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Abstract— A variable-rate forgetting factor for recursive least
squares is developed for parameter identification of time-
varying systems. The variable-rate forgetting factor uses the
F-test to compare short- and long-term variances of the one-
step prediction errors of recursive least squares (RLS). If the
short-term error variance is statistically larger than the long-
term error variance, then it is assumed that the underlying
parameters have changed and forgetting is required. The level
of forgetting is proportional to how far the ratio of the short-
term and long-term error variances deviate from the expected
ratio given by the F-distribution. RLS with F-test variable-
rate forgetting (RLS/FTVRF) is shown to generalize an existing
variable-rate forgetting factor that uses a ratio of the root-
mean-square (RMS) performance error and noise standard
deviation. The approach is applied to a parameter identification
task and is compared to a constant-rate forgetting factor and the
RMS performance error and noise standard-deviation-based
forgetting factor.

I. INTRODUCTION

Recursive least squares (RLS) is widely used for parameter
estimation and adaptive control [1], [2]. To track time-
varying parameters, RLS can incorporate a forgetting factor
λ, which discounts past data. Choosing an appropriate λ is
typically done through trial and error or, when the identi-
fication is performed offline, maximum likelihood methods.
Typical values of λ are between 0.98 and 1 [3], [4].

When a parameter change occurs and forgetting is not
enabled, RLS converges slowly to the new parameter values.
On the other hand, the use of forgetting when parameters do
not change and the data is not persistently exciting can lead
to divergence of the singular values of the RLS covariance
matrix [5]. In the context of adaptive control, instability of
RLS leads to instability of the controller and catastrophic
blow-up.

In contrast with constant-rate forgetting, variable-rate for-
getting (VRF) allows the forgetting factor to change during
operation. VRF versions of RLS are given in [6], [7],
[8], These formulations were extended in [9] to include
criteria for setting the level of forgetting at each step while
maintaining convergence and consistency. Increasing interest
in VRF is reflected in [10], [11], [12].

As the above discussion suggests, a key aspect of VRF is
the criterion used to vary the forgetting level. In the presence
of sensor noise, VRF may set the forgetting factor to be lower
than necessary, thereby leading to loss of information when
such loss is not warranted. Within the context of adaptive
control, a deadzone variation of the approach of [9] was

1Department of Aerospace Engineering, The University of Michigan, Ann
Arbor, MI 48109, USA

thus proposed in [13]. The formulation of [13] entails the
ratio of root-mean-square (RMS) performance error to noise
standard deviation.

Inspired by the statistical analysis of the ratio of sample
variances, the present paper proposes a variable-rate forget-
ting method using the F-test. The F-test is typically used
to compare whether two sample variances are statistically
equal in analysis of variance tests [14], [15]. The ratio of
sample variances taken from normally distributed random
variables follows an F-distribution, and if the ratio exceeds
or is below what is expected for a given significance level,
then the two variances are determined to not be equal. The
main idea is to use the F-test to determine the level of
forgetting to use in RLS based on the the ratio of the variance
of two sliding windows of prediction errors of differing
length. When the variance of recent predictions increases
relative to earlier predictions, we expect that the parameters
have changed, and forgetting is warranted relative to the
increase in variance. The goal is to prevent forgetting when
sufficiently exciting data is not available while also enabling
forgetting during parameter changes to allow RLS to quickly
learn new parameters.

Section II gives an overview of the RLS-VRF algorithm
given in [9]. In Section III we describe the proposed variable-
rate forgetting method using the F-test. Section IV shows that
RLS with the RMS performance error VRF (RLS/RMSVRF)
used in [13] and [16] is a special case of the proposed
method. Section V shows an example of the proposed method
in an identification task under noisy measurements and
nonpersistently exciting inputs in comparison to a constant-
rate forgetting factor and RLS/RMSVRF.

