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ABSTRACT
Zeros are of extreme importance in linear systems theory, especially unstable zeros, which degrade achiev-
able performance. Furthermore, the presence of a zero in a state-space model implies the existence of an
initial condition and a nonzero input signal such that the output is identically zero; this property is called
output zeroing. The purpose of this paper is to elucidate the properties of the zero dynamics within the
context of input–outputmodels, which, like state-spacemodels, are time-domainmodels, but, unlike state-
space models, have no internal state. In particular, the focus is on the zero dynamics of left polynomial
fraction description (LPFD) input–outputmodels whose denominator polynomial is not necessarily monic.
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1. Introduction

Among the various representations of linear systems are state-
spacemodels, transfer functions, and input–outputmodels. The
first two are widely used, and the relationship between transfer
functions and their state-space realisations has been extensively
investigated for more than 70 years (Kailath, 1980). Less well
known is the class of models that have the form of transfer func-
tions but, like state-space models, operate in the time domain.
These are input–output models, which are variously known as
time series or ARMAX models (Gevers, 1986; Janssen, 1988).
Input–output models provide the framework for behaviours,
which are essentially time-domain polynomial models in the
differential operator (Willems & Polderman, 2013).

In continuous time, the distinction between transfer func-
tions and input–output models resides in the distinction
between the Laplace transform variable s and the differentia-
tion operator p. Analogously, in discrete time, this distinction
hinges on the distinction between the Z transform variable z
and the forward-shift operatorq (Middleton&Goodwin, 1990).
One consequence of this distinction is the fact that, unlike trans-
fer function models, an input–output model does not require
a separate term to represent the free response (Aljanaideh &
Bernstein, 2018).

Regardless of model representation, zeros are of extreme
importance in linear systems theory (Desoer & Schulman, 1974;
MacFarlane & Karcanias, 1976; Rosenbrock, 1973; Schrader
& Sain, 1989; Tokarzewski, 2006), especially unstable zeros,
which degrade achievable performance (Havre & Skoges-
tad, 2001; Hoagg & Bernstein, 2007). In particular, if a
continuous-time linear system has a zero in the open right half-
plane, then the zero dynamics are unstable, and the correspond-
ing input is unbounded. For discrete-time systems, the anal-
ogous property holds for zeros contained in the complement
of the closed unit disk. For MIMO transfer functions, trans-
mission zeros can be determined from either the Rosenbrock
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system matrix or the Smith–McMillan form (Kailath, 1980).
These zeros coincide with the invariant zeros of a minimal
realisation.

A broader framework within which to understand the impli-
cations of zeros is the notion of zero dynamics, which is appli-
cable to both linear and nonlinear systems (Berger et al., 2015;
Daoutidis & Kravaris, 1991; Isidori, 2013). Zero dynamics are
the ‘dynamics’ of the input assuming that the output is iden-
tically zero. Of course, for a state-space model, if the ini-
tial condition and input are both zero, then the output is
zero. However, the zero dynamics have the interesting prop-
erty that there exist a nonzero input and a nonzero initial
condition such that the output is identically zero; this phe-
nomenon is called output zeroing (Callier & Desoer, 2012; Des-
oer & Schulman, 1974; Karampetakis, 1998; Karcanias & Kou-
varitakis, 1979; Tokarzewski, 2006). Along with basic results
on output zeroing, Karcanias and Kouvaritakis (1979) explores
the zero structure using zero pencils and describes the geo-
metric properties of the zero structure. Zeros of discrete-time
systems are discussed in detail in Tokarzewski (2006). The
above-mentioned works on output zeroing consider state-space
models; input–output models are not considered.

The contribution of the present article is an elucidation of
the properties of the zero dynamics of input–output models as
well as an exploration of output zeroing in input–output mod-
els. To this end, the paper has two main objectives. The first
objective is to characterise the transmission zeros using left
polynomial fraction description (LPFD) input–output models,
define the zero dynamics of thesemodels, and describe the solu-
tions of the zero dynamics of these models that correspond to
the transmission zeros of the system.

The second objective is to establish conditions under which
output zeroing is achieved in input–output models and to con-
nect output zeroing in input–output models to output zeroing
in state-space models. First, output zeroing using amonic LPFD
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is connected to output zeroing using the observable canoni-
cal form realisation corresponding to the given monic LPFD.
Next, the equivalence between output zeroing using a coprime
(and not necessarily monic) LPFD and output zeroing using an
arbitrary minimal realisation is established. This result is based
on the construction of a minimal state-space realisation based
on a coprime LPFD as given in Polak (1966). The paper con-
cludes with an example that illustrates the equivalence between
output zeroing in input–output models and output zeroing in
state-space models.

2. Preliminaries

Let R[z]p×m denote the set of p × m matrices each of whose
entries is a polynomial with real coefficients, letR(z)p×m denote
the set of p × mmatrices each ofwhose entries is a rational func-
tion with real coefficients, and let R(z)p×m

prop denote the proper
transfer functions in R(z)p×m. In this and all subsequent sec-
tions, let G ∈ R(z)p×m

prop . The rank of G is the maximum value of
rankG(z) taken over the set of complex numbers z such that,
for all i = 1, . . . , p and j = 1, . . . ,m, z is not a pole of the (i, j)
entry of G. The McMillan degree of G is denoted by McDeg G.
Throughout this paper, 00 �= 1.

The following result given by Theorem 6.7.5 in Bern-
stein (2018, p. 514) presents the Smith–McMillan form S of G.

Theorem 2.1: There exist unimodular matrices S1 ∈ R[z]p×p

and S2 ∈ R[z]m×m and unique monic polynomials p1, . . . , pρ ,
q1, . . . , qρ ∈ R[z] such that, for all i ∈ {1, . . . , ρ}, pi and qi
are coprime, for all i ∈ {1, . . . , ρ − 1}, pi divides pi+1 and qi+1

divides qi, and G = S1SS2, where ρ
�= rankG and

S �=

⎡
⎢⎢⎢⎣

p1/q1 0ρ×(m−ρ)

. . .
pρ/qρ

0(p−ρ)×ρ 0(p−ρ)×(m−ρ)

⎤
⎥⎥⎥⎦ . (1)

The roots of the polynomial q1q2 · · · qρ are the poles of G,
and the roots of the polynomial p1p2 · · · pρ are the transmission
zeros of G.

