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Abstract— An adaptive force control algorithm for small celestial
body sampling for a variety of surface properties is developed. The
control algorithm consists of an adaptive controller combined with
feedback linearization. When a spacecraft makes contact with the
surface, it must maintain a desired contact force in order to capture
a sample. The properties of the surface are unknown or uncertain
before contact with the surface is made. The adaptive controller
performs system identification online to create an input-output
model of the feedback linearized system. From the input-output
model a block observable canonical form is realized and the control
input is determined by model predictive control (MPC) to maintain
a desired contact force in spite of the unknown surface properties.
The approach is applied to a variety of surface properties with
linear and nonlinear contact models.

I. INTRODUCTION

Surface sampling of small celestial bodies has received
increasing interest as seen by recent missions such as OSIRIS-
REx, Hayabusa, and Hayabusa2. The objective of a sampling
mission is to bring a spacecraft with a sampler in contact with the
surface of a celestial body and maintain a desired contact force in
order to capture a sample from the surface [1], [2]. The resulting
samples are used to further scientific knowledge about the origins
of the solar system and universe.

Despite recent successes, surface sampling remains a
challenging problem. Before contact with the surface, surface
properties such as its compliance are uncertain. Additional
challenges arise due to unknown nonlinear contact dynamics,
and inability to use the spacecraft thrusters to augment the
contact force. Therefore the controller must be designed to be
robust to a wide variety of surface properties. If the true surface
properties are outside expectations, mission performance will be
affected adversely. This was evidenced by the Philae lander which
attempted to land on the comet 67P/Churyumov–Gerasimenko and
instead bounced off of the surface and landed in the shadow of the
comet ending a 10 year long mission early due to the surface being
softer than expected [3]. Additionally, there is an inherent trade-off
between robustness and control performance which may limit
the possible scope of the mission. As sampling missions become
increasingly complex, as shown by sampling mission concepts
using shape memory alloy and harpoon sampling mechanisms,
more advanced control algorithms will be needed [4], [5].

The challenges associated with surface sampling missions
motivates an alternative adaptive approach to the surface sampling
control problem. The proposed control algorithm consists of a
feedback linearization controller along with an adaptive controller
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called predictive cost adaptive control (PCAC) to adaptively
regulate the contact force of the sampler when subject to a surface
with unknown properties. The following paper proposes an
extension of the robust control algorithm given in [6] to the case
of an adaptive controller.

PCAC is an adaptive control algorithm developed in [7], [8],
which uses a combination of online identification using recursive
least squares (RLS) and model predictive control (MPC) to control
uncertain or unknown systems. The identification uses an input-
output model structure with a variable rate forgetting (VRF) factor
to quickly adjust modeling coefficients when new information
is received and to prevent adjusting modeling coefficients in the
presence of noise. The identified model is then transformed into
a block observable canonical form (BOCF) with a known state
to be used in MPC without needing an explicit observer.

The structure of the paper is as follows. Section II describes
the spacecraft and contact dynamics of a 2D sampling mission.
Section III formulates the PCAC algorithm. Section IV describes
the combined feedback linearization and PCAC control algorithm,
and Section V investigates the performance of the proposed
algorithm under various surface properties for both linear and
nonlinear contact models.

II. SPACECRAFT DYNAMICS AND MODELING

An overview of the spacecraft equations of motion and contact
dynamics are given in this section. For simplicity, we assume a
two-dimensional model, where all masses are rigid. Consider the
spacecraft with a 2-link sampling arm as shown in Figure 1. The
relative joint angles are given by θ1 and θ2, the control torques
by τ1 and τ2, the spacecraft bus mass by msc, the link masses and
inertias by m1, m2, I1, and I2 respectively, the sampler position
relative to the surface by x and y, and the sampler mass by ms.
Contact and friction forces due to the surface are given by Fc
and Ff. Due to the small gravitational forces in this environment,
gravitational forces are assumed to be negligible relative to the
contact forces and are ignored during the contact phase. The
resulting equations of motion have the form

M(q)q̈+D(q, q̇)q̇ = Q (1)

q
4
=


θ1
θ2
x
y

 , q̇
4
=


θ̇1
θ̇2
ẋ
ẏ

 , (2)

where M(q), D(q, q̇), and Q are the mass, damping and
generalized force matrices. Details of the derivation and structure
of these matrices are given in [6]. During contact, the generalized
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force is given by

Q =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1




τ1
τ2
Ff
Fc

 . (3)
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Fig. 1. Spacecraft model for celestial body sampling.

