 
plant is initialized with . ,y 0 41 =--  . ,y 0 32 =-  and u 1 =-  

.u u 02 3= =- -  PCAC uses (37)–(40), where the standard de-
viation of the sensor noise vk  is 0.02. In this and the following 
examples, identification and control do not commence until 
the regressor matrix kz  given by (15) is populated with nt  
measurements. Figure 12(a) shows the response of PCAC 
for the discrete-time plant (54) for n n 3= =t  using the three-
step command
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Next, consider the continuous-time SISO plant
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where .0 1g =  and . .0 8n~ r=  Note that, as in the case of the 
discrete-time plant (54), the continuous-time plant (56) can be 
stabilized by a continuous-time unstable linear time-invariant 
controller but cannot be stabilized by a continuous-time as-
ymptotically stable linear time-invariant controller [73]. With 
the sample period ,T 1 ss =  Figure  12 shows that the ZOH-
discretized plant has the same dynamics as the discrete-time 

Plant Pole
Plant Zero
Model Pole
Model Zero

Plant Pole
Plant Zero
Model Pole
Model Zero

Plant Pole
Plant Zero
Model Pole
Model Zero

0

2

–5

–4

–2

–4

–6

10

5

0

0.1

–0.1

0

–10

0

–2

0

0 10

0 0.5 1 1.5 2 2.5

20 30 40 50 60
k (Step)

Im
 (

z)
lo

g 
∆

IR


lo
g 

y
k 

 – 
  r k


u k

y k

Re (z)
(a)

20

20

–20

–20

–6
–4
–2

20

10

0

0.1

–0.1

0

–40

0

0

0

0 10

0 0.5 1 1.5 2 2.5

20 30 40 50 60
k (Step)

Im
 (

z)
lo

g 
∆

IR


lo
g 

y
k 

 – 
  r k


u k

y k

Re (z)
(b)

rk rk

Plant Pole
Plant Zero
Model Pole
Model Zero

Plant Pole
Plant Zero
Model Pole
Model Zero

FIGURE 9 Example 2: Command following for the discrete-time unstable nonminimum-phase single-input, single-output plant (53) using 
r 1k /  and n n 2= =t  with a strictly proper model, which is initialized with 100 Gaussian-distributed samples of 0i  with a standard devia-
tion of .v  (a) For ,1v =  the output yk  approaches the step command with a decreasing command-following error, which is in the inter-
val [ . , . ]e e9 5 4 5 5 3- -  at .k 60=  (b) For ,2v =  the output yk  approaches the step command with a decreasing command-following error, 
which is in the interval [ . , . ]e e6 7 3 2 1 2- -  at .k 60=  Note that, in both (a) and (b), although IRT  approaches an asymptotic value for ,k 25$  
indicating the presence of bias and, thus, lack of consistency in the estimate of the model, the poles and zero of the model are close to 
the poles and zero of the plant at .k 60=  :IRT  the L norm-2  difference between the 30-step impulse response of the plant and model.
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plant (54) and, thus, is not stabilizable by a discrete-time 
asymptotically stable linear time-invariant controller. The plant 
is initialized with ( )x 0 = . . . ,0 4 0 8 1 1 T-6 @  where x(0) is the ini-
tial state of the realization
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	 . . .y x1 0 25 0 03= -6 @ � (58)

Figure 12(b) shows the response of PCAC for the continuous-
time plant (56) using the same setup as for the discrete-time 
plant (54). Figure 12 shows that PCAC stabilizes the discrete-
time (54) and sampled-data (56) unstably stabilizable plants. 
Since the plant is unstable, an FIR initial model—all of whose 
poles are zero—is a poor choice. Consequently, choosing a large 
optimization horizon yields poor model predictions, which, in 
turn, yield a large initial transient response. This example sug-
gests that, for unstable plants, it is advisable to avoid choosing 
large values of the prediction horizon ., � G
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FIGURE 10 Example 2: Command following for the discrete-time unstable nonminimum-phase single-input, single-output plant (53) using 
;r 1k /  noisy measurement with a noise standard deviation of ;v  and finite-impulse response strictly proper initial model [ ] ,0 1( )n0 2 1 1