In the notation of Theorem 2.1, define

DS
�=

⎡
⎢⎢⎢⎣
q1 0

. . .
qρ

0 Ip−ρ

⎤
⎥⎥⎥⎦ S−1

1 , (2)

NS
�=

⎡
⎢⎢⎢⎣
p1 0

. . .
pρ

0 0(p−ρ)×(m−ρ)

⎤
⎥⎥⎥⎦ S2. (3)

Definition 2.2: Let P ∈ R[z]p×m and R ∈ R[z]p×p. Then R left
divides P if there exists P̂ ∈ R[z]p×m such that P = RP̂.

Definition 2.3: Let U ∈ R[z]n×n. Then U is unimodular if
detU is a nonzero real number.

Definition 2.4: LetP ∈ R[z]p×n andQ ∈ R[z]p×m. Then P and
Q are coprime if every R ∈ R[z]p×p that left divides both P and
Q is unimodular.

Definition 2.5: Let P ∈ R[z]p×m. Then degP is the maximum
degree of the entries of P. Furthermore, P ismonic if p = m and
P(z) = zdeg PIm + P0(z), where P0 ∈ R[z]m×m and degP0 <

degP.

Definition 2.6: Let D ∈ R[z]p×p, and N ∈ R[z]p×m, assume
thatD is nonsingular, and assume thatG = D−1N. Then (D,N)

is a left polynomial fraction description (LPFD) of G. Further-
more, if D and N are coprime, then (D,N) is a coprime left
polynomial fraction description (CLPFD) of G. In addition, if D
is monic, then (D,N) is amonic left polynomial fraction descrip-
tion (MLPFD) of G. Finally, if D and N are coprime and D is
monic, then (D,N) is a monic coprime left polynomial fraction
description (MCLPFD) of G.

Note that the terms ‘matrix fraction description’ and ‘poly-
nomial matrix fraction description’ are used as alternatives to
the term ‘polynomial fraction description’ in the literature.

Proposition 2.7: (DS,NS) is a CLPFD of G.

Proof: Note that, for all z ∈ C, rank[DS(z) NS(z)] = p, and
hence, it follows from Theorem 16.16 in Rugh (1996, p. 300)
that DS and NS are coprime. �

The following result is given by Theorem 16.17 in Rugh
(1996, p. 301).

Proposition 2.8: Let (D,N) be a CLPFD of G and (D̂, N̂) be an
LPFD of G. Then (D̂, N̂) is a CLPFD of G if and only if there
exists a unimodular matrix U ∈ R[z]p×p such that D̂ = UD and
N̂ = UN.

Corollary 2.9: Let (D,N) be an LPFD of G. Then (D,N) is a
CLPFD of G if and only if there exists a unimodular matrix U ∈
R[z]p×p such that D = UDS and N = UNS.

Definition 2.10: Let P ∈ R[z]p×n, Q ∈ R[z]p×m and R ∈
R[z]p×p. Then R is a greatest common left divisor of P and Q if
there exists P̂ ∈ R[z]p×n, Q̂ ∈ R[z]p×m such that P = RP̂, Q =
RQ̂ and P̂ and Q̂ are coprime.

Note that it follows fromMacDuffee (2012, p. 35) that, for all
P ∈ R[z]p×n and Q ∈ R[z]p×m, there exists a greatest common
left divisor of P and Q.

Lemma 2.11: Let (D,N) be a CLPFD of G, and let (D̂, N̂) be an
LPFDofG. Then there exists a nonsingular L ∈ R[z]p×p such that
D̂ = LD and N̂ = LN.

Proof: Let R ∈ R[z]p×p be a greatest common left divisor of D̂
and N̂. Then, there exist D ∈ R[z]p×p and N ∈ R[z]p×m such
that D̂ = RD, N̂ = RN, and D and N are coprime. Next, it fol-
lows from Proposition 2.8 that there exists a unimodular matrix
U ∈ R[z]p×p such that D = UD and N = UN. Hence, D̂ = LD
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and N̂ = LN, where L �= RU. Since D̂ is nonsingular, it follows
that R is nonsingular, and thus, L is nonsingular. �

Proposition 2.12: Let (D,N) be an LPFD of G. Then deg
detD = McDeg G if and only if (D,N) is a CLPFD of G.

Proof: To prove sufficiency, note that Corollary 2.9 implies
that there exists a unimodular matrix U ∈ R[z]p×p such
that D = UDS. Hence, deg detD = deg detU + deg detDS =
deg detDS = McDeg G. To prove necessity, note that it fol-
lows from Lemma 2.11 and Proposition 2.7 that there exists a
nonsingular L ∈ R[z]p×p such that D = LDS and N = LNS.

Hence deg det L = deg detD − deg detDS = McDegG −
McDeg G = 0. Thus, L is unimodular and therefore Coro-
llary 2.9 implies that (D,N) is a CLPFD of G. �

3. Zero dynamics of input–output models

This section discusses various aspects of the zero dynamics
of input–output models. In particular, Proposition 3.1 charac-
terises transmission zeros ofG using an LPFDofG and aCLPFD
of G. Next, Proposition 3.2 gives an expression for counting the
number of transmission zeros of G using a CLPFD of G. The
zero dynamics of G are defined in Definition 3.3, necessary and
sufficient conditions for the existence of nonzero solutions to
the zero dynamics are given in Proposition 3.4, and solutions of
the zero dynamics are characterised by Proposition 3.5. Next,
Theorem 3.6 relates nonzero solutions of the zero dynamics to
the transmission zeros of G.

Proposition 3.1: Let (D,N) be an LPFD of G, and let z0 be a
transmission zero of G. Then rankN(z0) < rankN.Now assume
that (D,N) is a CLPFD of G. Then z0 is a transmission zero of G
if and only if rankN(z0) < rankN.