II. RECURSIVE LEAST SQUARES WITH VARIABLE-RATE
FORGETTING

Define the forgetting factor λ ∈ (0, 1], initial parameter
vector θ0 ∈ Rn×1, initial positive-definite parameter covari-
ance P0 ∈ Rn×n, the regressor φk ∈ Rp×n, measurement
yk ∈ Rp×1, and the prediction error ek(θ)

4
= yk − φkθ. The

cost function for recursive least squares (RLS) is then given
by

Jk(θ)
4
=

k∑
i=0

λk−ieT
i (θ)ei(θ) + λk+1(θ − θ0)TP−1

0 (θ − θ0).

(1)

To generalize (1) such that λ can vary as a function of k,
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let βk > 0 and define

ρk
4
=

k∏
i=0

βi. (2)

As shown in [9], unique global minimizer of the cost function

Jk(θ)
4
=

k∑
i=0

ρi
ρk
eT
i (θ)ei(θ) +

1

ρk
(θ − θ0)TP−1

0 (θ − θ0)

(3)

is given by

θk+1 = θk + Pk+1φ
T
k (yk − φkθk) (4)

where

Pk+1 = Lk − LkφT
k (Ip + φkLkφ

T
k )−1φkLk (5)

Lk
4
= βkPk (6)

The variable rate forgetting factor is then defined as λk
4
=

β−1
k . Equations (4)-(6) are the recursive least squares with

variable rate forgetting (RLS-VRF).

III. VARIABLE RATE FORGETTING USING THE F-TEST

When using RLS, we would like to use forgetting to place
a higher weight on more recent data while also suspending
forgetting when new data is not available. To accomplish
this, let βk be given by

βk
4
= 1 + ηg(e0(θ0), . . . , ek(θk))1[g(e0(θ0), . . . , ek(θk))]

(7)

where 1 : R → {0, 1} is the unit step function, η > 0, and
g(e0(θ0), . . . , ek(θk)) is a function of past RLS prediction
errors. From (7) it follows that, if g(e0(θ0), . . . , ek(θk)) ≤ 0,
then forgetting is suspended, otherwise the level of forgetting
is proportional to the magnitude of g(e0(θ0), . . . , ek(θk))
scaled by η. The objective is to determine an appropriate
g(e0(θ0), . . . , ek(θk)). We expect that, if the true θ has
changed relative to the current estimate of θ, then the
variance of the prediction errors will increase [17]. When
this occurs, we wish to forget older data in order to adjust the
parameter estimate quickly. Therefore, we wish to compare
the variance of a long and short window of past RLS
prediction errors to determine whether or not the variance
has increased, and, if so, enable forgetting. For p = 1, the
F-test will facilitate this comparison.

Given two sample variances σ2
τn from τn + 1 samples and

σ2
τd

from τd+1 samples, where τd > τn ≥ p, and σ2
τn ≥ σ

2
τd

,
the variance σ2

τn is greater than σ2
τd

with significance level
α if

F−1
τn,τd

(1− α) <
σ2
τn

σ2
τd

, (8)

where F−1
τn,τd

(x) is the inverse cumulative distribution func-
tion of the F-distribution with degrees of freedom τn and τd
[15]. The larger the variance ratio is from F−1

τn,τd
(1−α), the

stronger the evidence that σ2
τn is greater than σ2

τd
. The F-test

can also be written as√
F−1
τn,τd(1− α) <

√
σ2
τn

σ2
τd

. (9)

This leads to a g(e0(θ0), . . . , ek(θk)) for the case
p = 1. Given sample variances of the past RLS
prediction errors σ2

τn(ek−τn(θk−τn), . . . , ek(θk)) and
σ2
τd

(ek−τd(θk−τd), . . . , ek(θk)), for p = 1, the function
g(e0(θ0), . . . , ek(θk)) is defined as

g
4
=

√
σ2
τn

σ2
τd

−
√
F−1
τn,τd(1− α), (10)

where the error terms ek(θk) are dropped for notational
convenience. Using (10), forgetting is enabled when σ2

τn is
statistically larger than σ2

τd
. The magnitude of the forgetting

factor λk is inversely proportional to the difference between
the square roots of the variance ratio and F−1

τn,τd
(1 − α),

thereby increasing the level of forgetting when there is more
evidence that σ2

τn is larger σ2
τd

. A large value of α will cause
the level of forgetting to be more sensitive to changes in the
ratio of σ2