T Ti = #-t  
where , ,n n2 3= =t t  and .n 4=t  (a) For . ,0 05v =  in all cases, yk  approaches the step command with a decreasing command-following 
error. (b) For . , y0 15 kv =  approaches the step command with a decreasing command-following error for n 3=t  and .n 4=t  For ,n y2 k=t  
does not approach the step command, and the command-following error is 7.9 at .k 120=  Note that, in both (a) and (b), larger values of nt  
yield smaller values of .IRT  The bottom-most plots show that larger values of nt  facilitate identification, and the poles and zero of the model 
are closer to the poles and zero of the plant. :IRT  the L norm-2  difference between the 30-step impulse response of the plant and model.
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Example 4: An Asymptotically Stable  
Continuous-Time Plant
The goal of this example is to investigate the application of 
PCAC for sampled-data control with harmonic and broadband 
disturbance rejection on a lightly damped plant. Consider the 
continuous-time SISO plant

	 ( )
( ) ( )

,G s
s s s s2 2

1
, , , ,

2
1 1 1

2 2
2 2 2

2
n n n ng ~ ~ g ~ ~

=
+ + + +

� (59)

where . ,0 051g =  ,1,1n~ =  . ,0 012g =  and .2,2n~ =  The data are 
sampled with sample period .T 1 ss =  Note that the order of the 
plant is .n 4=  Let ,u 2min =-  ,u 2max =  ,u 2minT =-  ,u 2maxT =  

0 10 (2 1) 1
T T

ni = #-t6 @  ,r 0k /  ,1m =  and .P I10 n0
3

2= t  No output 
constraint is considered in this example. At each time step, 
PCAC solves (37)–(40) with ,10, =  ,Q I50 1= ,-r  ,P 50=r  and 

. .R I0 1= ,  A strictly proper model is used for identification in 
PCAC. Let vk  be a zero-mean, Gaussian white noise sequence 
with a standard deviation of 0.005.

Figure 13 shows harmonic disturbance rejection, and 
Figure 14 shows broadband disturbance rejection using 
PCAC with ,n n 4= =t  ,n 5=t  and .n 6=t  The matched continu-
ous-time harmonic disturbance is given by

	 ( ) ( ),sind t A td d~= � (60)

where A 1d =  and / .15d~ r=  The discrete-time matched 
broadband disturbance is given by ,dk  where dk  is a zero-mean, 
Gaussian white noise sequence with a standard deviation of 
0.5. Figures 13(a) and 14(a) consider zero initial conditions for 
(59), and Figures 13(b) and 14(b) consider nonzero initial condi-
tions, where ( )x 0 10 5 8 300 T= - -6 @  is used as the initial state 
of the realization
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	 .y x0 0 0 1= 6 @ � (62)

Figures 13 and 14 show that, for the asymptotically stable 
lightly damped plant (59), PCAC rejects harmonic and broad-
band disturbances. Note that, in the presence of a harmonic 
disturbance, a pole-zero cancellation occurs at the frequency of 
the harmonic disturbance, which serves as an implicit internal 
model of the unknown disturbance. This pole-zero cancellation 
indicates exigency within the closed-loop identification, where 
RLS captures the frequency and amplitude of the harmonic dis-
turbance to predict and cancel the harmonic disturbance for 
receding-horizon optimization. Note that this pole-zero cancel-
lation requires that ,n n 2 d$ ~+t  where d~  is the number of 
pure harmonic tones in the disturbance .dk  For broadband dis-
turbances, as the order of the model increases, the frequency 
response of the identified model becomes more accurate, thus 
manifesting exigency.� G