Two forms of the contact force commonly used for contact
modeling of small celestial body sampling are now introduced.
First, a linear Kelvin-Voigt model [9] with stiffness ks and
damping cs of the surface material given by

Fc =−ksy−csẏ, (4)

and a nonlinear Hunt-Crossley model [10], [11] with coefficient of
restitution cr, stiffness ks, and initial contact velocity ẏ− given by

Fc = ks(−y)
3
2

(
1+

3(1−cr)

2
ẏ

ẏ−

)
. (5)

Since the contact event occurs with friction, for the friction
model, an approximation of the Coulomb force using a regularized
friction coefficient is given by

Ff
4
=

{
−µ

(
‖ẋ‖

10−4

)
Fc sgn(ẋ), if 0≤ ‖ẋ‖

10−4 ≤ 1

−µFc sgn(ẋ), 1 < ‖ẋ‖
10−4

, (6)

where µ is the coefficient of friction [12].

III. PREDICTIVE COST ADAPTIVE CONTROL

PCAC is formulated in [7] and is restated below for
convenience of the reader. PCAC combines online identification
with a forgetting factor to handle time-varying parameters and
model predictive control in two separate steps.

A. Online Identification

Consider the MIMO input-output model

ŷk =−
n̂

∑
i=1

F̂iyk−i+
n̂

∑
i=1

Ĝiuk−i, (7)

where k ≥ 0 is the time step, n̂ ≥ 1 is the identification data
window, F̂k ∈ Rp×p and Ĝk ∈ Rp×m are the estimated model
coefficients at step k, and uk ∈Rm×1, yk ∈Rp×1, and ŷk ∈Rp×1

are the inputs, outputs and predicted outputs at step k.

To estimate the coefficients F̂k and Ĝk online, we use recursive
least squares (RLS) with variable-rate forgetting [13]. RLS
minimizes the cumulative cost

Jk(ŵ) =
k

∑
i=0

ρi

ρk
zT
i (ŵ)zi(ŵ)+

1
ρk

(ŵ−w0)
TP−1

0 (ŵ−w0), (8)

where ρk
4
= ∏

k
j=0 λ

−1
j ∈ R, λk ∈ (0,1] is the forgetting

factor, P0 ∈ R[n̂p(m+p)]×[n̂p(m+p)] is positive definite, and
w0 ∈R[n̂p(m+p)]×1 is the initial estimate of the coefficient vector.
The performance variable zi(ŵ)∈Rp×1 is defined as

zk(ŵ)
4
= yk +

n̂

∑
i=1

F̂iyk−i−
n̂

∑
i=1

Ĝiuk−i, (9)

where the vector ŵ∈R[n̂p(m+p)]×1 of coefficients to be estimated
is defined by

ŵ
4
= vec

[
F̂1 · · · F̂n̂ Ĝ1 · · · Ĝn̂

]
. (10)

Defining the regressor matrix φk ∈Rp×[n̂p(m+p)] by

φk
4
=
[
−yT

k−1 · · · −yT
k−n̂ uT

k−1 · · · uT
k−n̂

]
⊗ Ip, (11)

the performance variable can then be written as

zk(ŵ) = yk−φkŵ. (12)

The global minimizer wk+1
4
= argminŵ Jk(ŵ) is computed by

RLS as

Lk = λ
−1
k Pk (13)

Pk+1 = Lk−Lkφ
T
k (Ip+φkLkφ

T
k )
−1

φkLk (14)

wk+1 = wk +Pk+1φ
T
k (yk−φkŵ), (15)

where wk+1 = vec
[
F̂1,k+1 · · · F̂n̂,k+1 Ĝ1,k+1 · · · Ĝn̂,k+1

]
.

The variable-rate forgetting (VRF) factor λk is developed in
[14] and given by

λk =
1

1+ηg(zk−τd, . . . ,zk)1[g(zk−τd, . . . ,zk)]
(16)

where 1 : R→{0,1} is the unit step function, and

g(zk−τd , . . . ,zk)
4
=√

τn

τd

tr
(
Στn(zk−τn, . . . ,zk)Στd(zk−τd, . . . ,zk)−1

)
c

−
√

f ,

(17)

where η > 0 and p ≤ τn < τd represent numerator and
denominator window lengths, respectively. In (17), Στn and
Στd ∈ Rp×p are the sample variances of the respective window
lengths, c is a constant given by

a
4
=

(τn+τd− p−1)(τd−1)
(τd− p−3)(τd− p)

, b
4
= 4+

(pτn+2)
(a−1)

