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Abstract— This paper develops an adaptive PID autotuner
for multicopters, and presents simulation and experimental
results. The autotuner consists of adaptive digital control laws
based on retrospective cost adaptive control implemented in
the PX4 flight stack. A learning trajectory is used to optimize
the autopilot during a single flight. The autotuned autopilot is
then compared with the default PX4 autopilot by flying a test
trajectory constructed using the second-order Hilbert curve.
In order to investigate the sensitivity of the autotuner to the
quadcopter dynamics, the mass of the quadcopter is varied,
and the performance of the autotuned and default autopilot
is compared. It is observed that the autotuned autopilot
outperforms the default autopilot.

I. INTRODUCTION

Unmanned aerial vehicles, especially multicopters, have
been used in a myriad of applications over the last decade,
such as environment mapping, asset monitoring, risk assess-
ment, sports broadcasting, wind-turbine inspection, and their
applications continue to grow [1]–[6]. In its most common
form, a multicopter has four propellers. By controlling the
spin rates of the four propellers, a force along a body-fixed
axis and moments about three linearly independent body-
fixed axes can be independently applied to affect desired
translational as well as rotational motions. However, due
to the nonlinear and unstable nature of the quadcopter dy-
namics, precise control of a quadcopter is a well-recognized
challenging problem.

Nonlinear techniques such as feedback-linearization [7]
and back-stepping [8] have been applied to deal with the
nonlinearities and to construct stabilizing controllers. How-
ever, these techniques require accurate plant models at all
operating conditions [9]. Adaptive techniques have also been
investigated to reduce the need for an accurate model [10],
[11], however, they also require a sufficiently accurate plant
model to construct stabilizing controllers. Iterative learning
control is used to learn the pitch and roll controllers in the
closed-loop system in [12]. Reinforcement learning control is
used to learn low-level controllers in case of multiple actuator
failure in [13]. L1 adaptive control is used to improve the
stability margins of a stable control loop in a quadcopter
flight control system in [14]. Fuzzy control was used in
the position control in [15]. Bidirectional brain emotional
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learning was used to improve trajectory tracking and handle
payload uncertainties in [16]. Model reference adaptive con-
trol was used in the attitude controller in [17] to counteract
model uncertainties. Adaptive twisting sliding mode control
was used in the attitude controller in [18] to resolve the
chattering issues in standard sliding mode control. Robust
fixed point transformation based adaptive control was used
in [19] to improve quadcopter stability in the presence of
parameter uncertainties and external disturbances. Adaptive
particle swarm optimization was used in a PD controller
(APSO-PD) in [20] to improve the rise time, settling time,
overshoot, and peak time of a standard PSO controller.
Robust adaptive control based on backstepping is used in
[21] [22] to provide robust quadcopter altitude and attitude
tracking after payload change. Immersion and invariance
based adaptive backstepping control is used in [23] to remedy
quadcopter attitude instabilities due to disturbance torques
or parameter uncertainties. Adaptive fault tolerant control
based on the adaptive minimum projection method is used to
provide quadcopter stability in the event of actuator failure in
[24]. Balanced control is used in [25] to improve quadcopter
performance by switching between fuzzy adaptive PID and
optimized PID midflight. L1 adaptive control is used in [26]
to stabilize a fixed-wing pitch controller, and in [27] to
counteract fixed-wing split drag rudder damage. Adaptive
control is also used in [28] to resolve instabilities due
to trailing vortices in fixed-wing formation flight. Online
adaptive model parameter estimation is used in the velocity
controller in [29] to mitigate error due to model parameter
uncertainty. However, most of these control techniques focus
on optimizing a part of the control system, assuming that the
rest of the control system is sufficiently good.

