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Abstract— The ability to control a system is often enhanced
by feeding back the derivatives of sensor signals, such as
estimates of velocity and acceleration when only position is
measured. Within this context, signal differentiation must be
performed causally, that is, using only current and past data
and with minimal computational latency. This paper formu-
lates causal differentiation as a sampled-data input-estimation
problem, where the plant is a cascade of integrators. Adaptive
input estimation based on retrospective-cost optimization is
considered, where the innovations from the Kalman filter is
used to drive the online adaptation. Using backward-difference
differentiation (BDD) as a baseline comparison, high-gain
observers (HGO) with bilinear discretization and retrospective
cost input estimation (RCIE) are applied to harmonic signals
under various noise levels for single and double differentiation.
These methods are then applied to experimental position data
of a small rover for estimating its velocity and acceleration.
Neither method uses information about the noise statistics, and
no analog or digital filtering is used for noise suppression.

I. INTRODUCTION

As exemplified by PID control [1], [2], it is often of
great benefit to be able to use the derivative of a sensor
measurement as part of a feedback control law. Unfortu-
nately, differentiation corresponds to an unbounded operator,
which has unbounded gain; this property is evident in the
fact that the derivative of small-amplitude high-frequency
noise may have arbitrarily large amplitude. In practice,
differentiation is typically performed by combining low-
frequency approximate differentiation with lowpass filtering
for noise suppression. The required shape of the filter is
typically determined manually based on the characteristics
of the sensor noise.

Within a digital context, numerical differentiation can
be viewed as an approximation of “analog” differentiation,
where the goal is to obtain a discrete-time signal that
approximates the “analog” derivative for the given sam-
ple rate. A constraint on discrete-time differentiation for
control-system applications is the fact that only data up to
the present time can be used to compute the derivative;
we call this causal numerical differentiation. For exam-
ple, backward-difference differentiation is causal, whereas
central-difference and forward-difference differentiation are
not. Causal differentiation avoids the need for future data,
which entails latency and thus may degrade performance and
potentially lead to instability.
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Given the importance of causal numerical differentiation,
it is not surprising that substantial effort has been devoted
to this problem. One of the earliest approaches to numerical
differentiation is given in [3], where the problem is posed
in terms of an integral equation, whose solution entails
regularization. An extension of this approach based on
total-variation regularization is given in [4], and numerical
comparisons are given in [5]. This approach uses data from
the entire interval and thus is not suitable for causal nu-
merical differentiation. Motivated by the goal of developing
alternatives to traditional observer design, an interpolation
approach with a moving window is used in [6], [7], where
the derivatives of the interpolating basis functions are used
to approximate the derivative of the given function. The
accuracy of this approach was shown to improve as the data
window size increases, albeit at a cost of latency.

In order to estimate velocity and acceleration from camera
data, ten numerical differentiation algorithms are compared
in [8]. Although many of these algorithms performed well
on experimental data, most of the techniques are based on a
window involving both past and future data and thus entail
latency when used for online applications.

In [9], an nth-order derivative is viewed as the input to a
linear system whose output is the signal data. A high-gain
observer is used to approximate the derivative of the output.
To enable discrete-time implementation, the observer is then
discretized using various methods including zero-order hold
and bilinear transformation. Motivated by nonlinear feedback
control, iterated integrals are used to represent lowpass filters
in [10] and [11]. This technique enables computation of
derivatives of arbitrary order with minimal latency.

An alternative approach to causal numerical differentiation
is based on sliding-mode control. The extensive literature on
this approach is reviewed in [12] with connections to the
robust exact differentiator and the super-twisting algorithm.
Online parameter adaptation is considered in [12] to provide
adjustable tuning as the characteristics of the signal change.
Further extensions of this approach are developed in [13].
The approach in [14] uses multi-objective optimization to
select parameters that minimize the loss function to maintain
the faithfulness and smoothness of the estimate.