Example 5: A Continuous-Time Unstable Plant
The goal of this example is to investigate PCAC’s ability to sta-
bilize an unstable sampled-data plant with a rigid-body mode 
as well as enforce output and control constraints. Additionally, 
this example investigates the effect of the constraint slack 
weight S. Consider the continuous-time SISO plant
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FIGURE 11 Example 2: Accuracy of the identified model versus the standard deviation v  of the sensor noise for the discrete-time 
unstable nonminimum-phase single-input, single-output plant (53) with r 1k /  and with the controllers given by predictive cost adaptive 
control (PCAC) and linear quadratic Gaussian (LQG) with an integrator. The model accuracy is determined by IRT  at k 140=  averaged 
over 100 simulations. PCAC uses a strictly proper finite-impulse response initial model, and LQG with an integrator uses (53) to compute 
the control gain with output and control weights Q 2=  and ,R 1=  respectively. (a) PCAC. For each ,v  larger values of nt  yield smaller 
values of .IRT  Therefore, for each sensor-noise level, the identified model is more accurate for larger values of .nt  (b) LQG with an inte-
grator. For each ,nt  larger values of v  yield larger values of .IRT  Note that, unlike (a), for all . ,0 05$v  an increase in the model order nt  
results in a less accurate model. In addition, for each value of ,nt  the models in (b) are less accurate than those in (a). :IRT  the L norm-2  
difference between the 30-step impulse response of the plant and model.
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The data are sampled with sample period .T 1 ss =  Let ,u 10min =-  
,u 10max =   ,u 5minT =-  ,u 5maxT =  ,1m =  P0 = ,I10 n

3
2 t  ,20, =  

,Q I40 1= , -r  ,P 40=r  and .R I10= ,  PCAC is initialized with 
the strictly proper FIR model ,0 1( )n0 2 1 1

T T
i = #-t6 @  and vk  is a ze-

ro-mean, Gaussian white noise sequence with a standard de-
viation of 0.001. Let the output constraint be given by (5), 
where C 1 1 ,T= -6 @  and D .20 20 T= - -6 @  A realization of (63) 
is given by
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Denote the ith component of ,uk  ,umaxT  ,uminT  and ,u |k1  by 
,u ,k i  u ,max iT  ,u ,min iT  and ,u | ,k i1  respectively. In this example, for 

each , , ,i m1 f=  the saturation
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is applied.
Figure 15 shows the response of PCAC for various values 

of the constraint relaxation weight S. Figure 15(a) shows the 
response of PCAC using (37)–(40) as well as from (41)–(45) 
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FIGURE 12 Example 3: Command following for the unstably stabilizable single-input, single-output plants (54) and (56) using n n 3= =t  
and the three-step command (55). (a) For the discrete-time plant (54), the output yk  approaches each step command with a decreasing 
command-following error. The bottom-most plot compares the poles and zeros of the identified model at k 300=  to the poles and zeros 
of the plant. It was observed (not shown) that the response time was larger than 100 steps for ,32 40,# #  and PCAC was unable to 
follow the step commands for .31, #  For ,85, 2  it was observed (not shown) that the output diverged. (b) For the continuous-time plant 
(56), the output y(t) approaches each step command with a decreasing command-following error. The bottom-most plot compares the 
poles and zeros of the identified model at t 300 s=  to the poles and zeros of the exact discretization of the continuous-time plant (56). 
Note that the discretized plant is unstably stabilizable. :IRT  the L norm-2  difference between the 30-step impulse response of the plant 
and model.
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with ,n n 4= =t  . ,0 7g =  ( ) . ,x 0 1 3 2 0 5 T= -6 @  and the three-
step command
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Figure 15(b) shows the response of PCAC using (41)–(45) with 
,n n6 42= =t  . ,0 01g =  ( ) [ ] ,x 0 10 5 8 3 T= -  and the three-

step command
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Figure 15 shows that, for the unstable plant (63), PCAC 
stabilizes the plant, and the output approaches the feasible 
commands. Note that the nonzero constraint relaxation weight 
reduces the overall constraint violation, especially in cases 
where the combination of the commands and constraints is 
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FIGURE 13 Example 4: Matched disturbance rejection for the continuous-time asymptotically stable single-input, single-output plant (59) 
and harmonic disturbance (60) with , ,n n n4 5= = =t t  and .n 6=t  (a) Zero initial conditions. Note that larger values of nt  yield a better 
performance and that uk  approximately cancels d(t) for .n 6=t  Furthermore, larger values of nt  yield a more accurate frequency response 
of the identified models at .t 500 s=  For ,n 6=t  the identified model has an approximate pole-zero cancellation at the disturbance fre-
quency /15di r=  rad/sample, which is denoted by the vertical dash–dotted line; the spurious pole in the identified model allows 
receding-horizon optimization to predict the future harmonic response of the plant, which facilitates the optimization of the future control 
inputs. This pole-zero cancellation serves as an implicit internal model of the unknown disturbance. The bottom-most plot compares the 
poles and zeros of the identified model at t 500 s=  to the poles and zeros of the exact discretization of the plant. For ,n 6=t  the approx-
imate pole-zero cancellations on the unit circle occur at the frequency di  of the harmonic disturbance. (b) Nonzero initial conditions 