Typical quadcopter autopilots are, however, based on cas-
caded controllers, which consist of an inner loop to stabilize
the dynamics, and an outer loop to track position commands.
Traditionally, all controllers in the autopilot are constructed
using manually tuned PID control laws. In fact, widely used
open-source autopilots such as PX4 and ArduPilot contain
finely-tuned PID control laws for many commercially avail-
able multicopter configurations [30], [31]. These autopilots
cannot guarantee stability and thus have a fixed operational
envelope, which is usually unknown. Moreover, autopilots
tuned for a specific geometry and inertia properties do not
perform well in the case where these properties vary with
time, such as, in the case of unknown suspended payload,
hardware alteration, and dynamic environmental changes.
Such variations invariably degrade the performance of the
autopilot.
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With these motivations in mind, this paper develops an
adaptive autotuner for multicopters with unknown dynamics.
In particular, all of the fixed-gain control laws of an autopilot
are replaced by adaptive control laws that optimize the gain
by flying a single learning trajectory. Specifically, the adap-
tive controllers are updated by the retrospective cost adaptive
control (RCAC) algorithm [32]. The learning trajectory is
designed such that all possible motions of the quadcopter are
excited and thus nonzero control outputs are required from
all control laws, which ensures that all of the controller gains
are adaptively updated.

The contribution of the work presented in this paper is
the development of an adaptive autotuner that does not
require any prior knowledge of the system dynamics, and
instead uses a simple learning trajectory to adapt the autopilot
gains; and its numerical and experimental demonstration. The
performance of the autotuner is demonstrated by flying a test
trajectory and comparing its performance with a finely-tuned
autopilot. The improvements due to the autotuning process
are demonstrated through simulations and flight tests.

The paper is organized as follows. Section II briefly
presents the control system architecture implemented in the
PX4 autopilot. Section III explains the setup of the adaptive
autotuner. Section IV describes the RCAC algorithm used to
tune the control parameters. Section V presents simulation
and flight test results showing the adaptation of the autotuner
and comparing the performance of the PX4 autopilot using
the stock and autotuned control parameters. Finally, section
VI concludes the paper with a summary and future research
directions.

II. QUADCOPTER AUTOPILOT

This section reviews the quadcopter autopilot considered
in this work. This autopilot is based on the control archi-
tecture implemented in the PX4 autopilot. This section is
adapted from [33]. The notation used in this paper is also
described in more detail in [33].

The control system consists of a mission planner and two
nested loops as shown in Figure 1. The mission planner
generates the position, velocity, and azimuth setpoints from
the user-defined waypoints using the guidance law described
below. The outer loop consists of the position controller,
whose inputs are the position and velocity errors, defined as
the difference between the setpoints and the measurements.
The output of the position controller is the thrust vector
setpoint. Note that the thrust vector is expressed in terms of
the Earth-fixed frame. The inner loop consists of the attitude
controller, whose inputs are the thrust vector setpoint, the
azimuth and azimuth-rate setpoints, as well as the attitude
and the angular rate measured in the body-fixed frame. The
output of the attitude controller is the moment vector setpoint
in the body-fixed frame. The magnitude of the thrust vector
setpoint and the moment vector setpoint uniquely determine
the required rotation rates of the four propellers.

The mission planner uses a guidance law described in
Appendix A to generate the position and the azimuth set-
points. Using a user-specified maximum velocity vmax and

Mission
Planner

Position
Controller

Attitude
Controller

Quadcopter

Fig. 1. Control-system architecture.

maximum acceleration amax, the guidance law generates a
trajectory that consists of a constant acceleration phase, a
cruise phase, and a constant deceleration phase. A similar
guidance law is used to generate azimuth setpoints, given
a user-specified maximum angular velocity ψ̇max and maxi-
mum angular acceleration ψ̈max.

The position controller consists of two cascaded linear
controllers as shown in Figure 2. The first controller Gr
consists of three proportional controllers. The second con-
troller Gv consists of three decoupled PID controllers and a
velocity setpoint feedforward controller, and yields the thrust
vector setpoint.

+ Gr + Gv

Position
setpoint

Position
measurement

−

Velocity
setpoint

−

Thrust
vector

setpoint

Velocity
measurement

Fig. 2. Position controller architecture.

The force vector setpoint along with the azimuth setpoint
are used to calculate the attitude setpoint, which is repre-
sented as a quaternion. The attitude controller consists of
two cascaded controllers Gq and Gω as shown in Figure
3. The first controller Gq is an almost globally stabilizing
controller [34] that consists of three proportional gains. The
second controller Gω consists of three PID controllers and
an angular rate setpoint feedforward controller, and yields
the moment vector setpoint.