The present paper considers the problem of causal nu-
merical differentiation as an input-estimation problem. In
input estimation, the input to a linear system is assumed
to be unknown, and the measured output of the system is
used to estimate the input of the system [15]–[28]. When
the dynamics of the system consist of a cascade of one or
more integrators, the estimates of the input provide estimates
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of one or more derivatives of the output signal. Since, like
state estimation, input estimation is an online technique,
this approach is suitable for causal numerical differentiation.
However, the works in [15]–[28] do not consider adaptive
input estimation. Adaptive input estimation is considered
in [29], where the input estimation is combined with state
estimation based on the discrete-time Kalman filter. The
adaptive input estimator uses retrospective cost optimization
to provide an estimate of the input for use by the Kalman fil-
ter. The error metric for adaptation is given by the estimation
residual, that is, the innovations.

The goal of the present paper is to compare the accu-
racy of retrospective cost input estimation (RCIE) given in
[29] and the high-gain observer (HGO) given in [9] for
causal numerical differentiation in the presence of noisy
measurements. For simplicity and clarity, the numerical
study in this paper considers harmonic signals corrupted
by Gaussian white noise. For each input signal, backward-
difference numerical differentiation provides a baseline for
performance comparison. The present paper also applies the
different methods to the position data of a small rover to
estimate its velocity and acceleration.

II. RETROSPECTIVE COST INPUT ESTIMATION

Retrospective cost input estimation (RCIE) [29] can be
applied to MIMO linear time-varying systems. The objective
in this paper is to use RCIE for differentiation, and for the
purpose of differentiation, it is enough to consider SISO
linear-time invariant systems. Hence, the RCIE algorithm is
summarized here within the context of SISO LTI systems.

Consider the linear discrete-time system

xk+1 = Axk +Bdk +D1wk, (1)
yk = Cxk +D2vk, (2)

where k is step, xk ∈ Rlx is the unknown state, dk ∈ R
is the unknown input, wk ∈ R is standard Guassian white
process noise, yk ∈ R is the measured output, and vk ∈ R is
standard Guassian white measurement noise. The matrices
A ∈ Rlx×lx , B ∈ Rlx×1, D1 ∈ Rlx×1, C ∈ R1×lx , and
D2 ∈ R are assumed to be known. Define V1

4
= D1D

T
1 and

V2
4
= D2D

T
2 . The goal is to estimate dk and xk.

A. Input Estimation

Consider the Kalman filter forecast step

xfc,k+1 = Axda,k +Bd̂k, (3)
yfc,k = Cxfc,k, (4)
zk = yfc,k − yk, (5)

where d̂k is the estimate of dk, xda,k ∈ Rlx is the data-
assimilation state, xfc,k ∈ Rlx is the forecast state, and zk ∈
R is the innovations. The input-estimation subsystem of order
nc given by

d̂k =

nc∑
i=1

Pi,kd̂k−i +

nc∑
i=0

Qi,kzk−i, (6)

where Pi,k ∈ R and Qi,k ∈ R, is used to obtain d̂k. RCIE
minimizes zk+1 by updating Pi,k and Qi,k. The subsystem
(6) can be reformulated as

d̂k = Φkθk, (7)

where the regressor matrix Φk is defined by

Φk
4
=
[
d̂k−1 · · · d̂k−nc

zk · · · zk−nc

]
∈ R1×lθ , (8)

the coefficient vector θk is defined by

θk
4
=
[
P1,k · · · Pnc,k Q0,k · · · Qnc,k

]T ∈ Rlθ , (9)

and lθ
4
= 2nc + 1. In terms of the forward shift operator q,

(6) can be written as

d̂k = Gd̂z,k(q)zk, (10)

where

Gd̂z,k(q)
4
= D−1

d̂z,k
(q)Nd̂z ,k (q), (11)

Dd̂z,k(q)
4
= qnc − P1,kqnc−1 − · · · − Pnc,k, (12)

Nd̂z,k(q)
4
= Q0,kqnc +Q1,kqnc−1 + · · ·+Qnc,k. (13)