( ) [ ]x 0 10 5 8 300 T= - -  for the state-space realization (61), (62). Compared to the case of zero initial conditions, the transient 
response is more pronounced, and the control saturation occurs over a longer interval of time. Moreover, since nonzero initial conditions 
result in more persistency during the transient, the identified models in (b) are more accurate than those in (a).
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infeasible. Furthermore, the constraint violation is reduced as 
the model accuracy improves.� G

LINEAR MULTIPLE-INPUT, MULTIPLE-OUTPUT 
EXAMPLES
This section considers linear time-invariant MIMO plants with 
the state-space realization (1) along with

	 ,y Cx Du= +u � (69)

	 ,z Ex=u � (70)

where ( )w t Rlw!  is an unmatched disturbance, ( ) ,y t Rly!u u  
( ) ,z t Rlz!u u  ,A Rl lx x! #  ,B Rl mx! #  ,C Rl ly x! #u  ,D Rl my! #u  

,D Rl l
1

x w! #  and .E Rl lz x! #u  At each time step, PCAC uses the 
sampled measurement, where ,y y z Rk k k

l lT T T y z!= +u u u u6 @  and the 
tracking output (3) and constrained output (4) are based on .zku  
Note that both yku  and zku  are noisy measurements, and zku  is 
used to define the performance metric.
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FIGURE 14 Example 4: Matched disturbance rejection for the continuous-time asymptotically stable single-input, single-output plant (59) 
and zero-mean, Gaussian white noise sequence dk  with a standard deviation of 0.5 for , ,n n n4 5= = =t t  and .n 6=t  (a) Zero initial con-
ditions. Note that larger values of nt  yield more accurate magnitudes of the frequency response of the identified models at .t 5000 s=  
The bottom-most plot shows that, for all ,nt  predictive cost adaptive control (PCAC) reduces the two peaks of the open-loop power 
spectral density (PSD) of ,yk  which indicates that PCAC rejects the broadband disturbance .dk  (b) Nonzero initial conditions 

( ) [ ]x 0 10 5 8 300 T= - -  for the state-space realization (61) and (62). As in (a), the bottom-most plot shows that, for all ,nt  PCAC 
reduces the two peaks of the open-loop PSD of .yk  Note that, for all ,nt  the frequency responses of the identified models at t 5000 s=  
are more accurate in (b) than in (a) due to the nonzero initial conditions.

Although PEM and IV are more accurate than RLS/VRF for both  

open- and closed-loop identification, these methods were found  

to be less compatible with PCAC than RLS/VRF.
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Example 6: An Asymptotically Stable Plant With 
Nonminimum-Phase Transmission Zeros and 
Nonminimum-Phase Channel Zeros
The goal of this example is to investigate the applicability of 
PCAC MIMO plants. Consider the continuous-time plant 
MIMO (1)–(70), where
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The transmission zeroes (TZs) and channel zeroes (CZs) of 
(71)–(73) are shown in Figure 16. The data are sampled with 
sample period . .T 0 5 ss =  Let ,u 2 1min

T= - -6 @  ,u 2 1max
T= 6 @  

. ,u 1 0 5min
TT = - -6 @  . ,u 1 0 5max

TT = 6 @  ,1m =  ,P I10 n0
3

2= t  
,10, =  ,Q I40 1= ,-r  ,P 40=r  ,R I0

10
10
0 7= ,6 @  and .r 0k /  Let vk  

be a zero-mean, Gaussian white noise sequence with a 
standard deviation of 0.02. The plant is initialized with 
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FIGURE 15 Example 5: Command following with the output constraint y20 20k# #-  and continuous-time unstable single-input, single-
output plant (63) for various values of S. (a) Predictive cost adaptive control (PCAC) is applied using (37)–(40) and (41)–(45) with 