,

c
4
=

pτn(b−2)
b(τd− p−1)

, (18)

f
4
=F−1

pτn,b(1−α) is a thresholding constant, where F−1
pτn,b(x) is the

inverse cumulative distribution function of the F-distribution with
degrees of freedom pτn and b, and α is the significance level [15].
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For receding-horizon control, the input-output model (7) is writ-
ten as the block observable canonical form state-space realization

x1|k
4
= Âkx̂k + B̂kuk,

yk = Ĉx̂k, (19)

where x1|k ∈ Rn̂p is the one-step predicted state,

x̂k
4
=
[
x̂T

1,k · · · x̂T
n̂,k
]T ∈Rn̂p is the state estimate, and

x̂1,k
4
= yk, (20)

x̂i,k
4
=−

n̂−i+1

∑
j=1

F̂i+ j−1,k+1yk− j

+
n̂−i+1

∑
j=1

Ĝi+ j−1,k+1uk− j, i = 2, . . . , n̂ (21)

Âk
4
=



−F̂1,k+1 Ip · · · · · · 0p×p
... 0p×p

. . .
...

...
...

. . . . . . 0p×p
...

...
. . . Ip

−F̂n̂,k+1 0p×p · · · · · · 0p×p


, (22)

B̂k
4
=


Ĝ1,k+1
Ĝ2,k+1

...
Ĝn̂,k+1

 , Ĉ
4
=
[
Ip 0p×p · · · 0p×p

]
, (23)

B. Model Predictive Control

The `-step predicted output of (19) for a sequence of ` future
controls is given by

Y1|k,l = Γ̂k,`x1|k + T̂k,`U1|k,`, (24)

where

Y1|k,`
4
=

y1|k
...

y`|k

∈R`p, U1|k,`
4
=

u1|k
...

u`|k

∈R`m, (25)

and Γ̂k,` ∈R`p×n̂p and T̂k,` ∈R`p×`m are

Γ̂k,`
4
=


Ĉ

ĈÂk
...

ĈÂ`−1
k

 , (26)

T̂k,`
4
=



0p×m · · · · · · · · · 0p×m
Ĥk,1 0p×m · · · · · · 0p×m

Ĥk,2 Ĥk,1
. . . · · · 0p×m

...
...

. . . . . .
...

Ĥk,`−1 Ĥk,`−2 · · · Ĥk,1 0p×m

 , (27)

where Ĥk,i ∈Rp×m is defined by Ĥk,i
4
= ĈÂi−1

k B̂k.

Let Rk,`
4
=
[
rT
k+1 · · ·rT

k+`

]T ∈ R`pt be the vector of ` future

commands, Ct,`
4
= I` ⊗Ct ∈ R`pt×`p where Ctyi|k creates the

tracking outputs from yi|k, let Yt,1|k,`
4
= Ct,`Y1|k,` be the `-step

predicted tracking output, and define ∆U1|k,` ∈R`m×1 as

∆U1|k,`
4
=
[
(u1|k−uk)

T · · · (u`|k−u`−1|k)
T]T . (28)

The receding horizon optimization problem is then given by

min
U1|k,`

(
Yt,1|k,`−Rk,`

)T Q
(
Yt,1|k,`−Rk,`

)
+∆UT

1|k,`R∆U1|k,` (29)

subject to

Umin ≤U1|k,` ≤Umax (30)

∆Umin ≤ ∆U1|k,` ≤ ∆Umax, (31)

where Q ∈ R`pt×`pt is the positive definite tracking weight,
R ∈ R`m×`m is the positive definite control move-size weight,
Umin

4
= 1`×1 ⊗ umin ∈ R`m, Umax

4
= 1`×1 ⊗ umax ∈ R`m,

∆Umin
4
= 1`×1⊗∆umin ∈R`m, and ∆Umax

4
= 1`×1⊗∆umax ∈R`m.

IV. CONTROL ALGORITHM

Following the dynamics derivation given in [6], the mass and
damping matrices can be decomposed into the following 2×2
partitions

M(q) =
[

M1(θ) M2(θ)
MT

2 (θ) m0I2

]
,

D(q, q̇) =
[

D1(θ , q̇) D2(θ , q̇)
DT

2(θ , q̇) 02

]
, θ
4
=

[
θ1
θ2

]
, (32)

where m0
4
= msc +m1 +m2 +ms. Since θ1, θ̇1, θ2, θ̇2, ẋ, ẏ, and

Fc are measured, the following feedback linearization controller
can be used[

τ1
τ2

]
= L−1[D1(θ , q̇)

[
θ̇1
θ̇2

]
+D2(θ , q̇)

[
ẋ
ẏ

]
+M1(θ)M−T

2 (θ)(−DT
2(θ , q̇)

[
θ̇1
θ̇2

]
+

[
0
1

]
Fc)

+(M2(θ)−M1(θ)M−T
2 (θ)m0I2)

[
τ f ,1
τ f ,2

]
], (33)

where τ f ,1 and τ f ,2 are the feedforward portion of the feedback

linearization controller to be given by PCAC and L
4
=

[
1 1
0 1

]
.

