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Abstract— Retrospective cost input estimation (RCIE) is an
adaptive input estimation technique that is based on the
minimization of a retrospective performance variable using
recursive least squares. In this paper, in order to obtain a
better understanding of the underlying mechanism and the
performance of RCIE, a decomposition of the retrospective
performance variable into the sum of a performance term and
a model-matching term is presented. Since this decomposition
involves time-varying input-output models, the construction of
LTV state space realizations from LTV input-output models as
well as the construction of LTV input-output models from LTV
state space models are presented. Analysis of the decomposition
shows how RCIE avoids convergence to an estimator that is
destabilizing or has poor performance. A numerical example is
used to illustrate the derived results and observations.

I. INTRODUCTION
In classical state estimation, the main objective is to esti-

mate the unmeasured states, taking advantage of knowledge
of the system dynamics as well as the process- and sensor-
noise statistics. It is often the case in practice, however, that,
in addition to stochastic inputs, the system has a deterministic
input. If this signal is known, then, in the spirit of the
separation principle, it can be replicated in the estimator.
If, however, this signal is unknown, then it is of interest
to obtain state estimates that are unbiased. Approaches to
this problem include unbiased Kalman filters, unknown input
observers, and sliding-mode observers [1]–[8].

An alternative approach, known as input estimation or
input reconstruction, is to estimate the unknown input and
replicate the estimated input in the state estimator. Input
estimation has not been as widely studied as state estimation,
but interest in this problem has grown steadily over the last
few decades [9]–[24]. In addition to providing more accurate
state estimates than other methods, input estimation yields an
estimate of the unknown input that is useful for applications
such as sensor/actuator health assessment, analysis of exoge-
nous disturbances, and tracking and navigation [25]–[27].

The present paper focuses on retrospective cost input esti-
mation (RCIE) developed in [23]. RCIE is an adaptive input
estimation technique based on a retrospective performance
variable, which depends on a target model that is based on the
closed loop system dynamics. By employing retrospective
cost optimization based on recursive least squares (RLS)
to update the coefficients of the input estimator, RCIE
replicates the estimated input in the Kalman filter and adapts
the estimator coefficients by using the innovations as the
error metric. As a special case, this technique was applied
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to single- and double-integrator dynamics to estimate the
velocity and acceleration of a maneuvering vehicle.

The goal of the present paper is to investigate the underly-
ing mechanism and performance of RCIE. In this direction,
this paper provides a detailed analysis of the decomposition
of the retrospective performance variable, which provides
insight into the achievable performance of RCIE. In partic-
ular, the retrospective performance variable is decomposed
into the sum of a performance term and a model-matching
term. The performance term consists of a closed-loop time-
domain transfer function, whereas the model-matching term
involves a closed-loop time-domain transfer function and
the target model, both driven by the virtual external input
perturbation. This work is motivated by the decomposition
of the retrospective performance variable given in [28] within
the context of retrospective cost adaptive control. However,
unlike [28], the system dynamics and target model in the
present paper are linear time-varying (LTV), and hence the
approach given in [28] is not applicable here.

The main contribution of the present paper is thus the
development of an alternative approach to the decomposition
of the retrospective performance variable that is applicable to
LTV models. This approach depends on the construction of
LTV state space realizations for LTV input-output models as
well as the construction of LTV input-output models for LTV
state space models. The existing results on LTV input-output
models in [29]–[34] are presented in terms of abstract input-
output maps and infinite power series, and thus are not di-
rectly implementable. Consequently, the present paper gives
simple and easily implementable algebraic results on LTV
input-output dynamics needed to derive the decomposition
of the retrospective performance variable in RCIE.

The numerical example given in the present paper shows
that RCIE drives the retrospective performance approxi-
mately to zero, where the performance and model-matching
terms, which are sign indefinite, are not necessarily small
but have approximately equal magnitudes and opposite signs.
Furthermore, it is shown that, as the estimator converges, the
virtual external input perturbation converges to zero, and thus
the model-matching and performance terms converge to zero.
The retrospective performance variable decomposition thus
shows how RCIE avoids convergence to an estimator that is
destabilizing or has poor performance.