, . , ( ) [ . ] ,n n x4 0 7 0 1 3 2 0 5 Tg= = = = -t  and the three-step command (67). At ,t 9 s=  (37)–(40) become infeasible, and the three-step 
command cannot be followed. In contrast, with (41)–(45), y(t) approaches the first two step commands, and the slack is activated at 

,t 8 s=  ,t 50 s=  and ,t 80 s=  as can be seen in the third plot. Since the last step command is not achievable, y(t) moves further away 
from the command as S increases, where the command-following error at t 120 s=  is approximately 0.02 for . ,S 0 1=  1.00 for ,S 10=  
and 4.81 for .S 1000=  Furthermore, note that the overshoot at t 19 s=  violates the output constraint due to the poor initial model and 
nonzero initial condition. The distance between y(t) and the constraint at t 19 s=  for .S 0 1=  is 41.47, which is reduced by 47% for 
S 10=  and 89% for .S 1000=  (b) PCAC is applied using (41)–(45) with , . , ( ) [ ] ,n n x6 4 0 01 0 10 5 8 3 T2 g= = = = -t  and the three-
step command (68). Compared to (a), note that, for all S, the output-constraint violation is more severe during the first transient. How-
ever, as the model becomes more accurate, y(t) approaches the first and second step commands, where the constraint is enforced after 

.t 106 s=  For the third step command, as in (a), y(t) moves away from the step command as S increases. :IRT  the L norm-2  difference 
between the 30-step impulse response of the plant and model.
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( ) [ . ] ,x 0 1 3 5 0 5 2 1 T= - -  and PCAC uses (37)–(40) with the 
strictly proper FIR initial model .0 1( )np m p mp0 1 1

T T
i = # #+t6 @  No 

output constraint is considered in this example, and the 
tracking output y ,kt  is given by (3) with ;C 0 0 1t = 6 @  that is, 

.y z,k kt = u

Figure 17 shows broadband disturbance rejection for ,n 3=t  
,n 4=t  and .n 6=t  The discrete-time unmatched broadband dis-

turbance is given by the random vector wk = ,w w R, ,k k1 2
2T !6 @  

where the components w , k1  and w , k2  are zero-mean, Gaussian 
white noise sequences with standard deviations of 1.7 and 2.5, 
respectively. Figure 17 shows that, for the MIMO plant (71)–
(73) with NMP TZ and NMP CZ, PCAC rejects an unmatched 
broadband disturbance.� G

Example 7: An Unstable Plant With Nonminimum-Phase 
Transmission Zeros and Nonminimum-Phase Channel Zeros
The goal of this example is to investigate the ability of PCAC to 
stabilize MIMO plants while enforcing output constraints. 
Consider the continuous-time MIMO plant (1)–(70), where B is 
given by (71), C and D are given by (72), ,D 01 6 2= #  and
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(74)

The TZ and CZ of (74) are shown in Figure 18. The data are 
sampled with sample period . .T 0 5 ss =  Let ,u 15 5min

T= - -6 @  
,u 15 5max

T= 6 @  ,u 5 2min
TT = - -6 @  ,u 5 2max

TT = 6 @  ,1m =  
,P I10 n0

3
2= t  ,40, =  ,Q I40 1= ,-r  ,P 04=r  and .R I0

10
10
0 7= ,6 @  

Let vk  be a zero-mean, Gaussian white noise sequence with a 
standard deviation of 0.02. The plant is initialized with 

( ) . . . ,x 0 2 3 3 4 2 6 2 1 3 T= - - -6 @  and PCAC uses (41)–(45) 
wi th  the  s t r ic t ly  proper  FIR in i t ia l  model  0i = 

.0 1( ( ) )n m p p mp mp1 1
T T

# #+ -t6 @  The tracking output y ,kt  is given by (3) 
with ,C 1 0t = 6 @  and the constrained output is given by (4) with 

;C 0 1c = 6 @  that is, y z, ,k k1t = u , and .y z ,k2c = u  The output con-
straint is given by (5), where C ,1 1 T= -6 @  and D .10 10 T= - -6 @