+ Gq + Gω

Attitude
setpoint

Attitude
measurement

−
Angular rate
measurement

−

Angular rate
setpoint Moment

vector
setpoint

Fig. 3. Attitude controller architecture.

The control system implemented in the PX4 autopilot thus
consists of 27 gains. In particular, the outer loop includes
three gains in Gr and nine gains in Gv; and the inner
loop includes three gains in Gq and 12 gains in Gω. In
standard practice, these 27 gains are manually tuned and
require considerable expertise.
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III. ADAPTIVE AUTOTUNER

The adaptive autotuner is constructed by replacing the
fixed-gain controllers in the autopilot described in the pre-
vious section with adaptive controllers that are updated by
retrospective cost optimization. In particular, each fixed-gain
controller described in the previous section is replaced by an
adaptive controller parameterized with the same structure.
Specifically, denoting the i-th component of the input and
the output of Gr at step k by zr,i,k and ur,i,k, the velocity
setpoint

ur,i,k = Gr(k, q)g(zr,i,k), (1)

where Gr(k, q) = diag(θr,1,k, θr,2,k, θr,3,k), g(z) is a error-
normalization function, and the gains θr,i,k are updated by
the RCAC algorithm described in the next section. The
functions g(z) used in this work are given in Table II.
Similarly,

uv,i,k = Gv(k, q)g(zv,i,k), (2)

where, for i ∈ {1, 2, 3}, the entry (i, i)

Gv,i,i(k, q) =
θv,i+1

q
+
θv,i+2

q− 1
+
θv,i+3(q− 1)

q2
. (3)

The controllers Gq(k,q) and Gω(k,q) are similarly param-
eterized by the gains θq ∈ R3 and θω ∈ R12.

The adaptive gains θr, θv, θq, and θω are updated in a
learning trajectory, which consists of flying through the way-
points described in Table I, parameterized by zhov, xinc, yinc,
and zinc. Note that the waypoints are denoted by coordinates
(x, y, z, ψ), which correspond to the three components of the
position vector and azimuth of the multicopter in the East(x)-
North(y)-Up(z) (ENU) coordinate frame.

TABLE I
WAYPOINTS IN THE LEARNING TRAJECTORY

Waypoint Coordinate Remark

1 (0, 0, zhov, 0) Take-off
2 (0, 0, zhov + zinc, 0) Move along +z direction
3 (0, 0, zhov, 0) Move along −z direction
4 (0, yinc, zhov, 0) Move along +y direction
5 (0,−yinc, zhov, 0) Move along −y direction
6 (0, 0, zhov, 0) Move along +y direction
7 (xinc, 0, zhov, 0) Move along +x direction
8 (−xinc, 0, zhov, 0) Move along −x direction
9 (0, 0, zhov, 0) Move along +x direction
10 (0, 0, zhov, π/2) Turn counterclockwise
11 (0, 0, zhov, π) Turn counterclockwise
12 (0, 0, zhov, 0) Turn clockwise
13 (0, 0, 0, 0) Land

The gains θr, θv, θq, and θω obtained at the end of the
learning trajectory are the autotuned gains and the autopilot
implemented with the autotuned gains is the autotuned
autopilot.

IV. RCAC ALGORITHM

This section briefly reviews the retrospective cost adaptive
control (RCAC) algorithm. RCAC is described in detail in
[35] and its extension to digital PID control is given in [32].

Consider a SISO PID controller with a feedforward term

uk = Kp,kg(zk−1) +Ki,kγk−1

+Kd,k(g(zk−1)− g(zk−2)) +Kff,krk, (4)

where Kp,k,Ki,k,Kd,k, and Kff,k are time-varying gains to
be optimized, zk is an error variable, rk is the feedforward
signal, and, for all k ≥ 0,

γk
4
=

k∑
i=0

g(zi). (5)

Note that the integrator state is computed recursively using
γk = γk−1 + g(zk−1). For all k ≥ 0, the control law can be
written as

uk = φkθk, (6)

where the regressor φk and the controller gains θk are

φk
4
=


g(zk−1)
γk−1

g(zk−1)− g(zk−2)
rk


T

, θk
4
=


Kp,k

Ki,k

Kd,k

Kff,k

 . (7)

Note that the P, PI, or PID controllers can be parameter-
ized by appropriately defining φk and θk. Various MIMO
controller parameterizations are shown in [36].