II. RETROSPECTIVE COST INPUT ESTIMATION
Consider the LTV discrete-time system

xk+1 = Akxk +Bkuk +Gkdk +D1,kwk, (1)
yk = Ckxk +D2,kvk, (2)
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where xk ∈ Rlx is the unknown state, uk ∈ Rlu is the
known input, dk ∈ Rld is the unknown input, wk ∈ Rlw is
the unknown standard Gaussian white process noise, yk ∈
Rly is the measured output, and vk ∈ Rlv is the unknown
standard Gaussian white measurement noise. The matrices
Ak, Bk, Gk, D1,k, Ck, and D2,k are assumed to be known.
Define V1,k

4
= D1,kD

T
1,k and V2,k

4
= D2,kD

T
2,k. The goal is

to estimate dk and xk.
A. Input Estimation

Consider the Kalman filter forecast step

xfc,k+1 = Akxda,k +Bkuk +Gkd̂k, (3)
yfc,k = Ckxfc,k, zk = yfc,k − yk, (4)

where d̂k ∈ Rld is the input estimate, xda,k ∈ Rlx is the data-
assimilation state, xfc,k ∈ Rlx is the forecast state, zk ∈ Rly
is the innovations, and xfc,0 = 0. The input estimate d̂k is
obtained as the output of the input-estimation subsystem of
order nc given by

d̂k =

nc∑
i=1

Pi,kd̂k−i +

nc∑
i=0

Qi,kzk−i, (5)

where Pi,k ∈ Rld×ld and Qi,k ∈ Rld×ly . RCIE minimizes
zk+1 by updating Pi,k and Qi,k. The subsystem (5) can be
reformulated as

d̂k = Φkθk, (6)

where the regressor matrix Φk is defined by

Φk
4
=
[
d̂k−1 · · · d̂k−nc

zk · · · zk−nc

]
⊗ Ild ∈ Rld×lθ , (7)

the coefficient vector θk is defined by

θk
4
= vec

[
P1,k · · · Pnc,k Q0,k · · · Qnc,k

]
∈ Rlθ , (8)

and lθ
4
= l2dnc + ldly(nc+1), “⊗” is the Kronecker product,

and “vec” is the column-stacking operator. In terms of the
forward shift operator q, (5) can be written as

d̂k = Gd̂z,k(q)zk, (9)

where

Gd̂z,k(q)
4
= D−1

d̂z,k
(q)Nd̂z ,k (q), (10)

Dd̂z,k(q)
4
= Ildqnc − P1,kqnc−1 − · · · − Pnc,k, (11)

Nd̂z,k(q)
4
= Q0,kqnc +Q1,kqnc−1 + · · ·+Qnc,k. (12)

Next, define the filtered signals

Φf,k
4
= Gf,k(q)Φk, d̂f,k

4
= Gf,k(q)d̂k. (13)

Note that Gf,k is a filter of window length nf ≥ 1. Further
details of the filter Gf,k are given in the subsection II-C.
Define the retrospective performance variable

zrc,k(θ̂)
4
= zk −

(
d̂f,k − Φf,kθ̂

)
, (14)

where the coefficient vector θ̂ ∈ Rlθ denotes a variable for
optimization. The retrospective performance variable zrc,k(θ̂)

is used to determine the updated coefficient vector θk+1 by
minimizing a function of zrc,k(θ̂). The optimized value of
zrc,k is thus given by

zrc,k(θk+1) = zk −
(
d̂f,k − Φf,kθk+1

)
. (15)

Next, define the retrospective cost function

Jk(θ̂)
4
=

k∑
i=0

λk−i
(
zTrc,i(θ̂)Rzzrc,i(θ̂) + θ̂TΦT

i RdΦiθ̂
)

+ λk+1(θ̂ − θ0)TRθ(θ̂ − θ0), (16)

where Rz ∈ Rly×ly and Rθ ∈ Rlθ×lθ are positive definite,
Rd ∈ Rld×ld is positive semi-definite, and λ ∈ (0, 1] is the
forgetting factor. Define P0

4
= R−1θ . Then, for all k ≥ 0,

the cumulative cost function Jk(θ̂) has the unique global
minimizer θk+1 given by the RLS update

Pk+1 =
1

λ
(Pk − PkΦ̃T

k ΓkΦ̃kPk), (17)

θk+1 = θk − PkΦ̃T
k Γk(z̃k + Φ̃kθk), (18)

Γk
4
= (λR̃−1 + Φ̃kPkΦ̃T

k )−1, Φ̃k
4
=

[
Φf,k

Φk

]
, (19)

R̃
4
=

[
Rz 0
0 Rd

]
, z̃k

4
=

[
zk − d̂f,k

0ld×1

]
. (20)

Using the updated coefficient vector given by (18), the
estimated input at step k + 1 is given by replacing k by
k + 1 in (6). We choose θ0 = 0, and thus d̂0 = 0.