Next, define the filtered signals

Φf,k
4
= Gf,k(q)Φk, d̂f,k

4
= Gf,k(q)d̂k. (14)

Note that Gf,k is a filter of window length nf ≥ 1. Further
details of the filter Gf,k are given in the subsection II-C.
Define the retrospective performance variable

zrc,k(θ̂)
4
= zk − (d̂f,k − Φf,kθ̂), (15)

where the coefficient vector θ̂ ∈ Rlθ denotes a variable for
optimization, and define the retrospective cost function

Jk(θ̂)
4
=

k∑
i=0

zTrc,i(θ̂)Rzzrc,i(θ̂) + θ̂TΦT
i RdΦiθ̂

+ (θ̂ − θ0)TRθ(θ̂ − θ0), (16)

where Rz ∈ R is positive, Rd ∈ R is nonnegative, and
Rθ ∈ Rlθ×lθ is positive definite. Define P0

4
= R−1θ . Then,

for all k ≥ 0, the cumulative cost function Jk(θ̂) has the
unique global minimizer θk+1 given by the RLS update

Pk+1 = Pk − PkΦ̃T
k ΓkΦ̃kPk, (17)

θk+1 = θk − PkΦ̃T
k Γk(z̃k + Φ̃kθk), (18)

where

Γk
4
= (R̃−1 + Φ̃kPkΦ̃T

k )−1, Φ̃k
4
=

[
Φf,k

Φk

]
, (19)

z̃k
4
=

[
zk − d̂f,k

0

]
, R̃

4
=

[
Rz 0
0 Rd

]
. (20)

Using the updated coefficient vector given by (18), the
estimated input at step k + 1 is given by replacing k by
k + 1 in (7). We choose θ0 = 0, and thus d̂0 = 0.
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B. State Estimation
In order to estimate the state xk, xfc,k given by (3) is used

to obtain the estimate xda,k of xk given by the Kalman filter
data-assimilation step

xda,k = xfc,k +Kda,kzk, (21)

where the state estimator gain Kda,k ∈ Rlx is given by

Kda,k = −Pf,kC
T(CPf,kC

T + V2)−1, (22)

the data-assimilation error covariance Pda,k ∈ Rlx×lx and
the forecast error covariance Pf,k ∈ Rlx×lx are given by

Pda,k = (I +Kda,kC)Pf,k, (23)

Pf,k+1 = APda,kA
T + V1 + Ṽk, (24)

where Ṽk
4
= B var (dk − d̂k)BT +A cov (xk − xda,k, dk −

d̂k)BT +B cov (xk − xda,k, dk − d̂k)AT, and Pf,0 = 0.

C. The Filter Gf
We choose Gf,k(q) to be the FIR filter

Gf,k(q) =

nf∑
i=1

Hi,k
1

qi
, (25)

where, for all k ≥ 0,

Hi,k
4
=


CB, k ≥ i = 1,

C

i−1∏
j=1

Ak−j

B, k ≥ i ≥ 2,

0, i > k,

(26)

and Ak
4
= A(I +Kda,kC).

III. CAUSAL NUMERICAL DIFFERENTIATION
In this section, the methods of performing causal1 numer-

ical differentiation using RCIE, high gain observer (HGO)
and backward-difference differentiator (BDD) are explained.
A. Differentiation using RCIE

Since the objective is to use RCIE as a differentiator, the
system given by (1) and (2) is modeled as the discrete-time
equivalent of an integrator. Thus, the measured output y(t)
is an integral of the unknown input d(t) or, in other words,
the unknown input d(t) is the derivative of the measured
output y(t). Hence, by applying RCIE and reconstructing d̂
from the estimates d̂k, we are estimating the derivative of the
measured output y. Note that the concept of process noise is
not applicable when the system is modeled as an integrator.
Hence, for the rest of this paper, it is assumed that w = 0,
and thus D1 = 0.