To determine the controller gains θk, let θ ∈ Rlθ , and
consider the retrospective performance variable defined by

ẑk(θ)
4
= g(zk) + σ(φk−1θ − uk−1), (8)

where σ ∈ R. The sign of σ is the sign of the lead-
ing numerator coefficient of the transfer function from uk
to zk. Furthermore, define the retrospective cost function
Jk : Rlθ → [0,∞) by

Jk(θ)
4
=

k∑
i=0

ẑi(θ)
TRz ẑi(θ) + (φkθ)

TRu(φkθ)

+ (θ − θ0)TP−1
0 (θ − θ0), (9)

where θ0 ∈ Rlθ is the initial vector of PID gains and P0 ∈
Rlθ×lθ is positive definite.

Proposition IV.1. Consider (6)–(9), where θ0 ∈ Rlθ and
P0 ∈ Rlθ×lθ is positive definite. Furthermore, for all k ≥ 0,
denote the minimizer of Jk given by (9) by

θk+1
4
= argmin

θ∈Rn
Jk(θ). (10)

Then, for all k ≥ 0, θk+1 is given by

θk+1 = θk − σPk+1φ
T
k−1Rz[zk + σ(φk−1θk − uk−1)]

− Pk+1φ
T
kRuφkθk, (11)

where

Pk+1 = Pk − PkΦT
k

(
R̄−1 + ΦkPkΦT

k

)−1
Φk, (12)
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and

Φk
4
=

[
σφk−1

φk

]
, R̄

4
=

[
Rz 0
0 Ru

]
. (13)

Proof. See [37]

Finally, the control is given by

uk+1 = φk+1θk+1. (14)

V. EXPERIMENTAL RESULTS

This section describes the experimental results obtained in
the simulation environment and in the physical flight tests. In
both the simulation and the physical flight tests, the autotuner
is used to tune the 27 controller gains described in Section
II using the learning trajectory described in Section III. Note
that in the autotuning mode, all of the gains in both loops
are initialized at zero. The hyperparameters Ru, P0, and the
error-normalization function used in the RCAC algorithm are
shown in Table II. Furthermore, σ = Rz = 1 in all four
controllers.

TABLE II
RCAC HYPERPARAMETERS IN THE ADAPTIVE AUTOPILOT.

Controller P0 Ru g(z)

Gr 0.01 0.01 z

Gv 0.1 0.01 erf
(√

π
2
z
)

Gq 1 0.001 z

Gω 0.0001 0.1 erf
(√

π
2
z
)

A. Simulation Flight Tests

First, the autotuner is tested in a simulation environment,
where the quadcopter is simulated using jMAVSim. In the
learning trajectory, zhov = 5 m, and xinc = yinc = zinc = 5
m. The guidance law generates the setpoints using vmax = 6
m/s, amax = 1 m/s2, ψ̇max = 2 rad/s, ψ̈max = 0.5 rad/s2.

Figure 4 shows the response of the quadcopter in the
learning trajectory. Note that the response improves as RCAC
re-optimizes the controllers continuously in real time. Figure
5 shows the gains adapted by the RCAC algorithm for all
four controllers; each color represents a different gain within
the given controller. The gains at the end of the learning
trajectory are saved, are the autotuned gains and constitute
the autotuned autopilot.