Proof: To prove the first statement, note that Proposition 2.7
and Lemma 2.11 imply that there exists a nonsingular L ∈
R[z]p×p such thatD = LDS andN = LNS, whereDS andNS are
defined in (2) and (3). Since z0 is a transmission zero of G, it
follows from Theorem 2.1 that rankNS(z0) < rankNS. Hence,
rankN(z0) ≤ rankNS(z0) < rankNS = rankN. To prove suf-
ficiency in the second statement, note that Corollary 2.9
implies that, for all z ∈ C, rankN(z) = rankNS(z). Hence,
rankNS(z0) = rankN(z0) < rankN = rankNS, and thus, it
follows from Theorem 2.1 that z0 is a transmission zero
of G. �

Proposition 3.2: Let (D,N) be a CLPFD of G, let (D̂, N̂) be a
CLPFD of GT, and let ζ be the number of transmission zeros of G
counting multiplicity.

(i) If rankG = p, then ζ = 1
2 deg detNN

T.
(ii) If rankG = m, then ζ = 1

2 deg det N̂N̂T.

Proof: To prove (i), note that it follows from Corollary 2.9
that NNT = UNSNT

S U
T, where U ∈ R[z]p×p is a unimodular

matrix. Since rankG = p, it follows that NSNT
S is nonsingular,

and thus, NNT is nonsingular. Thus, deg detNNT = deg detNS

NT
S = 2ζ . To prove (ii), note that the number of transmission

zeros of GT is equal to the number of transmission zeros of G.
Since rankGT = rankG = m, applying (i) toGT yields (ii). �

The following definition defines the zero dynamics of an
LPFD of G and the zero dynamics of G.

Definition 3.3: Let (D,N) be an LPFD of G, and for all k ≥ 0,
let uk ∈ C

m satisfy

N(q)uk = 0. (4)

Then, (4) is the zero dynamics of (D,N). If, in addition, (D,N)

is a CLPFD of G, then (4) is the zero dynamics of G.

The following result gives necessary and sufficient conditions
for the existence of nonzero solutions of (4).

Proposition 3.4: Let N ∈ R[z]p×m. Then (4) has a nonzero
solution if and only if there exists z0 ∈ C such that
rankN(z0) < m.

Proof: To prove sufficiency, let N(q) = q�B0 + q�−1B1 +
· · · + B�. Then

N(q)zk0 =
(
q�B0 + q�−1B1 + · · · + B�

)
zk0

= zk+�
0 B0 + zk+�−1

0 B1 + · · · + zk0B�

=
(
z�
0B0 + z�−1

0 B1 + · · · + B�

)
zk0

= N(z0)zk0.

Note that there exists u �= 0 such that N(z0)u = 0. For all
k ≥ 0, define uk

�= zk0u. Hence, for all k ≥ 0, N(q)uk =
N(q)zk0u = N(z0)zk0u = zk0N(z0)u = 0. Since u �= 0, it follows
that u is a nonzero solution of (4).

To prove necessity, note that, in the case where rankN < m,
it follows that, for all z0 ∈ C, rankN(z0) < m. In the case where
rankN = m, there exists a unimodular matrix U ∈ R[q]p×p

such thatN �= UN =
[

N0
0(p−m)×m

]
, whereN0 ∈ R[q]m×m is non-

singular. Then (4) implies thatN(q)uk = U(q)N(q)uk = 0, and
thus N0(q)uk = 0. Now, suppose that N0 is unimodular. Then
N−1
0 (q) is a polynomial matrix, and hence (4) is equivalent to

N−1
0 (q)N0(q)uk = 0, and thus, for all k ≥ 0, uk = 0, which is a

contradiction. It thus follows that N0 is not unimodular, that is,
detN0 is a nonconstant polynomial in q. �

The following result characterises the possibly complex solu-
tions of (4).

Proposition 3.5: Let z0 ∈ C, and let u ∈ C
m. Then, for all

k ≥ 0, uk
�= zk0u satisfies (4) if and only if N(z0)u = 0.
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Proof: Let N(q) = q�B0 + q�−1B1 + · · · + B�. Then

N(q)zk0 =
(
q�B0 + q�−1B1 + · · · + B�

)
zk0

= zk+�
0 B0 + zk+�−1

0 B1 + · · · + zk0B�

=
(
z�
0B0 + z�−1

0 B1 + · · · + B�

)
zk0

= N(z0)zk0.

To prove sufficiency, note that, for all k ≥ 0, N(q)uk =
N(q)zk0u = N(z0)zk0u = zk0N(z0)u = 0. To prove necessity, note
that, for all k ≥ 0, 0 = N(q)uk = zk0N(z0)u. Letting k = 0 yields
N(z0)u = 0. �

Proposition 3.4 and Proposition 3.5 discuss solutions of (4)
in relation to an arbitrary complex number z0. Since the focus
of this paper is on transmission zeros, we now give a result on
the relationship between the solutions of (4) and a transmission
zero z0 of G.

Theorem 3.6: Let (D,N) be an LPFD of G. The following state-
ments hold:

(i) If rankN < m, then, for all z0 ∈ C, there exists a nonzero
u ∈ N (N(z0)), and for all k ≥ 0, uk

�= zk0u is a nonzero
solution of (4).

(ii) If rankN = m, and z0 ∈ C is a transmission zero of G, then
there exists a nonzero u ∈ N (N(z0)), and for all k ≥ 0,
uk

�= zk0u is a nonzero solution of (4).
(iii) If rankN = m, and (D,N) is a CLPFD of G, then the

following statements are equivalent.
(a) z0 ∈ C is a transmission zero of G.
(b) There exists a nonzero u ∈ N (N(z0)).
(c) There exists a nonzero solution of (4).
If these conditions hold, then, for all k ≥ 0, uk

�= zk0u is a
nonzero solution of (4).