Consider the n-th order integrator dynamics

ẋ = AIx+BIy
(n), y = CIx, (27)

AI
4
=

[
0(n−1)×1 In−1

0 01×(n−1)

]
, BI

4
=

[
0(n−1)×1

1

]
, (28)

CI
4
=
[
1 01×(n−1)

]
, (29)

1The estimation of the derivative of yk uses the data yk and hence the
estimation of the derivative of yk starts at step k. This implies that the
estimate of derivative of yk is available only at step k + 1 and thus there
is a delay of one step in the estimation.

where x, y ∈ R, and y(n) is the n-th derivative of y. The
discretization of (27) using zero-hold results in the discrete-
time state space model given by

xk+1 = Adxk +Bdy
(n)
k , yk = CIxk, (30)

Ad
4
= eAITs , Bd

4
=

∫ Ts

0

eAI(t−τ)BIdτ, (31)

where xk
4
= x(kTs), yk

4
= y(kTs), y(n)k

4
= y(n)(kTs), and

Ts is the sampling time. Setting A = Ad, B = Bd, and
C = CI in (1) and (2), and applying RCIE gives an estimate
(ŷ(n) = d̂) of y(n). Note that Ad = 1, Bd = Ts, and CI = 1
in the case of single differentiation, and

Ad =

[
1 Ts
0 1

]
, Bd =

[
1
2T

2
s

Ts

]
, CI =

[
1 0

]
(32)

in the case of double differentiation.

B. Differentiation using HGO

The discrete-time implementation of casual differentiation
using HGO was done in [9] and the same is explained here.
A state space model for a high-gain observer designed for
the system represented by (27) is given by

˙̂x = Acox̂+Bcoy, ŷ = Cox̂, (33)

Aco
4
= AI −HCI, Co

4
=
[
0(n−1)×1 In−1

]
, (34)

Bco = H
4
=

[
α1

ε

α2

ε2
· · ·

αn

εn

]T
, (35)

where ε is a small positive parameter, and α1, α2, . . . , αn
are constants chosen such that the polynomial

p(s)
4
= sn + α1s

n−1 + · · ·+ αn−1s+ αn (36)

is Hurwitz. The transfer function from y to ŷ is given by

G(s) = Co(sI −AI +HCI)
−1H = D−1G (s)NG(s), (37)

where

DG(s)
4
= εnsn + α1ε

n−1sn−1 + · · ·+ αn−1εs+ αn, (38)

NG(s)
4
=


α2ε

n−2sn−1 + · · ·+ αn−1εs
2 + αns

α3ε
n−3sn−1 + · · ·+ αn−1εs

3 + αns
2

...
αn−1εs

n−1 + αns
n−2

αns
n−1

 . (39)

Let

x̂ =
[
x̂1 x̂2 . . . x̂n

]T
, (40)

ŷ =
[
ŷ(1) ŷ(2) . . . ŷ(n−1)

]T
. (41)

Since

lim
ε→0

G(s) =
[
s · · · sn−2 sn−1

]T
, (42)

it follows that, for all i = 1, . . . , n−1, ŷ(i) is an approxima-
tion of y(i). Let the discrete-time observer state space model
obtained by using bilinear transformation on (33) be

x̂k+1 = Adox̂k +Bdoyk, ŷk = Cox̂k. (43)
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Thus, the implementation of (43) gives the estimates
(ŷ(1), ŷ(2), . . . , ŷ(n−1)) of y(1), y(2), . . . , y(n−1).

C. Differentiation using BDD

The single derivative backward-difference differentiator is

Gsd(z)
4
=

z− 1

Tsz
. (44)

The double derivative backward-difference differentiator is

Gdd(z)
4
=

(z− 1)2

(Tsz)2
. (45)

IV. NUMERICAL EXAMPLES

In this section, numerical examples are given to illustrate
the accuracy of RCIE and HGO as differentiators. BDD will
be used as a baseline for comparison. Note that the examples
will deal with discrete-time signals only.