Figure 19 shows the response of PCAC for n 2=t  and vari-
ous values of S using the three-step command
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Figure 18 shows that, for the unstable MIMO plant (71), (72), 
and (74) with NMP TZ and NMP CZ, PCAC stabilizes the plant 
while asymptotically satisfying the output constraints, and the 
output approaches the step commands.� G

LINEAR TIME-VARYING EXAMPLES
This section considers linear time-varying SISO plants, where 

.y y y, ,k k kt c= =

Example 8: Abrupt Change From an Asymptotically  
Stable Plant to an Unstable Nonminimum-Phase Plant
The goal of this example is to investigate the applicability of 
PCAC with VRF on time-varying plants. Consider a discrete-
time asymptotically stable SISO plant (46) that abruptly changes 
at step kc  to a discrete-time unstable NMP SISO plant (53). Note 
that the orders of both plants are n = 2 with relative degree one.

Let ,u 50min =-  ,u 50max =  ,  u 25minT =-  ,u 25maxT =  ,20, =  
,Q I2 1= ,-r  ,P 5=r  ,IR = ,  ,n n 2= =t  and .P I10 n0

3
2= t  No output 

constraint is considered in this example. The plant is initialized 
with . ,y 0 21 =--  . ,y 0 42 =-  and u 1 =-  .u 02 =-  PCAC uses the 
strictly proper FIR initial model 0 10 1 3

Ti = #6 @  and uses (37)–
(40) with the measurement .yk  Let .v 0k =

Figure 20 shows the response of PCAC for r 1k /  using CRF 
with 1m =  and VRF (21) with . ,0 9h =  ,5nx =  and 10dx =  for 

,k 30c =  ,k 200c =  ,k 400c =  and .k 600c =  Figure 20(a) shows 
that, in the absence of forgetting, that is, ,1m =  reidentification 
of the plant after the abrupt change is poor, and the output does 
not approach the step command. In contrast, Figure 20(b) 
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FIGURE 16 Example 6: Transmission zeros (TZs) and channel 
zeros (CZs) of the continuous-time asymptotically stable multiple-
input, multiple-output plant (71)–(73). (a) The transfer function 
from u to [ ]y zT T Tu u  has two nonminimum-phase (NMP) TZs at 
approximately . .z 0 94t =  (b) Each transfer function has one NMP 
CZ at approximately 0.94.
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FIGURE 17 Example 6: Unmatched broadband disturbance rejection for the continuous-time asymptotically stable multiple-input, multiple-
output plant (71)–(73) with a nonminimum-phase (NMP) transmission zero and an NMP channel zero for , ,n n3 4= =t t  and n 6=t  using the 
discrete-time broadband disturbance [ ] ,w w w R, ,k k k1 2

2T !=  where w ,k1  and w ,k2  are zero-mean, Gaussian white noise sequences with 1.7 
and . ,2 5  respectively. Note that, for all ,nt  the magnitude of the open-loop power spectral density (PSD) of zu  in the range / /16 4d# #r i r  
is reduced, which indicates suppression of the broadband disturbance .wk  For all six channels, namely, from u1  and u2  to , ,y y1 2u u  and ,zu  
the 12 bottom-most plots compare the frequency response of the identified model at t 5000 s=  to the frequency response of the plant. As 
in Example 4, this example shows that a larger model order nt  yields more accurate estimates of the plant dynamics.
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shows that, with VRF, reidentification of the plant after the 
abrupt change is better compared to Figure 20(a), and, thus, the 
output approaches the step commands.� G

Example 9: Abrupt Change From an Asymptotically 
Stable Plant to an Unstable Nonminimum-Phase  
Plant With Sensor Noise
The goal of this example is to investigate the effect of zero-
mean, Gaussian white sensor noise on VRF. This example uses 
the same setup as Example 8 except that PCAC now uses noisy 
measurements with the command profile
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Figure 21 shows the response of PCAC for two different levels 
of sensor noise using k 300c =  and VRF (21) with . ,0 5h =  

,5d nx x=  and various values of .nx  As shown in Figure 21(a) 
and (b), as nx  increases, the duration during which forgetting is 
active increases. Hence, as nx  increases, reidentification be-
comes slower and, for large values of ,nx  the output does not 
approach the command. Note that, as nx  increases, the VRF km  
becomes less sensitive to sensor noise.