Proof: (i) follows from Proposition 3.5, and (ii) follows from
Propositions 3.1 and 3.5. (a) ⇒ (b) in (iii) follows from Propo-
sition 3.1, and (b) ⇒ (c) in (iii) follows from Proposition 3.5.
To prove (c)⇒ (a) in (iii), note that Proposition 3.4 implies that
there exists z0 ∈ C such that rankN(z0) < m = rankN. Thus,
Proposition 3.1 implies that z0 is a transmission zero of G. �

4. Equivalence of output zeroing in input–output and
state spacemodels

If G has a transmission zero, then it follows from Tokarzewski
(2006, p. 25) that there exist an initial condition and a nonzero
input such that the response of a minimal state-space realisa-
tion of G is identically zero. This is called output zeroing in
state-space models. Proposition 4.2 and Corollary 4.3 deal with
output zeroing in state-space models, and Theorem 4.4 relates
output zeroing in state-space models to the transmission zeros
of G. In contrast, Theorem 4.6 and Corollary 4.7 discuss output
zeroing in input–output models. Next, Theorem 4.8 relates out-
put zeroing in input–output models to the transmission zeros of

G, where it is shown that, ifG has a transmission zero, then there
exists a nonzero input such that the response of a time-domain
input–output representation of G is identically zero. Further-
more, this section connects output zeroing in input–output
models to output zeroing in state-space models.

In particular, Theorems 4.10 and 4.14 establish the equiva-
lence between output zeroing in input–output models and out-
put zeroing in state-space models. Finally, an example is given
to illustrate this equivalence.

Given a realisation (A,B,C,E) of G, define

Z(z) �=
[
zI − A −B

C E

]
. (5)

The following result is an immediate consequence of the
definition of invariant zeros.

Proposition 4.1: Let (A,B,C,E) be a realisation of G, where A ∈
R
n×n. Then, the following statements hold:

(i) Assume that rankZ < n + m. Then, for all z0 ∈ C, there
exists nonzero

[ x
u
] ∈ N (Z(z0)).

(ii) Assume that rankZ = n + m.Then, z0 ∈ C is an invariant
zero of (A,B,C,E) if and only if there exists nonzero

[ x
u
] ∈

N (Z(z0)).
(iii) Assume that rankZ = n + m and (A,B,C,E) is minimal.

Then, z0 ∈ C is a transmission zero of G if and only if there
exists nonzero

[ x
u
] ∈ N (Z(z0)).

The following result on output zeroing in state-space mod-
els is given by Lemmas 2.7 and 2.9 in Tokarzewski (2006,
pp. 25, 31).

Proposition 4.2: Let (A,B,C,E) be a realisation of G, where A ∈
R
n×n, and let z0 ∈ C, x ∈ C

n, and u ∈ C
m. Furthermore, define

x0
�= x, and for all k ≥ 0, define uk

�= zk0u and consider

xk+1 = Axk + Buk, (6)

yk = Cxk + Euk. (7)

Then, the following statements hold:

(i) If
[ x
u
] ∈ N (Z(z0)), then, for all k ≥ 0, yk = 0.

(ii) If (A,C) is observable and, for all k ≥ 0, yk = 0, then
[ x
u
] ∈

N (Z(z0)).

In Proposition 4.2, the signalu and initial state x0 are not nec-
essarily real. In practice, however, it is desirable to consider real
input signals and real states. For this case, the following result is
a consequence of statement (i) of Proposition 4.2.

Corollary 4.3: Let (A,B,C,E) be a realisation of G, where A ∈
R
n×n, and let z0 ∈ C and

[ x
u
] ∈ N (Z(z0)).

Define x0
�= Re(x), and for all k ≥ 0, define uk

�= Re(zk0u) and
consider (6) and (7). Then, for all k ≥ 0, yk = 0.

The following result relates output zeroing in state-space
models to transmission zeros of G.
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Theorem 4.4: Let (A,B,C,E) be a realisation of G, where A ∈
R
n×n, and let z0 be a transmission zero of G. Then there exists[ x
u
] ∈ N (Z(z0)), where x �= 0 and u �= 0. Furthermore, there

exist x0 �= 0 and u �= 0 such that y ≡ 0,where x0, u, and y satisfy
(6) and (7), and where x0 and u are real.

Proof: It follows from the Kalman decomposition (see Propo-
sition 16.9.12 in Bernstein, 2018, p. 1273 or Chapters 2 and 6 in
Kailath, 1980) that there exists a nonsingular matrix S ∈ R

n×n

such that

Ad
�= SAocfS−1 =

⎡
⎢⎢⎣
A1 0 A13 0
A21 A2 A23 A24
0 0 A3 0
0 0 A43 A4

⎤
⎥⎥⎦ ,

Bd
�= SBocf =

⎡
⎢⎢⎣
B1
B2
0
0

⎤
⎥⎥⎦ ,

Cd
�= CocfS−1 = [

C1 0 C3 0
]
,

where, for all i = 1, . . . , 4, Ai ∈ R
ni×ni , and (A1,B1,C1,E) is a

minimal realisation of G. Define Z1(z)
�=

[
zI−A1 −B1
C1 E

]
. Since

z0 is a transmission zero of G, it follows that rankZ1(z0) <

rankZ1. Let z1 ∈ C be such that rankZ1(z1) = rankZ1. Hence
rankZ1(z0) < rankZ1(z1), and thus Fact 3.14.15 in Bern-
stein (2018, p. 322) implies that

rank
[
z0I − A1

C1

]
+ rank

[
B1
E

]

− dim
(
R

([
z0I − A1

C1

])
∩ R

([
B1
E

]))

< rank
[
z1I − A1

C1

]
+ rank

[
B1
E

]

− dim
(
R

([
z1I − A1

C1

])
∩ R

([
B1
E

]))
.

Since (A1,C1) is observable, it follows that rank
[
z0I−A1

C1

]
=

rank
[
z1I−A1

C1

]
= n1. Hence,

dim
(
R

([
z0I − A1

C1

])
∩ R

([
B1
E

]))

> dim
(
R

([
z1I − A1

C1

])
∩ R

([
B1
E

]))
≥ 0.