τn to σ2
τd

compared to a smaller one.
For the case p ≥ 1, the variances στn and στd are now

covariance matrices Στn and Στd , and the ratio of the two
covariance matrices is given by ΣτnΣ−1

τd
. In this case, the

ratio must be converted into a scalar test statistic. Four
commonly used test statistics are

• Wilks’s Lambda: |I+ τn
τd

ΣτnΣ−1
τd
|−1 =

|τdΣτd |
|τnΣτn+τdΣτd |

=∏n
i=1

1
1+µi

,

• Lawley-Hotelling Trace: τn
τd

tr(ΣτnΣ−1
τd

) =
∑n
i=1 µi,

• Pillai’s Trace: tr
(
τn
τd

ΣτnΣ−1
τd

(I + τn
τd

ΣτnΣ−1
τd

)−1
)

=∑n
i=1

µi
1+µi

,
• Roy’s Greatest Root: maxi(µi),

where µi, i = 1, . . . , n are the eigenvalues of τn
τd

ΣτnΣ−1
τd

[15]. The Lawley-Hotelling trace is chosen due to its ease
of use, similarity to the variance ratio in the F-Test, and
availability of simple approximations. Using the Lawley-
Hotelling trace with the approximation given by [18], Στn is
greater than Στd with significance level α if

F−1
pτn,b

(1− α) <
τn
τd

tr(ΣτnΣ−1
τd

)

c
, (11)

where

a
4
=

(τn + τd − p− 1)(τd − 1)

(τd − p− 3)(τd − p)
,

b
4
= 4 +

(pτn + 2)

(a− 1)
, c

4
=

pτn(b− 2)

b(τd − p− 1)
. (12)

For p = 1, (11) is equivalent to the F-test. Given sample
covariances of the past RLS prediction errors Στn and Στd ,
g is defined as

g
4
=

√
τn
τd

tr
(
ΣτnΣ−1

τd

)
c

−
√
F−1
pτn,b

(1− α). (13)
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The resulting RLS update using the F-test for variable-rate
forgetting (RLS/FTVRF) is given in Algorithm 1.

Some recommendations for the parameters τn, τd, η, and α
are given as follows. A small τn will cause forgetting to occur
sooner and is recommended for fast changing systems while
a larger τn < 100 will delay forgetting and is recommended
for slowly changing systems. τd should be 5-10 times larger
than τn. The parameter η adjusts the amount of forgetting
and is recommended to set 0 < η ≤ 1, with lower values
of η if lack of input persistency is expected. The variable
α adjusts the sensitivity of the forgetting factor and should
be less than 0.1 with smaller values reducing the sensitivity.
Smaller values are recommended if the system has noisy
measurements.

Algorithm 1 RLS-VRF using the F-test (RLS/FTVRF)
Initialize: θ0 ∈ Rn×1, P0 ∈ Rn×n positive-definite, τd >
τn ≥ p, η > 0, α > 0, k = 0, and a buffer of τd + 1
previous errors
while k ≥ 0 do

Measure yk ∈ Rp×1

ek ← yk − φkθk
Add ek to error buffer and remove oldest entry
Compute sample covariance matrices Στn ∈ Rp×p,

Στd ∈ Rp×p from previous τn + 1 and τd + 1 errors from
buffer

if k ≥ τd + 1 then
Compute a, b, and c using (12)
g ← (13)

else
g ← 0

end if
βk ← 1 + ηg1[g]
Lk ← βkPk
θk+1 ← θk + Pk+1φ

T
k (yk − φkθk)

Pk+1 ← Lk − LkφT
k (Ip + φkLkφ

T
k )−1φkLk

φk+1 ← Update regressor φk with current measure-
ment and input

k ← k + 1
end while

IV. EQUIVALENCE TO THE RLS/RMSVRF FUNCTION

In this section, we show that RLS/RMSVRF used in [13],
[16] is a special case of RLS/FTVRF.

Proposition 4.1: Assume E[e(θ)] = 0. For p = 1 and
α = 1−Fτn,τd(1), the variable-rate forgetting function given
in [13], [16] is a special case of (13).