B. State Estimation
In order to estimate the state xk, xfc,k given by (3) is used

to obtain the estimate xda,k of xk given by the Kalman filter
data-assimilation step

xda,k = xfc,k +Kda,kzk, (21)

where the state estimator gain Kda,k ∈ Rlx×ly is given by

Kda,k = −Pf,kC
T
k (CkPf,kC

T
k + V2,k)−1, (22)

the data-assimilation error covariance Pda,k ∈ Rlx×lx and
the forecast error covariance Pf,k ∈ Rlx×lx are given by

Pda,k = (I +Kda,kCk)Pf,k, (23)

Pf,k+1 = AkPda,kA
T
k + V1,k + Ṽk, (24)

where Ṽk
4
= Gk var (dk− d̂k)GT

k +Ak cov (xk−xda,k, dk−
d̂k)GT

k +Gk cov (xk − xda,k, dk − d̂k)AT
k , and Pf,0 = 0.

C. The Filter Gf
We choose Gf,k(q) to be the FIR filter

Gf,k(q) =

nf∑
i=1

Hi,k
1

qi
, (25)

where, for all k ≥ 0,

Hi,k
4
=


CkGk−1, k ≥ i = 1,

Ck

i−1∏
j=1

Ak−j

Gk−i, k ≥ i ≥ 2,

0, i > k,

(26)

Ak
4
= Ak(I +Kda,kCk). (27)
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This particular choice for the filter was given in [23] and is
observed to be effective in the successful implementation of
the RCIE algorithm.

III. RELATION BETWEEN LTV INPUT-OUTPUT
MODELS AND LTV STATE SPACE MODELS

This section gives the construction of LTV state space re-
alizations for LTV input-output models and the construction
of LTV input-output models for LTV state space models. The
proofs of these results are omitted due to space limitations.

Definition 3.1: Consider the LTV state space model

xk+1 = Akxk +Bkuk, (28)
yk = Ckxk + Ekuk, (29)

where, xk ∈ Rn is the state, uk ∈ Rm is the input, and
yk ∈ Rp is the output. Define the observability matrix

Ok
4
=


Ck

Ck+1Ak
Ck+2Ak+1Ak

...
Ck+n−1Ak+n−2 . . . Ak+1Ak

 . (30)

Assume that, for all k ≥ 0, rankOk = n. Then, (28) and
(29) is completely observable.

Definition 3.2: Let Gk(q) be the time-domain transfer
function of an LTV system at step k. Assume that, for all
k ≥ 0, Gk(q) = D−1k (q)Nk(q), where

Dk(q)
4
= qn +D1,kqn−1 + · · ·+Dn,k, (31)

Nk(q)
4
= N0,kqn +N1,kqn−1 + · · ·+Nn,k, (32)

and, for all k ≥ 0, D1,k, . . . , Dn,k ∈ Rp×p and
N0,k, . . . , Nn,k ∈ Rp×m. Then, for all k ≥ 0,

yk+n +D1,kyk+n−1 + · · ·+Dn,kyk

= N0,kuk+n + · · ·+Nn,kuk (33)

is an input-output model of Gk(q).
Proposition 3.3: Assume that (28) and (29) is completely

observable. Then, for all k ≥ 0, an input-output model
corresponding to (28) and (29) is given by (33) where,

Ni,k =


H0,k+n, i = 0,

Hi,k+n−i +

i−1∑
j=0

Di−j,kHj,k+n−i, 1 ≤ i ≤ n,

(34)[
Dn,k · · · D1,k

]
= −Ck+nΨn,0,kOL

k , (35)

Hi,k
4
=

{
Ek, i = 0,
Ck+iΨi,1,kBk, i ≥ 1,

(36)

Ψi,j,k
4
=

 Ak+i−1Ak+i−2 . . . Ak+j , i > j,
I, i = j,
0, i < j,

(37)

and OL
k is a left inverse of Ok defined in (30).