Thus, there exists
[
x1
u1

]
∈ N (Z1(z0)), where x1 �= 0 and

u1 �= 0. Define x �= [ x1
0

] ∈ C
n and u �= u1. Then, x �= 0, u �= 0,

and
[ x
u
] ∈ N (Z(z0)).

Without loss of generality, let
[ x
u
] ∈ N (Z(z0)), where

Re(x) �= 0 and u �= 0. Define x0
�= Re(x) and, for all k ≥ 0,

uk
�= Re(zk0u). In the case where Re(u) �= 0, note that u0 =

Re(u) �= 0, and thus u �= 0. In the case where Re(u) = 0, sup-
pose that Im(z0) = 0. Then, it follows from Re(Z(z0)

[ x
u
]
) = 0

that
[ z0I−A

C
]
Re(x) = 0, and thus Re(x) = 0, which is a contra-

diction. Hence, Im(z0) �= 0, which implies that u1 = Re(z0u) =
Im(z0)Im(u) �= 0, and thus u �= 0. Finally, Corollary 4.3 implies
that, for all k ≥ 0, yk = 0. �

Theorem 4.6 concerns output zeroing in input–output mod-
els. The proof of this result takes advantage of the following
lemma.

Lemma 4.5: Let D0,D1, . . . ,D� ∈ R
p×p, assume that D� �= 0,

and, for all k ≥ 0, consider the difference equation

D�yk+� + · · · + D1yk+1 + D0yk = 0, (8)

with the initial condition y0 = y1 = · · · = y�−1 = 0.
If det(z�D� + · · · + zD1 + D0) �= 0, then, for all k ≥ �,

yk = 0.

Proof: For all i< 0, define Di
�= 0, and for all k ≥ 0, define

Tk
�=

⎡
⎢⎢⎢⎣

D� 0 · · · 0
D�−1 D� · · · 0
...

. . . . . .
...

D�−k D�−k+1 · · · D�

⎤
⎥⎥⎥⎦ = [

Qk Pk
]
,

where

Qk
�=

⎡
⎢⎢⎢⎣

D�

D�−1
...

D�−k

⎤
⎥⎥⎥⎦ , Pk

�=
[

0
Tk−1

]
,

and T−1 is the empty matrix.
Next, define D(z) �= z�D� + · · · + zD1 + D0 and G(z) �=

D(1/z). Note that G is a proper finite-impulse-response (FIR)
transfer function, and D�, . . . ,D0 are the Markov parame-
ters of G. Since D is nonsingular, it follows that G is invert-
ible, and hence, it follows from Proposition 2 in Ansari
and Bernstein (2019) that there exists d ≥ 0 such that rank Td −
rank Td−1 = p. Next, it follows from Fact 3.14.15 in Bern-
stein (2018, p. 322) that p = rank Td − rank Td−1 = rankQd −
dim(R(Qd) ∩ R(Pd)). Thus, p + dim(R(Qd) ∩ R(Pd)) =
rankQd ≤ p. Hence, rankQd = p, and dim(R(Qd) ∩
R(Pd)) = 0.

Next, (8) implies that

Td

⎡
⎢⎢⎢⎣

y�

y�+1
...

y�+d+1

⎤
⎥⎥⎥⎦ = Qdy� + Pd

⎡
⎢⎢⎢⎣

y�+1
y�+2
...

y�+d+1

⎤
⎥⎥⎥⎦ = 0.

Since dim(R(Qd) ∩ R(Pd)) = 0, it follows that

Qdy� = Pd

⎡
⎢⎢⎢⎣

y�+1
y�+2
...

y�+d+1

⎤
⎥⎥⎥⎦ = 0.

Since rankQd = p, it follows that y� = 0. Since y1 = · · · =
y� = 0, repeating the previous argument with � replaced by
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� + 1 implies that y�+1 = 0. By induction, it follows that, for all
k ≥ �, yk = 0. �

Theorem 4.6: Let (D,N) be an LPFD of G, let z0 ∈ C, and let
u ∈ C

m.
Let y0 = · · · = y�−1 = 0, where �

�= degD, and for all k ≥ 0,
define uk

�= zk0u and consider

D(q)yk = N(q)uk. (9)

Then, for all k ≥ �, yk = 0 if and only if N(z0)u = 0.

Proof: To prove sufficiency, note that Proposition 3.5 implies
that, for all k ≥ 0, N(q)uk = 0. Hence, for all k ≥ 0, D(q)yk =
0. Since D is nonsingular, Lemma 4.5 implies that, for all
k ≥ �, yk = 0. To prove necessity, note that, for all k ≥ 0,
N(q)uk = D(q)yk = 0. Therefore, Proposition 3.5 implies that
N(z0)u = 0. �

For the case of real input signals, the following result is a
consequence of the sufficiency part of Theorem 4.6.

Corollary 4.7: Let (D,N) be an LPFD of G, let z0 ∈ C, and let
u ∈ N (N(z0)).

Let y0 = · · · = y�−1 = 0, where �
�= degD, and for all k ≥ 0,

define uk
�= Re(zk0u) and consider (9). Then, for all k ≥ �, yk = 0.

The following result relates output zeroing in input–output
models to transmission zeros of G.

Theorem 4.8: Let (D,N) be an LPFD of G, and let z0 be a
transmission zero of G. Then N (N(z0)) �= {0}. Furthermore, let
y0 = · · · = y�−1 = 0, where �

�= degD. Then, there exists real
u �= 0 such that u and y ≡ 0 satisfy (9).

Proof: It follows fromProposition 3.1 thatN (N(z0)) �= {0}. Let
u be a nonzero vector in N (N(z0)) such that Re(u) �= 0, and
define, for all k ≥ 0, uk

�= Re(zk0u). Note that u0 = Re(u) �= 0,
and thus u �= 0. Then, it follows from Corollary 4.7 that, for all
k ≥ �, yk = 0 in (9). �

Next, we consider the equivalence between output zeroing
in input–output models and output zeroing in state-space mod-
els. In particular, Theorem 4.10 shows the equivalence between
output zeroing using an MLPFD of G and output zeroing using
the observable canonical form realisation ofG corresponding to
the MLPFD of G. The observable canonical form realisation of
G obtained from an MLPFD of G is defined in Definition 4.9.