Next, the quadcopter is commanded to follow a
test trajectory, whose waypoints are generated using a
second-order Hilbert curve, first with the default au-
topilot, and next with the autotuned autopilot. The de-
fault autopilot gains and the actuator constraints in
PX4 are specified in the mc_pos_control_params.c,
mc_att_control_params.c, and mc_rate_cont-
rol_params.c files 1. Note that the results in this paper
are based on PX4 version V1.11.3. Figure 6 shows the
response of the quadcopter obtained with the autotuned
autopilot and the default autopilot. Note that the autotuned

1https://github.com/JAParedes/PX4-Autopilot/tree/RCAC MC AutoTuner
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Fig. 4. Simulation results. Response of the quadcopter in the learning
trajectory in the jMAVSim simulator.
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Fig. 5. Simulation results. Autopilot gains adapted by the RCAC algorithm
during the learning trajectory in the jMAVSim simulator. Note that each
trace represents a gain updated by RCAC.

autopilot outperforms the default autopilot in terms of posi-
tion tracking error.

In order to quantify and compare the performance of the
autotuned autopilot with the default autopilot, a position-
tracking cost variable J defined by

J
4
=

1

T

N∑
i=0

zT
i zi, (15)

where zi ∈ R3 is the position error and T is the total flight
time in seconds, is computed for each test. Table III shows
the cost default autopilot cost JD and the autotuned autopilot
cost JA. Note that the autotuned autopilot is relatively 38 %
better than the default autopilot in simulation.

Next, the sensitivity of the autotuning process to changes
in the physical parameters of the quadcopter is investigated.
To do so, the mass of the quadcopter is scaled in the dynamic
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Fig. 6. Simulation results. Response of the quadcopter in the test trajectory.
Note that the autotuned autopilot uses the gains tuned during the learning
trajectory.

TABLE III
COST VARIABLE GIVEN BY (15) FOR THE AUTOTUNED AND THE

DEFAULT AUTOPILOTS OBTAINED IN THE TEST TRAJECTORY.

Test Type
Default

Autopilot
Cost (JD)

Autotuned
Autopilot

Cost (JA)

Relative
Improvement

(JD − JA)/JD

Simulation

(jMAVSim)
1.222 0.752 38.4 %

Flight Test

(M-Air)
0.321 0.218 32.3 %

model simulated by jMAVSim. Specifically, the mass of the
quadcopter is multiplied by α ∈ {0.5, 0.75, 1, 1.25, 1.5}.
For each value of α, the autopilot gains are tuned using
the autotuner. Note that the RCAC hyperparameters are not
changed. The performance of the autotuned and the default
autpilots is compared for each value of α by flying the test
trajectory defined by the second-order Hilbert curve. Figure
7 shows the cost J computed for the position controller in
each flight flown with the autotuned and the default autopilot.
Note that the autotuned autopilot is re-tuned for each value
of α, whereas default autopilot is fixed for all values of α.

B. Physical Flight Tests

Next, the autotuner is tested in physical flight tests con-
ducted in the M-Air facility at the University of Michigan,
Ann Arbor with the Holybro X500 quadcopter frame. The
M-Air is equipped with a motion capture system that allows
high-precision position and attitude measurements.

In the learning trajectory, zhov = 2 m, xinc = yinc = 4 m,
and zinc = 1 m. The guidance law generates the setpoints
using vmax = 3 m/s, amax = 1.2 m/s2, ψ̇max = 2 rad/s,
ψ̈max = 0.5 rad/s2. Figure 8 shows the response of the
quadcopter in the learning trajectory. Figure 9 shows the
gains adapted by the RCAC algorithm for all four controllers,
with every color representing a different gain within that

0.5 0.75 1 1.25 1.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Fig. 7. Simulation results. Position tracking cost in the test trajectory for
the autotuned and the default autopilots obtained. Note that the mass of the
quadcopter is multiplied by the scalar α in the jMAVSim simulation.

controller.
Next, the quadcopter is commanded to follow a test tra-

jectory with the autotuned autopilot and the default autopilot
in the M-Air facility. The waypoints for the test trajectory
are generated using a second-order Hilbert curve. Figure
10 shows the response of the quadcopter obtained with
the autotuned autopilot and the default autopilot during the
physical flight tests. Table III shows the position-tracking
cost J computed for the test trajectory flown during the
physical flight tests. Note that the autotuned autopilot is
relatively 32 % better than the default autopilot.