Proposition 3.4: A state space model corresponding to the
input-output model in (33) is given by (28) and (29), where,
for all k ≥ 0,

Ak =


0 · · · 0 −Dn,k

I · · · 0 −Dn−1,k−1
... · · ·

...
...

0 · · · I −D1,k−n+1

 , (38)

Bk =


Nn,k −Dn,kN0,k−n

Nn−1,k−1 −Dn−1,k−1N0,k−n
...

N1,k−n+1 −D1,k−n+1N0,k−n

 , (39)

Ck =
[
0 · · · 0 I

]
, Ek = N0,k−n, (40)

and, for all k < 0, D1,k = · · · = Dn,k = N0,k = · · · =

Nn,k = 0. Furthermore, xk =
[
xT1,k xT2,k · · · xTn,k

]T
,

where, for all i = 1, . . . , n,

xi,k = yk+n−i +

n−i∑
j=1

Dj,k−iyk+n−i−j

−
n−i∑
j=0

Nj,k−iuk+n−i−j . (41)

IV. DECOMPOSITION OF THE RETROSPECTIVE
PERFORMANCE VARIABLE

This section shows that the retrospective performance
variable can be decomposed into the sum of a performance
term and a model-matching term.

Definition 4.1: Let D1,k, . . . , Dn,k ∈ Rp×p, let
N0,k, . . . , Nn,k ∈ Rp×m, let yk−n, . . . , y−1 ∈ Rp be
initial output data, let (θk)∞k=−n ∈ Rr, and, for all k ≥ −n,
let uk : Rr → Rm. Then, the FIA sequence (yk(θk))∞k=0 is
given by the fixed-input-argument (FIA) filter

yk(θk) +D1,kyk−1(θk−1) + · · ·+Dn,kyk−n(θk−n)

= N0,kuk(θk) + · · ·+Nn,kuk−n(θk), (42)

where, for all k ∈ [−n,−1], yk(θk)
4
= yk.

Note that, in (42), at each step k, the arguments
of uk−n, . . . , uk are fixed at the current value θk. In
contrast, the left hand side defines the current out-
put yk(θk) which depends on the past output values
yk−n(θk−n), . . . , yk−1(θk−1). For convenience, (42) is writ-
ten as either Dk(q)yk(θk) = Nk(q)uk(θk) or yk(θk) =

Gk(q)uk(θk), where Gk(q)
4
= D−1k (q)Nk(q).

Define the virtual external input perturbation

d̃k(θk+1)
4
= d̂k+nc

− Φk+nc
θk+1. (43)

Let d̃f,k(θk+1) be given by the FIA filter

d̃f,k(θk+1) = Gf,k(q)d̃k(θk+1), (44)

where Gf,k(q)
4
= q−ncGf,k(q). Using (44), (15) can be

written as

zrc,k(θk+1) = zk − d̃f,k(θk+1). (45)
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The following matrices are used in Theorem 4.1.

Âk
4
=


0 · · · 0 Pnc,k+1

I · · · 0 Pnc−1,k
... · · ·

...
...

0 · · · I P1,k−nc+2

 , Ĝ 4=

I
0
...
0

 ∈ Rldnc×ld ,

(46)

B̂k
4
=


Qnc,k+1 + Pnc,k+1Q0,k−nc+1

Qnc−1,k + Pnc−1,kQ0,k−nc+1

...
Q1,k−nc+2 + P1,k−nc+2Q0,k−nc+1

 , (47)

Ĉ
4
=
[
0 · · · 0 I

]
∈ Rld×ldnc , D̂k

4
= Q0,k−nc+1, (48)

Ba,k
4
=
[
Gk D1,k −BkD2,k

]
, Bk

4
= −AkKda,k, (49)

Da,k
4
=
[
0ly×ld 0ly×lw −D2,k

]
, (50)

Ãk
4
=

[
Âk −B̂kCk
−GkĈ Ak +GkD̂kCk

]
, C̃k

4
=
[
0 −Ck

]
, (51)

B̃k
4
=

[
Ĝ B̂kDa,k

0 Ba,k −GkD̂kDa,k

]
, D̃k

4
=
[
0 Da,k

]
. (52)

The following result presents the retrospective performance
variable decomposition, which shows that the retrospective
performance variable is a combination of the closed-loop
performance and the extent to which the updated closed-
loop transfer function from d̃k(θk+1) to zk matches the filter
Gf,k(q). Henceforth, Gf,k(q) is called the target model since
it serves as the target for the closed-loop transfer function
from d̃k(θk+1) to zk.