Example 4.1: Differentiation in the Absence of Noise.
In this example, it is assumed that there is no output noise,

and hence v ≡ 0. Let the measured output be yk = sin(0.2k).
Single Differentiation (SD): In the case of RCIE, let nc =

1, nf = 6, Rθ = 10−3I3, Rd = 10−5, Rz = 1, Ṽ = 10−4. In
the case of HGO, let n = 3 in (27), (28), and (29), let α1 =
3, α2 = 3, α3 = 1. Note that choosing n = 3 gave slightly
better estimate of the first derivative as compared to choosing
n = 2. The parameter ε is chosen as the value between 0.01
and 2 that gives the lowest root mean square error (RMSE)
between the estimated values and the true values. Figure 1
compares the signals estimated by SD/RCIE, SD/HGO, and
SD/BDD with the true first derivative.
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Fig. 1. Example 4.1 Single Differentiation. (a) The signals estimated by
SD/RCIE and SD/HGO follow the true first derivative y(1) after about 20
steps, whereas the signal estimated by SD/BDD follows y(1) without a
transient period. (b) A zoomed view of plot (a). At steady state, SD/HGO
is more accurate than SD/RCIE and SD/BDD.

Double Differentiation (DD): In the case of RCIE, let
nc = 18, nf = 4, Rθ = 10−1I37, Rd = 10−6, Rz = 1, Ṽ =
10−5. In the case of HGO, let n = 4 in (27), (28), and (29),
let α1 = 8, α2 = 24, α3 = 32, α4 = 16. Note that choosing
n = 4 gave slightly better estimate for the second derivative
as compared to choosing n = 3. The parameter ε is chosen
in the same way as chosen for single differentiation. Figure
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Fig. 2. Example 4.1 Double Differentiation. (a) The signal estimated by
DD/HGO follows the true second derivative y(2) after about 20 steps, the
signal estimated by DD/RCIE follows y(2) after about 50 steps, and the
signal estimated by DD/BDD follows y(2) without a transient period. The
signal estimated by DD/HGO has large oscillations in the transient period.
(b) A zoomed view of plot (a). At steady state, DD/HGO is more accurate
than DD/RCIE and DD/BDD.

2 compares the signals estimated by DD/RCIE, DD/HGO,
and DD/BDD with the true second derivative.

Example 4.2: Differentiation in the Presence of Noise.
This example considers differentiation in the presence of

output noise. Let the measured output be yk = sin(0.2k) +
D2vk, where v is standard Gaussian white noise.

Single Differentiation: In the case of RCIE, let nc = 1,
nf = 6, Rθ = 10−6I3, Rd = 10−5, Rz = 1, Ṽ = 10−2. In
the case of HGO, the parameters values are the same as they
are for single differentiation in Example 4.1. For a signal-
to-noise ratio (SNR) of 40 dB (D2 = 0.00699945), Figure 3
compares the signals estimated by SD/RCIE, SD/HGO, and
SD/BDD with the true first derivative.
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Fig. 3. Example 4.2 Single Differentiation. (a) The signals estimated by
SD/RCIE, SD/HGO, and SD/BDD follow the true first derivative y(1) after
an initial transient period. SD/HGO exhibits a longer transient period as
compared to SD/RCIE. (b) A zoomed view of plot (a). At steady state,
SD/HGO is more accurate than SD/RCIE and SD/BDD.

Double Differentiation: In the case of RCIE, let nc = 18,
nf = 4, Rθ = 10−1I37, Rd = 10−6, Rz = 1, Ṽ = 10−5. In
the case of HGO, the parameters values are the same as they
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Fig. 4. Example 4.2. Normalized RMSE in the estimation of the first
derivative. SD/HGO performs better than SD/RCIE and SD/BDD.

are for double differentiation in Example 4.1. For an SNR of
40 dB, Figure 5 compares the signals estimated by DD/RCIE,
DD/HGO, and DD/BDD with the true second derivative.