Note that the speed of convergence of the coefficients after 
the abrupt change determines whether or not the output ap-
proaches the command. In particular, with a large choice of ,nx  
the reconvergence of the model coefficients is slow, which 
yields a divergence of the output. Furthermore, in the presence 
of zero-mean, Gaussian white sensor noise, where ,5d nx x=  
increasing the value of nx  reduces the activation of forgetting 
due to sensor noise.� G
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FIGURE 18 Example 7: The transmission zero (TZ) and channel 
zero (CZ) of the continuous-time unstable multiple-input, multiple-
output plant (74). (a) The transfer function from u to [ ]y zT Tu u  has 
four nonminimum-phase (NMP) TZs at approximately . , . ,0 00 0 94  
and 3.33. (b) The eight transfer functions have 21 NMP CZs at 
approximately . , . . , . . , . . ,0 00 0 13 1 42 0 14 1 18 0 15 0 99! ! !. . .  0.19, 
0.95, 2.10, and 3.33.

Guidelines for Selecting Hyperparameters

This is a list of the hyperparameters that need to be select-

ed for predictive cost adaptive control as well as heuristic 

guidelines on how to select them.

•	 Identification model order :nt  Choose nt  to be greater than 

or equal to the dimension of the unstable subspace of the 

plant. Add +2 for each harmonic disturbance.

•	 Initial identification covariance :P0  Typically, choose 

,P I ( )np m p mp0 a= + +t  where .10 104 4# #a-  Larger values of 

a  yield more aggressive identification and may lead to 

more severe transients in the response.

•	 Initial identification coefficient vector :0i  Use the best 

prior estimate of the plant coefficients when available; 

otherwise, set . .0 01 1[ ( ) ]np m p mp0 1$i = #+ +t

•	 Constant forgetting factor :m  Typically, choose . .0 95 1# #m   

Choose 1m =  when persistency is lacking. Not relevant 

when using variable-rate forgetting (VRF).

•	 VRF parameters , :dnx x  ,5d nx x=  where .1 100n# #x  

Smaller nx  yields identification that reacts quickly to 

changes but is more sensitive to sensor noise. On the 

other hand, larger nx  yields identification that reacts 

slowly to changes but is less sensitive to sensor noise.

•	 VRF parameter :h  . .0 001 1# #h  Larger values of h  yield 

more aggressive forgetting in response to changes.

•	 Prediction horizon :,  Select the prediction horizon ,  so that 

Ts,  is greater than the settling time of the plant. For unstable 

plants, excessively large values of ,  may lead to divergence.

•	 Cost-to-go output weight :Qr  , .I 0( )p1 t 2a a,-

•	 Terminal output weight :Pr  , .I 0pt 2a a

•	 Control move-size weight R: , .I 0m $a a,

•	 Constraint relaxation weight S: , .I 0nc $a a,  Choose non-

zero a  when infeasible command and constraints are 

expected.

•	 Control magnitude constraints , :u umin max  Select these 

values to reflect actuator magnitude constraints.

•	 Control move-size constraints , :u umin maxT T  Select these 

values to reflect actuator move-size constraints.
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FIGURE 19 Example 7: Command following for the continuous-time unstable multiple-input, multiple-output plant (74) with the nonmini-
mum-phase (NMP) transmission zero and NMP channel zero for n 2=t  and various values of S using the three-step command (75). For 
each S, the tracking output approaches the three-step command. Note that, as S increases, the output-constraint violation becomes 
less severe. Due to the poor initial model, the output constraint is relaxed by the slack kf  until .t 20 s=  For all ,t 20 s$  note that, for 
each S, as the model becomes more accurate and ( )z t1u  approaches zero, the output constraint is enforced. The eight bottom-most plots 
compare the poles and zeros of the identified model at t 60 s=  to the poles and zeros of the plant.
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Example 10: Abrupt Change From an Asymptotically  
Stable Plant to an Unstable Plant With Sensor Noise 
and Output Constraints
The goal of this example is to demonstrate PCAC with VRF 
with output constraints. Consider a continuous-time asymp-
totically stable SISO plant

	 ( )
. .