Proof: From (13), it follows that

g
4
=

√
τn
τd

tr
(
ΣτnΣ−1

τd

)
c

−
√
F−1
pτn,b

(1− α),

=

√
σ2
τn

σ2
τd

−
√
F−1
τn,τd(1− α),

=

√√√√ 1
τn

∑k
i=k−τn e

2
i (θi)

1
τd

∑k
i=k−τd e

2
i (θi)

−
√
F−1
τn,τd(1− α),

=

√√√√ 1
τn

∑k
i=k−τn e

2
i (θi)

1
τd

∑k
i=k−τd e

2
i (θi)

− 1.

For the suggested values of τn and τd given in [16], the
forgetting function is equivalent to using a significance level
of α ≈ 0.5, and is equal to 0.5 in the limit of the window
sizes limτn,τd→∞ Fτn,τd(1) = 0.5. A significance level of
α = 0.5 means that 50% of the time, we conclude that
σ2
τn > σ2

τd
when it is not true, causing forgetting to occur

when it is not needed. This may lead to instability of the
RLS/RMSVRF algorithm if the forgetting were to occur
under nonpersistent excitation.

V. EXAMPLES

To demonstrate RLS/FTVRF, we use a similar example to
the one used in [9]. Consider a mass-spring-damper system
with M = 5 kg, K = 1 N

m , and C = 1 N s
m . After 100

steps, the system parameters change to K = 10 N
m , and

C = 0.01 N s
m . The discrete-time transfer function is given

by

Gk(q) =

{
0.4606q+0.4307
q2−1.64q+0.8187 , k < 100

0.4218q+0.4215
q2−0.3116q+0.998 , k ≥ 100,

(14)

where q is the forward shift operator. We compare
RLS/FTVRF to RLS with a constant-rate forgetting factor
(RLS/CRF) of λ = 0.99 under noiseless measurements,
noisy measurements, and nonpersistent inputs. We also com-
pare to RLS/RMSVRF under noisy measurements. For all
cases, θ0 = 05×1, P0 = 100I5, τn = 10, τd = 80, η = 1,
and α = 0.001. The regressor is implemented as φk =[
yk−1 yk−2 uk uk−1 uk−2

]
so that the coefficients of

the transfer function (14) are identified in the parameter
vector θk.

A. Noiseless Measurements
Let the input into (14) be uk ∼ N (0, 1). First, comparing

to RLS/CRF, from Figure 1 the parameters for RLS/FTVRF
converge in less than 20 steps after the parameter change
at k = 100. For RLS/CRF, the parameters are still not
converged after 200 steps. Notice for RLS/FTVRF that once
the prediction error increases, forgetting is enabled and
tr(Pk) increases as past data is given lower weight. Figure
2 shows the median, and 5th and 95th percentiles of 1000
Monte Carlo simulations of RLS/FTVRF. Notice that all
simulations converge to the true parameters in less than 20
steps.
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Fig. 1. Noiseless measurements. Estimated parameters θk , trace of
RLS covariance tr(Pk), forgetting factor λk , and prediction error ek for
RLS/FTVRF and RLS/CRF.
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Fig. 2. Noiseless measurements. Estimated parameters θk , trace of
RLS covariance tr(Pk), forgetting factor λk , and prediction error ek for
RLS/FTVRF for 1000 simulations. The red line is the median and the upper
and lower bounds are the 95th and 5th percentiles, respectively.

B. Noisy Measurements

Let the input into (14) be uk ∼ N (0, 1). Now the
measurements are corrupted by noise νk ∼ N (0, 0.05). From
Figure 3 the parameters for RLS/FTVRF converge in less
than 20 steps after the parameters change at k = 100 despite
the noisy measurements. For RLS/CRF, the parameters are
still not converged after 200 steps. Notice for RLS/FTVRF
that once the prediction error increases, forgetting is enabled
and tr(Pk) increases as past data is given lower weight. The
forgetting factor takes longer to reach its minimum value
than in Figure 1, suggesting that the F-test limits the level
of forgetting due to the uncertainty in whether the variance
of errors has increased due to a parameter change or just
temporarily due to noise. Figure 4 shows the median, and
5th and 95th percentiles of 1000 Monte Carlo simulations of
RLS/FTVRF. Note that most of the simulation runs converge
to the true parameters in less than 50 steps.