The following definition provides a MIMO extension of
the observable canonical form realisation given in Polder-
man (1989).

Definition 4.9: Let (DM,NM) be an MLPFD of G and write

DM(z) = z�I + z�−1A1 + · · · + A�, (10)

NM(z) = z�B0 + z�−1B1 + · · · + B�, (11)

where, for all i = 1, . . . , �, Ai ∈ R
p×p, and for all i = 0, . . . , �,

Bi ∈ R
p×m. Let, for all k ≥ 0,

x̂k+1 = Aocf x̂k + Bocfuk, (12)

yk = Cocf x̂k + Euk, (13)

where

Aocf
�=

⎡
⎢⎢⎢⎣
0 · · · 0 −A�

I · · · 0 −A�−1
... · · · ...

...
0 · · · I −A1

⎤
⎥⎥⎥⎦ , (14)

Bocf
�=

⎡
⎢⎢⎢⎣

B� − A�B0
B�−1 − A�−1B0

...
B1 − A1B0

⎤
⎥⎥⎥⎦ , (15)

Cocf
�= [

0 · · · 0 I
]
, E �= B0, (16)

x̂k
�= [ x̂1,k ··· x̂l,k ]T, and for all i = 0, 1, . . . , � − 1,

x̂�−i,k
�= yk+i +

i∑
j=1

Ajyk+i−j −
i∑

j=0
Bjuk+i−j. (17)

Theorem 4.10: Let (DM,NM) be an MLPFD of G, let DM

and NM be given by (10) and (11), and define Zocf (z)
�=[

zI−Aocf −Bocf
Cocf E

]
, where (Aocf ,Bocf ,Cocf ,E) is the observable

canonical form realisation of G corresponding to (DM,NM) given
by (14)–(16).

Furthermore, let u ∈ C
m and z0 ∈ C.

Then, there exists x ∈ C
p� such that

[ x
u
] ∈ N (Zocf (z0)) if and

only if NM(z0)u = 0. If these conditions hold, then

x = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�−1∑
i=0

z�−i−1
0 Biu

�−2∑
i=0

z�−i−2
0 Biu

...
B0u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

Proof: To prove sufficiency, let

x = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�−1∑
i=0

z�−i−1
0 Biu

�−2∑
i=0

z�−i−2
0 Biu

...
B0u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Then,

Cocfx + Eu = −B0u + B0u = 0. (19)

Next, note that

(z0I − Aocf )x

= −

⎡
⎢⎢⎢⎣
z0I 0 · · · 0 A�

−I z0I · · · 0 A�−1
...

... · · · ...
...

0 0 · · · −I z0I + A1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�−1∑
i=0

z�−i−1
0 Biu

�−2∑
i=0

z�−i−2
0 Biu

...
B0u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−z0
�−1∑
i=0

z�−i−1
0 Biu − A�B0u

�−1∑
i=0

z�−i−1
0 Biu − z0

�−2∑
i=0

z�−i−2
0 Biu − A�−1B0u

...
1∑

i=0
z1−i
0 Biu − z0B0u − A1B0u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(20)

and

Bocfu =

⎡
⎢⎢⎢⎣

B� − A�B0
B�−1 − A�−1B0

...
B1 − A1B0

⎤
⎥⎥⎥⎦ u

=

⎡
⎢⎢⎢⎣

B�u − A�B0u
B�−1u − A�−1B0u

...
B1u − A1B0u

⎤
⎥⎥⎥⎦ . (21)

Subtracting (21) from (20) yields

(z0I − Aocf )x − Bocfu

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
�−1∑
i=0

z�−i
0 Biu − B�u

�−1∑
i=0

z�−i−1
0 Biu −

�−2∑
i=0

z�−i−1
0 Biu − B�−1u

...
1∑

i=0
z1−i
0 Biu − z0B0u − B1u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�∑
i=0

z�−i
0 Biu

�−1∑
i=0

z�−i−1
0 Biu −

�−1∑
i=0

z�−i−1
0 Biu

...
z0B0u + B1u − z0B0u − B1u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

�∑
i=0

z�−i
0 Biu

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(22)

Since 0 = NM(z0)u =
�∑

i=0
z�−i
0 Biu, (22) implies that

(z0I − Aocf )x − Bocfu = 0. (23)

It thus follows from (19) and (23) that
[ x
u
] ∈ N (Zocf (z0)).

To prove necessity, let x = [ xT1 ··· xT� ]
T, where x1, . . . , x� ∈

C
p. Then,

0 = (z0I − Aocf )x − Bocfu

=

⎡
⎢⎢⎢⎣
z0I 0 · · · 0 A�

−I z0I · · · 0 A�−1
...

... · · · ...
...

0 0 · · · −I z0I + A1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
x1
x2
...
xl

⎤
⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎣

B� − A�B0
B�−1 − A�−1B0

...
B1 − A1B0

⎤
⎥⎥⎥⎦ u. (24)

Note that 0 = Cx + Eu = x� + B0u implies that

x� = −B0u. (25)

Hence, (24) and (25) imply that

x�−1 = (z0I + A1)x� − B1u + A1B0u

= −(z0I + A1)B0u − B1u + A1B0u

= −z0B0u − B1u. (26)

Next, (24)–(26) imply that

x�−2 = z0x�−1 + A2x� − B2u + A2B0u

= −z20B0u − z0B1u − A2B0u − B2u + A2B0u

= −z20B0u − z0B1u − B2u. (27)

Proceeding similarly, it follows that, for all j = 1, . . . , �,

xj = −
�−j∑
i=0

z�−i−j
0 Biu, and thus (18) holds. Finally, it follows

from (18) and (24) that

0 = z0x1 + A�x� − B�u + A�B0u

= −
�−1∑
i=0

z�−i
0 Biu − A�B0u − B�u + A�B0u

= −
�∑

i=0
z�−i
0 Biu = −N(z0)u. �
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Note that Theorem 4.10 relates output zeroing using an
MLPFD of G to output zeroing using a specific realisation of G,
which is obtained from the givenMLPFD and is not necessarily
minimal. In order to obtain a more general result, we next con-
sider the equivalence between output zeroing using an arbitrary
CLPFD of G and output zeroing using an arbitrary minimal
realisation of G. Given an arbitrary CLPFD of a continuous-
time transfer function G, Polak (1966) describes an algorithm
for obtaining a minimal realisation of G. Since the algorithm in
Polak (1966) is algebraic, the result holds true for discrete-time
transfer functions by replacing the differentiation operator with
the forward-shift operator.