For the feedback linearization controller, we assume that the
contact force is of the linear form given by (4). Substituting (33)
into (1) and taking the derivative of (4) leads to the following
dynamics in state-space form

θ̈1
θ̈2
ẍ
ÿ
Ḟc

= A(θ , q̇)


θ̇1
θ̇2
ẋ
ẏ
Fc

+B(θ)
[

τ f ,1
τ f ,2

]
+E(θ)Ff, (34)

A(θ , q̇)
4
=


−M−T

2 (θ)DT
2(θ , q̇)

0 0
0 0
0 0

0
0
0
0
0

0
0
0
0
−ks

M−T
2 (θ)

[
0
1

]
0
0
0

 ,
(35)
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B(θ)
4
=


M−T

2 (θ)m0I2
1 0
0 1
0 −cs

 , E(θ)
4
=


M−T

2 (θ)

[
1
0

]
ξ(θ)

[
1
0

]
−cs

[
0 1

]
ξ(θ)

[
1
0

]

 ,
(36)

ξ(θ)
4
=
(
M2(θ)−M1(θ)M−T

2 (θ)m0I2
)−1

M1(θ)M−T
2 (θ).

(37)

If the surface compliance is linear and known, then when using
the control architecture shown in Figure 2, the dynamics (34) are
what PCAC will attempt to regulate. The frictional force appears
as a disturbance through the matrix E(θ). In case of a mismatch
between the true surface compliance parameters or dynamics, and
the parameters used for the feedback linearization control, then
(34) is no longer valid and PCAC must attempt to identify online
a new model to regulate the closed-loop system.

V. SIMULATION EXAMPLES

Four examples are chosen to demonstrate the performance of
the control architecture with regards to a wide variety of surface
parameters and available modeling information. In these examples,
the spacecraft in Figure 1 descends onto the surface at a speed
of 0.1 m

s starting from a height of 0.2m. There are seven sensors
measuring θ1, θ̇1, θ2, θ̇2, ẋ, ẏ, and Fc. Once contact is made, the
controller attempts to regulate the sampler’s contact force to 25N
and its x and y velocity to 0 before departing the surface after 2s.

Sections V-A and V-B assume the surface has the linear Kelvin-
Voigt contact model given by (4) while sections V-C and V-D
assume the surface has the nonlinear Hunt-Crossley model given
by (5). For sections V-A and V-C, the PCAC model coefficients
are initialized with w0 such that the block observable canonical
form is similar to the matrices A(θ , q̇) and B(θ) at t = 0. In
sections V-B and V-D, PCAC is initialized with the uninformative
model where all entries are 10−10. In all cases, the true surface
compliance is unknown and for the cases where PCAC is
initialized with a model, the initial model matrices assume the
surface contact model is linear with ks = 100 N

m and cs = 104 Ns
m .

The controller runs in a sample-data feedback loop at 2kHz.
The spacecraft parameters are msc = 420kg, m1 = m2 =

ms = 1kg, L1 = L2 = 2m, I1 = I2 = 1
3

kg
m2 , θ1,0 = 45°, and

θ2,0 = 90°. The surface coefficient of friction is taken to
be µ = 0.5. PCAC is initialized with p = 5, m = 2, n̂ = 1,
P0 = 10I45, η = 0.1, τn = 40, τd = 200, α = 0.001, ` = 50,
Q = I` ⊗ diag(1000,100,1), R = 1I`m, Ct =

[
03×2 I3

]
,

umax =−umin = 100, andRk,` = 13×`⊗
[
0 0 25

]T.

A. Linear Contact Model With Dynamics Knowledge
Consider a surface with the linear Kelvin-Voigt contact model

and PCAC initialized with an initial model as described above.
Figure 3 shows the median contact force during contact for a range
of stiffness ks and damping cs values between 1−107 N

m and
10−2−104 Ns

m . Notice that the 25N contact force is maintained
over a wide range of values. Lower stiffness prevents the
spacecraft from reaching the desired contact force, and high
stiffness leads to limitations due to the sample rate. The response
for ks = 2×104 N

m and cs = 103 Ns
m is shown in Figure 4.