G s
s s0 1 0 3

4
2=
+ +

� (77)

that abruptly changes at time 300 s to a continuous-time un-
stable SISO plant (63) with . .0 01g =  Note that the order of (63) 
is ,n 4=  and the order of (77) is .n 2=  A realization of (77) is 
given by

	
.

.
.

,x x u
0 1

0 5
0 6
0

4
0=

- -
+o ; ;E E � (78)

	 ,y x0 2= 6 @ � (79)

and a realization of (63) is given by (64) and (65).
The data are sampled with sample period .T 1ss=  Let 

umin = ,2-  ,u 2max=  ,  u 1minT =-  ,u 1maxT =  ,20,=  ,Q I10 1= ,-r  
,P 20=r  ,IR = ,  ,P I10 n0

3
2= t  and .0 1( )n0 1 2 1

Ti = # -t6 @  The initial 
plant (77) is initialized with ( ) . . ,x 0 2 5 1 4 T= -6 @  and the modi-
fied plant (63) is initialized with ( ) . . .x 0 0 039 1 508 0 0 T= -6 @  
The output constraint is given by (5), where C [ ]1 1 T= - , and 
D .20 20 T= - -6 @  For this example, PCAC uses (41)–(45) with 
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2=  A strictly proper model is used for identification in 

PCAC. Figure 22 shows the response of PCAC for two different 
levels of sensor noise and various values of nt  using the com-
mand profile (76) and VRF (21) with . ,0 5h =  ,25nx =  and 

.125dx =

Figure 22 shows that, for a plant that abruptly transi-
tions from (77) to (63) with . ,0 01g =  output transients and 
constraint violations occur after the abrupt transition. 
However, as the identification accuracy improves, the out-
put transients dissipate, and the constraints are satisfied 
asymptotically. Additionally, note that overparameteriza-

tion of the model facilitates identification and, thus, con-
straint enforcement.� G

CONCLUSIONS
This article presented a numerical investigation of PCAC, 
which uses closed-loop identification to identify a model for 
constrained receding-horizon control optimization. The iden-
tified model uses an input–output structure with BOCF realiza-
tion, which enables output-feedback control without the need 
for an observer. PCAC was applied to 10 numerical examples 
that demonstrate command following and disturbance 
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rejection subject to state and control constraints. Based on 
these examples, “Guidelines for Selecting Hyperparame-
ters” presents guidelines for selecting hyperparameters.

The performance of PCAC was investigated numerically 
to highlight the interplay between closed-loop identifica-
tion and control. Three issues were considered, namely, per-
sistency, consistency, and exigency. Persistency is needed 
for the unambiguous estimation of model parameters; con-
sistency ensures that the parameter estimates are asymp-

totically unbiased; and exigency prioritizes the identification 
of model features that are essential for achieving the control 
objective. When the persistency of the commands and dis-
turbances is not sufficient for identification, PCAC was 
shown to provide additional self-generated persistency 
through the control input.

Since the control input produced by PCAC is correlated with 
the disturbance and sensor noise, the parameter estimates ob-
tained from closed-loop identification based on RLS are not 
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consistent and, thus, are asymptotically biased. Although the 
bias was shown to degrade the accuracy of PCAC, this effect 
was mitigated to some extent by using RLS with VRF. PEM and 
IV were considered as alternatives to RLS/VRF. Although PEM 
and IV are more accurate than RLS/VRF for both open- and 
closed-loop identification, these methods were found to be less 
compatible with PCAC than RLS/VRF.

Finally, the interplay between control and identification 
was further examined in terms of exigency, which is the abil-
ity of the closed-loop identification to prioritize the model 
features needed to achieve the control objective. Numerical 
examples, such as the estimation of the plant dc gain for set-
point command following, showed that exigency is manifest-
ed in the continuing refinement of the identified model.

The numerical examples in this article were designed to ex-
pose features of PCAC that motivate the investigation of stabil-
ity and performance guarantees. A major next step is to extend 
the method to various classes of nonlinear systems [74]. Finally, 
the performance of PCAC on linear and nonlinear numerical 
examples provides further motivation to apply this technique 
to physical examples.
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