For illustration, the example given in Polak (1966) is
reworked in terms of q as Example 4.11.

Proposition 4.12 and Proposition 4.13 are consequences of
the application of the algorithm in Polak (1966) to discrete-
time transfer functions. Using Proposition 4.13, the equivalence
between output zeroing using an arbitrary CLPFD ofG and out-
put zeroing using an arbitraryminimal realisation ofG is proved
in Theorem 4.14.

Example 4.11: Let

G(z) =

⎡
⎢⎢⎢⎢⎢⎣

z2 − 2z + 3
z4 + 3z3 + 7z2

+18z + 6

− (2z + 3)(z + 3)
z4 + 3z3 + 7z2

+18z + 6
1

z2 + 6
z + 3
z2 + 6

⎤
⎥⎥⎥⎥⎥⎦ , (28)

D̂(z) =
[
z2 + 3z + 1 2z + 3
z3 + 3z2 + z 3z2 + 3z + 6

]
,

N̂(z) =
[

1 0
z + 1 z + 3

]
. (29)

Note that G = D̂−1N̂, and deg det D̂ = McDeg G = 4. Hence,
Proposition 2.12 implies that (D̂, N̂) is a CLPFD of G. Let
U(z) = [ 1 0−z 1

]
. SinceU is unimodular, it follows from Proposi-

tion 2.8 that (D,N) is a CLPFD of G, where

D(z) �= U(z)D̂(z) =
[
z2 + 3z + 1 2z + 3

0 z2 + 6

]
,

N(z) �= U(z)N̂(z) =
[
1 0
1 z + 3

]
. (30)

In terms of the forward-shift operator, (30) has the form

D(q) =
[
q2 + 3q + 1 2q + 3

0 q2 + 6

]
, N(q) =

[
1 0
1 q + 3

]
.

(31)

Now, for all k ≥ 0, let uk and yk satisfy (9), let uk = [ u1,k u2,k ]T ,
and let yk = [ y1,k y2,k ]T. Define xk

�= [ x1,k x2,k x3,k x4,k ]T, where

x1,k
�= y1,k, x2,k

�= y1,k+1 + 3y1,k, (32)

x3,k
�= y2,k, x4,k

�= y2,k+1 − u2,k. (33)

Then, for all k ≥ 0, uk, yk, and xk satisfy (6) and (7) with

A �=

⎡
⎢⎢⎣

−3 1 0 0
−1 0 −3 −2
0 0 0 1
0 0 −6 0

⎤
⎥⎥⎦ , B �=

⎡
⎢⎢⎣
0 0
1 −2
0 1
1 3

⎤
⎥⎥⎦ ,

C �=
[
1 0 0 0
0 0 1 0

]
, E �= 0. (34)

It can be verified numerically that (A,B,C) is a minimal realisa-
tion of G.

The following result is a consequence of the application of the
algorithm in Polak (1966) to discrete-time transfer functions.

Proposition 4.12: Let (D,N) be a CLPFD of G and for all k ≥ 0,
let uk and yk satisfy (9). Then there exist Lu ∈ R[q]n×m, Ly ∈
R[q]n×p, and aminimal realisation (A,B,C,E) of G such that, for
all k ≥ 0, (6) and (7) hold with xk

�= Lu(q)uk + Ly(q)yk, where
n is the McMillan degree of G.

The following result is needed in the proof of Theorem 4.14.

Proposition 4.13: Let (A,B,C,E) be a minimal realisation of G,
let (D,N) be a CLPFD of G and, for all k ≥ 0, let uk and yk satisfy
(9). Then, for all k ≥ 0, there exist Lu ∈ R[q]n×m, Ly ∈ R[q]n×p

such that, for all k ≥ 0, (6) and (7) hold with xk
�= Lu(q)uk +

Ly(q)yk, where n is the McMillan degree of G.

Proof: Note that Proposition 4.12 implies that there exist Lu ∈
R[q]n×m, Ly ∈ R[q]n×p, and a minimal realisation (A,B,C,E)

of G such that, for all k ≥ 0, (6) and (7) hold with A,B,C,E,
and xk replaced with A,B,C,E, and xk, respectively, and xk

�=
Lu(q)uk + Ly(q)yk. Next, Proposition 16.9.8 in Bernstein (2018,
p. 1272) implies that there exists a unique nonsingular S ∈ R

n×n

such thatA = SAS−1, B = SB, and C = CS−1. Define Lu
�= SLu

and Ly
�= SLy. Hence, for all k ≥ 0, (6) and (7) hold with xk

�=
Lu(q)uk + Ly(q)yk. �

The following result establishes the equivalence between out-
put zeroing using an arbitrary CLPFD of G and output zeroing
using an arbitrary minimal realisation of G. Note that, unlike
Theorem 4.10, the LPFD in the following is coprime but not
necessarily monic.

Theorem 4.14: Let (D,N) be a CLPFD of G, let (A,B,C,E) be
an nth-order minimal realisation of G, z0 ∈ C, and let u ∈ C

m.
Then, there exists x ∈ C

n such that
[ x
u
] ∈ N (Z(z0)) if and

only if N(z0)u = 0.