Theorem 4.1: For all k ≥ 0,

zrc,k(θk+1) = zpp,k(θk+1) + zmm,k(θk+1), (53)

where the performance term zpp,k(θk+1) and the model-
matching term zmm,k(θk+1) are defined as

zpp,k(θk+1)
4
= Gzu,k(q)uk, (54)

zmm,k(θk+1)
4
= Gzd̃,k(q)d̃k(θk+1)−Gf,k(q)d̃k(θk+1), (55)

and uk
4
=
[
dTk wT

k vTk
]T
. The time-domain transfer

functions Gzu,k and Gzd̃,k are given by[
Gzd̃,k Gzu,k

] 4
= Gzũ,k, (56)

where Gzũ,k is the time-domain transfer function of the
system represented by the state space model

x̃k+1 = Ãkx̃k + B̃kũk, (57)

zk = C̃kx̃k + D̃kũk, (58)

ũk
4
=
[
d̃Tk (θk+1) uTk

]T
, x̃0

4
=
[
d̂Tnc−1 · · · d̂T0 xT0

]T
, and

Ãk, B̃k, C̃k, and D̃k are defined in (51) and (52).
Proof: Note that (2) and (4) imply that

zk = −Ckefc,k −D2,kvk, (59)

where efc,k
4
= xk − xfc,k. Note that it follows from (1)–(4)

and (21) that

efc,k+1 = Akefc,k +Gk(dk − d̂k) +D1,kwk −BkD2,kvk,
(60)

where Ak and Bk are defined in (27) and (49) respectively.
Then, (60) and (59) can be written as

efc,k+1 = Akefc,k +Ba,kuk −Gkd̂k, (61)
zk = −Ckefc,k +Da,kuk, (62)

where Ba,k and Da,k are defined in (49) and (50). Next, it
follows from (5) that

Φk+ncθk+1 =

nc∑
i=1

Pi,k+1d̂k+nc−i +

nc∑
i=0

Qi,k+1zk+nc−i,

which when substituted in (43) yields

d̂k+nc = d̃k(θk+1) +

nc∑
i=1

Pi,k+1d̂k+nc−i

+

nc∑
i=0

Qi,k+1zk+nc−i. (63)

Using (11) and (12), it follows from (63) that

d̂k+nc
= d̃k(θk+1) + d̂k+nc

−Dd̂z,k+1(q)d̂k

+Nd̂z,k+1(q)zk,

which, using (10), can be rewritten as

d̂k = D−1
d̂z,k+1

(q)d̃k(θk+1) +Gd̂z,k+1(q)zk. (64)

Note that (11), (12), and Proposition 3.4 imply that a state
space model corresponding to (64) is given by

x̂k+1 = Âkx̂k + Ĝd̃k(θk+1) + B̂kzk, (65)

d̂k = Ĉx̂k + D̂kzk, (66)

where Âk, Ĝ, B̂k, Ĉ, and D̂k are defined in (46), (47), and
(48), and x̂0

4
=
[
d̂Tnc−1 · · · d̂T0

]T
. Substituting (66) and

(62) in (61) yields

efc,k+1 = (Ak +GkD̂kCk)efc,k −GkĈx̂k
+ (Ba,k −GkD̂kDa,k)uk. (67)

Similarly, substituting (62) in (65) yields

x̂k+1 = Âkx̂k − B̂kCkefc,k + Ĝd̃k(θk+1) + B̂kDa,kuk.
(68)

Define x̃k
4
=
[
x̂Tk eTfc,k

]T
. Thus, (57) and (58) follow

from (67), (68), and (62). Since Gzũ,k is the time-domain
transfer function of the system represented by (57) and (58),
it follows from (56) that

zk = Gzu,k(q)uk +Gzd̃,k(q)d̃k(θk+1). (69)

Finally, substituting (69) in (45) yields (53).