In order to do quantitative comparison among the different
methods, the normalized RMSE in the estimation of the
single derivative and the double derivative is plotted in
Figures 4 and 6, respectively, for SNRs in the range of 40
dB to 60 dB.
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Fig. 5. Example 4.2 Double Differentiation. (a) The signal estimated by
DD/RCIE follows the true second derivative y(2) after an initial transient
period. Though the signals estimated by DD/HGO and DD/BDD follow the
general trend of y(2), they are noisy. (b) A zoomed view of plot (a). At
steady state, DD/RCIE is more accurate than DD/HGO and DD/BDD.

V. DIFFERENTIATION OF EXPERIMENTAL DATA

RCIE, HGO, and BDD are applied to experimental po-
sition data of a small rover for estimating its velocity and
acceleration. An OptiTrack camera sensor is used to collect
the position data of the rover at a sample rate of 50 Hz.
Figure 7 depicts the trajectory of the rover on the x-y plane
and the position data along the x-axis. Differentiation of the
position data along the x-axis is done to obtain the velocity
and the acceleration along the x-axis. Since the true velocity
and the true acceleration of the rover are not known, it is not
possible to evaluate the accuracy of the estimated signals.
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Fig. 6. Example 4.2. Normalized RMSE in the estimation of the second
derivative. DD/RCIE performs better than DD/HGO and DD/BDD.
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Fig. 7. Experimental Data. (a) The trajectory of the rover on the x-y plane.
(b) Position of the rover along x-axis versus time.

Single Differentiation: In the case of RCIE, let nc = 1,
nf = 6, Rθ = 10−3I3, Rd = 10−5, Rz = 1, Ṽ = 10−4.
In the case of HGO, let n = 3 in (27), (28), and (29), let
α1 = 3, α2 = 3, α3 = 1. The parameter ε is given an
optimum value that renders the estimated signal smooth and
follow the general trend of the signals estimated by RCIE and
BDD. Figure 8 compares the signals estimated by SD/RCIE,
SD/HGO, and SD/BDD.
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Fig. 8. Single Differentiation of Experimental Data. (a) shows the signals
estimated by SD/RCIE, SD/HGO, and SD/BDD. (b) A zoomed view of plot
(a). The signal estimated by SD/BDD is noisy, whereas the signals estimated
by SD/RCIE and SD/HGO are reasonably smooth.

Double Differentiation: In the case of RCIE, let nc = 18,
nf = 4, Rθ = 10−1I37, Rd = 10−6, Rz = 1, Ṽ = 10−5. In
the case of HGO, let n = 4 in (27), (28), and (29), let α1 =
8, α2 = 24, α3 = 32, α4 = 16. The parameter ε is chosen
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in the same way as chosen for single differentiation. Figure
9 compares the signals estimated by DD/RCIE, DD/HGO,
and DD/BDD.
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Fig. 9. Double Differentiation of Experimental Data. (a) shows the signals
estimated by DD/RCIE, DD/HGO, and DD/BDD. (b) A zoomed view of
plot (a). The signal estimated by DD/BDD is noisy, whereas the signals
estimated by DD/RCIE and DD/HGO are reasonably smooth.

VI. CONCLUSIONS

Numerical differentiation based on sampled data is a
longstanding and difficult problem due to the effect of noise
and the lack of a truth sensor. Using simulated data with
simulated noise, retrospective cost input estimation (RCIE)
was compared with high-gain observers (HGO), using back-
ward difference differentation (BDD) as a baseline. Since the
true signal is known, the accuracy of these methods could
be compared, and it was shown that HGO outperforms RCIE
for single differentiation, whereas RCIE outperforms HGO
for double differentiation.

These methods were then applied to experimental data for
which the true derivatives were unavailable. Consequently,
it is not possible to definitively compare the accuracy of
the different methods. Nevertheless, the estimated first and
second derivatives suggest that the BDD estimates are noisy,
as expected. However, both RCIE and HGO provide smooth
estimates of the derivatives, which are physically reasonable.
Future research will focus on the development of metrics that
can be used to determine the relative accuracy of the RCIE
and HGO estimates.
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