-5

0

5

-5

0

5

0

2

4

0 20 40 60 80

0
1
2
3

Fig. 8. Flight test results. Response of the quadcopter in the learning
trajectory at the M-Air facility.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented an adaptive autotuner that can au-
tomatically tune a multicopter autopilot without using any
modeling information about the multicopter. The adaptive
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Fig. 9. Flight test results. Autopilot gains adapted by the RCAC algorithm
during the learning trajectory at the M-Air facility.
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Fig. 10. Flight test results. Response of the quadcopter in the test trajectory.
Note that the autotuned autopilot uses the gains tuned during the learning
trajectory.

autotuner, implemented in the PX4 flight stack, consists of
adaptive PID controllers that are updated by the retrospective
cost adaptive control algorithm by flying a single learning
trajectory.

The adaptive autotuner was validated in a simulation
environment, and its performance was compared against the
default autopilot by scaling the mass of the quadcopter. The
adaptive autotuner outperformed the default autotuner in all
cases without any change in the hyperparameters of the
adaptive algorithm. Next, using the same hyperparameters
used for the simulation, the adaptive autotuner was used to
tune the autopilot for the X500 Holybro quadcopter in the
M-Air facility, where the adaptive autotuner outperformed
the default autotuner in the test trajectory.

Future work will focus on using the adaptive autopilot to
improve the performance of the default autopilot flying a
multicopter with an unknown suspended payload and under
various actuator failure conditions.

APPENDIX A

Let rc ∈ R3 denote the current position, rd ∈ R3 denote
the desired position, and d denote the distance between the
current and the desired position, that is, d

4
= ||rd − rc||2.

Let amax > 0 and vmax > 0. The desired trajectory consists
of an acceleration phase, a cruise phase, and a deceleration
phase along the straight line between rc and rd.

Let the setpoints r(t) ∈ R3 be given by the guidance law

r(t) = rc + (rd − rc)
q(t)

d
, (16)

where q(t) is calculated as shown below. Using the fact that
r(0) = rc and r(Tf) = rd, where Tf is the total flight time,
it follows that q(0) = 0 and q(Tf) = d. Note that q(t) is the
distance between r(t) and rc.

Let T1 denote the time to reach the speed vmax at
maximum acceleration amax. Thus, T1 = vmax/amax and
q(T1) = 0.5 amax T

2
1 = 0.5 v2

max/amax.
First, consider the case where d ≥ 2q(T1). In this case,

the quadcopter cruises at v(t) = vmax for t ∈ [T1, T2], where
t = T2 denotes the time at which deceleration phase starts,
and is calculated as shown below. Note that

q(T2) =
1

2

v2
max

amax
+ vmax(T2 − T1). (17)

Since the quadcopter takes T1 seconds to decelerate from
vmax to 0 speed at constant deceleration amax, the total flight
time is Tf = T1 + T2 and

q(T3) =
v2

max

amax
+ vmax(T2 − T1) = d. (18)

It follows from (18) that T2 = d/vmax and thus, the total
flight time Tf = (vmax/amax)+(d/vmax). The distance q(t)
is thus given by

q(t) =


1
2amaxt

2, t ∈ [0, T1),
1
2amaxT

2
1 + vmax(t− T1), t ∈ [T1, T2),

1
2amaxT

2
1 + vmax(T2 − T1)

+vmax(t− T2)− 1
2amax(t− T2)2, t ∈ [T2, Tf).

(19)

Next, consider the case where d < 2q(T1). In this case,
the quadcopter velocity does not reach vmax, that is, there
is no cruise phase. Let T̄1 denote the time instant at which
maximum velocity v̄max is reached. Thus, T̄1 = v̄max/amax

and q(T̄1) = 0.5 v̄2
max/amax. Assuming that the quadcopter

decelerates at the same rate to rest, it follows that q(T̄1) =
d/2, and thus v̄max =

√
d amax, T̄1 =

√
d/amax, and Tf =

2
√
d/amax. The distance q(t) is thus given by

q(t) =


1
2amaxt

2, t ∈ [0, T̄1),
1
2amaxT̄

2
1 + v̄max(t− T̄1)

− 1
2amax(t− T̄1)2, t ∈ [T̄1, 2Tf).

(20)
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