Note that the expression for Gzũ,k is obtained using (51)
and (52) in accordance with Definition 3.2 and Proposition
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3.3. In order to apply Proposition 3.3, (57) and (58) must be
converted to a completely observable state space model. The
time-varying Eigensystem Realization Algorithm explained
in Section IV of [35] provides a method to reduce any given
LTV state space model to a minimal state space model.

In order to analyse the retrospective performance variable
decomposition, assume that Rz = I , and λ = 1. Then, it
follows from (16) and (53) that

Jk(θk+1) =

k∑
i=0

(
zTpp,i(θi+1)zpp,i(θi+1)

+ zTmm,i(θi+1)zmm,i(θi+1) + 2zTpp,i(θi+1)zmm,i(θi+1)

+ θTi+1ΦT
i RdΦiθi+1

)
+ (θk+1 − θ0)TRθ(θk+1 − θ0). (70)

Note that the first two terms in the sum are nonnegative,
whereas the third term can have arbitrary sign. This suggests
that RLS can minimize Jk(θk+1) by making the third term
negative while the nonnegative terms remain large. In the
case where Rθ and Rd is small, using RLS to minimize (70)
yields, for k ≥ k0 ∈ R,

zrc,k(θk+1) ≈ 0, (71)

which, using (53), implies that

zpp,k(θk+1) ≈ −zmm,k(θk+1). (72)

Proposition 4.1: Assume that lim
k→∞

θk exists and Φk is

bounded. Then lim
k→∞

d̃k(θk+1) = 0.

Proof: Equations (6) and (43) imply that

d̃k−nc
(θk+1) = d̂k − Φkθk+1 = Φk(θk − θk+1).

Defining α
4
= supk≥0 σmax(Φk), where σmax denotes the

maximum singular value, it follows that

‖d̃k−nc
(θk+1)‖ ≤ σmax(Φk)‖θk − θk+1‖ = α‖θk − θk+1‖.

Hence,

lim
k→∞

‖d̃k−nc
(θk+1)‖ ≤ α lim

k→∞
‖θk − θk+1‖ = 0,

and thus limk→∞ d̃k−nc
(θk+1) = 0, which in turn implies

that limk→∞ d̃k(θk+1) = 0.

V. NUMERICAL EXAMPLE

Consider the state space model given by (1), (2), where,
for all k ≥ 0,

Ak
4
=

[
0 1

(0.9)k+1 (0.5)k+1

]
, Gk = G

4
=

[
0
1

]
, (73)

Ck = C
4
=
[
1 1.1

]
, D2,k = D2

4
= 0.01, (74)

uk = wk = 0, vk is standard Gaussian white noise, and
x0 =

[
0.2 0.2

]T
. Let nc = 6, nf = 2, λ = 1, Rθ =

10−4I13, Rd = 10−6, Rz = 1, Ṽ = 10−2I2, and let the
unknown input be dk = 1 + sin(0.3k).

Plots (a) and (b) in Figure 1 show that, after an initial finite
number of steps, (71) and (72) hold true. Plot (c) in Figure
1 shows that the difference between zrc and zpp + zmm is

negligible, and thus confirms (53). The convergence of d̂, θ,
and d̃ is depicted in Figure 2. Note that, in these plots, the
time step at which the RCIE algorithm is started is assumed
as the 0-th step. In order to observe the steady-state behavior
of the time-domain transfer functions Gzu and Gzd̃ after
the estimator coefficient θ converges, the magnitude plots of
Gzd,200, Gzw,200, and Gzv,200 are shown in Figure 3, where[
Gzd,200 Gzw,200 Gzv,200

]
= Gzu,200, and the extent to

which the frequency response of Gzd̃,200 matches with that
of Gf,200 is shown in Figure 4.
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Fig. 1. (a) For all k ≥ 21, zrc,k ≈ 0, which confirms (71). (b) For all
k ≥ 21, zpp,k ≈ zmm,k, which confirms (72). Furthermore, for all k ≥ 35,
zpp,k ≈ zmm,k ≈ 0. (c) For all k ≥ 0, |zrc,k − (zpp,k + zmm,k)| ≤
3× 10−14, which confirms (53).
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Fig. 2. (a) After the initial transient period of about 25 steps, d̂ follows
d. (b) The estimator coefficients θ converges after about 25 steps. (c) The
virtual external input perturbation d̃ converges to zero after about 25 steps,
in accordance with Proposition 4.1.
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