B. Linear Contact Model Without Dynamics Knowledge

Consider a surface with the linear Kelvin-Voigt contact model
and PCAC initialized with the uninformative model w0 =
10−10145×1. Figure 5 shows the median contact force during
contact for a range of stiffness ks and damping cs values between
1−107 N

m and 10−2−104 Ns
m . Despite the lack of modeling

knowledge, PCAC was able to adapt and maintain the contact
force for a wide range of values. Similarly to the case where
PCAC is initialized with an initial model, there are limitations
at maintaining the contact force at low and high stiffness values.
There are more regions, especially for high stiffness values, where
the controller is unable to maintain the desired contact force. The
response for ks = 2×104 N

m and cs = 103 Ns
m is shown in Figure 6.

C. Nonlinear Contact Model With Dynamics Knowledge

Consider a surface with the nonlinear Hunt-Crossley contact
model and PCAC initialized with an initial model as described
above. Figure 7 shows the median contact force during contact
for a range of stiffness ks and coefficient of restitution cr
values between 1−107 N

m and 10−1− 1. Despite PCAC being
initialized assuming linear contact force, the desired contact
force is maintained over a wide range of values as PCAC was
able to adapt to the model mismatch. Lower stiffness prevents
the spacecraft from reaching the desired contact force, and high
stiffness leads to limitations due to the sample rate. Empty data
points represent values where the controller became unstable.
The nonlinear contact model provides less contact force for small
surface displacement than the linear model. This leads to a larger
region where the desired contact force is not reached for small
stiffness values compared to the linear model case. The response
for ks = 2×104 N

m and cr = 0.95 is shown in Figure 8.

D. Nonlinear Contact Model Without Dynamics Knowledge

Consider a surface with the nonlinear Hunt-Crossley contact
model and PCAC initialized with the uninformative model
w0 = 10−10145×1. Figure 9 shows the median contact force during
contact for a range of stiffness ks and coefficient of restitution cr
values between 1−107 N

m and 10−1−1. Similarly to the previous
cases, lower stiffness prevents the spacecraft from reaching the
desired contact force, and high stiffness leads to limitations due
to the sample rate. Empty data points represent values where the
controller became unstable. There are more regions, especially
at high stiffness values, where the controller becomes unstable or
unable to maintain the 25N contact force than in the case where
PCAC is given linear contact dynamics knowledge. The response
for ks = 2×104 N

m and cr = 0.95 is shown in Figure 10.

VI. CONCLUSION

This paper developed and investigated the performance of
an adaptive force control algorithm for spacecraft sampling
maneuvers on small celestial bodies. The algorithm consisted of
feedback linearization with PCAC to maintain a desired contact
force during the sampling maneuver. PCAC uses output-feedback
model predictive control without an estimator and with concurrent
online identification. Both linear and nonlinear contact models
were used to investigate the controller’s performance under various
surface properties and initial modeling information. The controller
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Fig. 2. Adaptive force control architecture for small celestial body sampling.
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Fig. 3. Median contact force for various surface stiffness ks and damping cs
values using a linear contact model and PCAC being initialized with modeling
information.
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PCAC initialized with an initial model.

was shown to reach the desired contact force over a wide range
of surface properties and initial modeling information for PCAC.

When contact is first made with the surface, there is an initial
large transient force exerted on the sampler. This may be mitigated
using a combination of the proposed control algorithm and a
robust controller. The inclusion of the robust controller will lessen
the degree of adaptation required by the adaptive controller and
thereby increasing the range of parameters where the desired con-
tact force can be maintained. Further investigation will be needed
to determine the advantages of the combined control approach.
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Fig. 5. Median contact force for various surface stiffness ks and damping cs values
using a linear contact model and PCAC being initialized with an uninformative
model.
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Fig. 6. Contact force, sampler velocity, actuator torques, and PCAC model
coefficients for a linear contact model with ks = 2×104 N

m and cs = 103 Ns
m using

PCAC initialized with an uninformative model.

Additionally, the performance of the control law under multiple
sampling maneuvers is of interest. As the sampler increases in
mass as more material collected with each maneuver, PCAC can
adjust its model accordingly to maintain the desired contact force.
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Fig. 7. Median contact force for various surface stiffness ks and coefficient of
restitution cr values using a nonlinear contact model and PCAC being initialized
with modeling information.
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