Figure 5 compares RLS/FTVRF to RLS/RMSVRF. Notice
that RLS/RMSVRF enables forgetting at step 88 which
is before any of the model parameters change and that
forgetting also occurs at near the end of the simulation due
to noise. RLS/FTVRF takes 8 more steps for its error to
converge than RLS/RMSVRF, but convergence speed can be
improved by increasing the significance level to α = 0.01
without substantially risking forgetting before the parameter
change or due to noise. Figure 6 shows the median, and 5th
and 95th percentiles of 1000 Monte Carlo simulations of
the RLS/RMSVRF method. At step 80, 26% of simulations
forget when it is not needed. Many simulations also forget
long after the parameter change suggesting sensitivity to
noise.

C. Nonpersistently Exciting Input

Let the input into (14) be

uk =

{
N (0, 1), if k < 100

0, if k ≥ 100,
(15)

with measurements corrupted by noise νk ∼ N (0, 0.05). The
input is no longer persistently exciting once the parameters
change although the system may still be oscillating. In
Figure 7 notice that over many steps for RLS/CRF, tr(Pk)
continuously increases and will eventually cause RLS to
’blow-up’ while for RLS/FTVRF, tr(Pk) stays bounded.
Figure 8 shows the median, 5th and 95th percentiles of
1000 Monte Carlo simulations of RLS/FTVRF. Notice that
all simulations keep tr(Pk) bounded.

VI. CONCLUSION

This paper developed and investigated the performance of
RLS/FTVRF, which uses a variable-rate forgetting factor for
recursive least squares based on the F-test. The variable-rate
forgetting method uses a ratio of covariances of errors from a
short and long moving horizon to determine if the underlying
parameters have changed. A multivariate approximation of
the F-test is used to extend the method to the multi-output
case. The method was compared to a constant-rate forgetting
factor in noiseless, noisy, and nonpersistently exciting input
situations and also compared to the RLS/RMSVRF method
used in [13], [16]. It was shown that RLS/FTVRF enabled
forgetting when parameter parameter changes occurred and
prevented forgetting from occurring due to noise. In the
nonpersistent input case, the method kept RLS from forget-
ting and kept the eigenvalues of the RLS covariance matrix
bounded.
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Fig. 3. Noisy measurements. Estimated parameters θk , trace of RLS covari-
ance tr(Pk), forgetting factor λk , and prediction error ek for RLS/FTVRF
and RLS/CRF.
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Fig. 4. Noisy measurements. Estimated parameters θk , trace of RLS covari-
ance tr(Pk), forgetting factor λk , and prediction error ek for RLS/FTVRF
for 1000 simulations. The red line is the median, and the upper and lower
bounds are the 95th and 5th percentiles, respectively.
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Fig. 5. Noisy measurements. Estimated parameters θk , trace of RLS covari-
ance tr(Pk), forgetting factor λk , and prediction error ek for RLS/FTVRF
and RLS/RMSVRF.
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Fig. 6. Noisy measurements. Estimated parameters θk , trace of RLS covari-
ance tr(Pk), forgetting factor λk , and prediction error ek for RLS/RMSVRF
for 1000 simulations. The blue line is the median and the upper and lower
bounds are the 95th and 5th percentiles, respectively. Notice how forgetting
sometimes occurs even before the parameter change at 100 steps. Forgetting
also sometimes occurs long after the parameter change due to noise.

The F-test is known to be sensitive to non-normality of the
data used to compute the sample variances. Situations such as
nonwhite noise sources will need to be investigated in order
to determine the extent of this sensitivity in the context of
variable-rate forgetting. Additionally it is preferred to use a
method of computing sample variances such that no buffer
of past errors is needed for memory and computational per-
formance reasons. Incorporating a weighted moving average
of errors with a weighted sum of squares of errors as in

[19] with a modified version of the F-test would allow faster
computation of the forgetting factor.
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