Proof: Suppose that, for all k ≥ 0, uk and yk satisfy (9).
Then Proposition 4.13 implies that, for all k ≥ 0, there exist
Lu ∈ R[q]n×m and Ly ∈ R[q]n×p such that, for all k ≥ 0, (6)

and (7) hold with xk
�= Lu(q)uk + Ly(q)yk. For all k ≥ 0,

define uk
�= zk0u. To prove necessity, define x0

�= x. Then, state-
ment (i) in Proposition 4.2 implies that, for all k ≥ 0, yk = 0.
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Hence, it follows from Theorem 4.6 that N(z0)u = 0. To prove
sufficiency, define x �= Lu(z0)u, write Ly(q) = qrPr + · · · +
qP1 + P0, define �

�= degD, and suppose that y0 = y1 = · · · =
yc = 0, where c �= max{r, � − 1}. Note that xk = Lu(q)uk +
Ly(q)yk = Lu(q)zk0u + Ly(q)yk = Lu(z0)zk0u + Ly(q)yk. Hence
x0 = Lu(z0)u+ Pryr + · · · + P1y1 + P0y0 = Lu(z0)u= x. Next,
it follows from Theorem 4.6 that, for all k ≥ 0, yk = 0.
Hence statement (ii) in Proposition 4.2 implies that

[ x
u
] ∈

N (Z(z0)). �

In the case where z0 is a transmission zero ofG, Theorem 4.4
implies that there exists nonzero

[ x
u
] ∈ N (Z(z0)), where x �=

0 and u �= 0, and thus Theorem 4.14 implies that N(z0)u =
0. Therefore, there exist x �= 0 and u �= 0 such that

[ x
u
] ∈

N (Z(z0)) and N(z0)u = 0.
The following example illustrates the equivalence between

output zeroing in input–output models and output zeroing in
state-space models due to transmission zeros.

Example 4.15: Consider the discrete-time transfer function

G(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z − 3
z + 2

0

1
z + 1

z
z + 1

1
9
z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(35)

and consider the minimal realisation of G given by

A =
⎡
⎣−2 0 0

0 −1 0
0 0 0

⎤
⎦ , B =

⎡
⎣1 0
1 −1
0 1

⎤
⎦ , (36)

C =
⎡
⎣−5 0 0

0 1 0
0 0 9

⎤
⎦ , E =

⎡
⎣1 0
0 1
1 0

⎤
⎦ . (37)

Since rankZ(3) = 4 < 5 = rankZ , it follows that z = 3 is a
transmission zero ofG. For all k ≥ 0, let uk, yk, and xk satisfy (6)
and (7). Then, it follows from Proposition 4.2 that, if[

x0
u0

]
∈ N (Z(3)), (38)

and for all k ≥ 1, uk = 3ku0, then y ≡ 0. For example, noting⎡
⎢⎢⎢⎢⎣

3/5
1

−1/3
3

−1

⎤
⎥⎥⎥⎥⎦ ∈ N (Z(3)), (39)

it follows that y ≡ 0 with x0 =
[

3/5
1−1/3

]
and, for all k ≥ 0, uk =

3k
[ 3−1

]
.

Next, taking the Z-transform of (6) and (7) yields

ŷ(z) = G(z)û(z) + zC(zI − A)−1x0, (40)

where û and ŷ denote the Z-transforms of u and y, respectively.
Note that (40) includes separate terms for the free response and
the forced response of (6) and (7).

An alternative time-domain representation of (6) and (7) can
be obtained by replacing z by the forward-shift operator q.

To do this, we first factor G(z) = D(z)−1N(z), where

D(z) = zI3 +
⎡
⎣2 0 0
0 1 0
0 0 0

⎤
⎦ , (41)

N(z) = z

⎡
⎣1 0
0 1
1 0

⎤
⎦ +

⎡
⎣−3 0

1 0
0 9

⎤
⎦ . (42)

Note that (D,N) is an MLPFD of G. Then, for all k ≥ 0, (6) and
(7) have the equivalent time-domain input–output model (9),
where

D(q) =
⎡
⎣q + 2 0 0

0 q + 1 0
0 0 q

⎤
⎦ , N(q) =

⎡
⎣q − 3 0

1 q
q 9

⎤
⎦ .

(43)

Note that the free response zC(zI − A)−1x0 in (40) has no
counterpart in (9). In fact, the response of (9) includes both
the free response and the forced response (Aljanaideh & Bern-
stein, 2018). Now, in (9), letting y0 = 0 and, for all k ≥ 0, uk =
3k

[ 3−1
]
yields y ≡ 0. Furthermore, note that u0 ∈ N (N(3)).

Hence, the input that produces identically zero output is
obtained from the Rosenbrock matrix Z for a state-space
model as well as the numerator polynomial matrix N for an
input–output model.

To further illustrate the connection between output zero-
ing in input–output models and output zeroing in state-space
models, we consider the observable canonical form realisation
(Aocf ,Bocf ,Cocf ,E) of G corresponding to (D,N), where

Aocf =
⎡
⎣−2 0 0

0 −1 0
0 0 0

⎤
⎦ , Bocf =

⎡
⎣−5 0

1 −1
0 −9

⎤
⎦ , Cocf = I3.

(44)

By using (17), the state of the observable canonical form reali-
sation (12) and (13) can be constructed in terms of input and
output data. For this example, the initial condition obtained
from (17) is given by

x̂0 = y0 −
⎡
⎣1 0
0 1
1 0

⎤
⎦ u0. (45)

Now, setting y0 = 0 and u0 = [ 3−1
]
in (45) yields x̂0 =

[ −3
1−3

]
,

which is the initial condition that, along with the output-
zeroing input, produces the identically zero output. It can be
verified numerically that

[ x̂0
u0

] ∈ N (Zocf (3)), where Zocf (z)
�=[

zI−Aocf −Bocf
Cocf E

]
. Hence, the vector consisting of this initial con-

dition and the initial input lies in the null space of the Rosen-
brock system matrix.

5. Conclusions

This paper explored the properties of zero dynamics within the
context of input–output models. In particular, the transmission
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zeros were characterised using left polynomial fraction descrip-
tion input–output models, the zero dynamics of these models
were defined, and the solutions of the zero dynamics of these
models that correspond to the transmission zeros of the system
were described. Furthermore, the equivalence between output
zeroing in input–output models and output zeroing in state-
space models was discussed. Finally, an example is given to
illustrate the results on output zeroing.
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