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Abstract— This paper considers system identification in the
presence of an unmeasured, unknown, and unmatched multi-
tone harmonic disturbance with completely unknown spectrum.
It is shown that the identified model possesses spurious poles
at the disturbance frequencies that are cancelled by coincident,
spurious zeros. Although the presence of the spurious poles
is expected, this paper shows that the free response of the
identified model is identical—in frequencies, amplitudes, and
phases—to the free-plus-forced response of the true system.
Consequently, by retaining—rather than cancelling—the co-
incident, spurious poles and zeros, the identified model has
the ability to forecast the future response to an unknown
harmonic input over a prediction horizon during which the
harmonic disturbance persists. A numerical example illustrates
the usefulness of this property to model predictive control with
concurrent system identification for rejecting unmeasured, un-
known, and unmatched harmonic disturbances with completely
unknown spectrum.

I. INTRODUCTION

One of the main challenges to system identification is
unmeasured and unknown disturbances with unknown spec-
trum, which degrades the accuracy of the identified model.
One of the goals of research in system identification is thus
to mitigate the impact of these signals on the achievable
model accuracy. The present paper investigates a surprising
phenomenon that not only contradicts this belief, but clearly
shows that the “corruption” of the identified model by
the unmodeled disturbance actually enhances the predictive
ability of the identified model with substantial benefits for
model predictive control.

For system identification in the presence of an unknown
sinusoidal disturbance, this paper shows that the identified
model possesses spurious poles at the disturbance frequency
that are cancelled by coincident, spurious zeros. Although
the presence of these spurious poles is expected, the main
result of this paper shows that the free response of the
identified model is identical—in frequencies, amplitudes, and
phases—to the free-plus-forced response of the true system.
Consequently, by retaining—rather than cancelling—the co-
incident, spurious poles and zeros, the identified model has
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the ability to forecast the future response to an unknown
harmonic input with completely unknown spectrum.

The ability of the identified model to correctly forecast the
future free-plus-forced response of the true system has funda-
mental implications for harmonic disturbance rejection when
the disturbance spectrum is unknown but is stationary or
slowly changing. This problem has been widely studied using
a wide variety of methods, for example, [1], [2]. In contrast,
classical internal model control requires prior knowledge of
the frequency content of the harmonic disturbance [3].

The present paper is motivated by predictive cost adap-
tive control (PCAC) [4]–[6] for unmeasured, unknown, and
unmatched harmonic disturbances with unknown spectrum.
This approach employs online linear system identification
using recursive least squares. The linear system is assumed
to be disturbed by an unmeasured harmonic signal with
unknown frequencies, amplitudes, and phases. Since the
plant input consists of the known control input and the
unmodeled harmonic disturbance, it follows that the output
is corrupted by the response to the harmonic disturbance.
Consequently, the regression is based on an erroneous input
signal as well as a corrupted output signal.

Because of the unmodeled harmonic disturbance, the iden-
tified model includes pairs of complex conjugate poles at
the disturbance frequencies that are canceled by pairs of
coincident complex conjugate zeros. Normally, coincident,
spurious poles and zeros would be removed from the iden-
tified model. What is surprising, however, is the fact that,
with initial conditions provided by prior inputs and outputs,
the free response of the identified model exactly forecasts
the free-plus-forced response of the true system with the
harmonic disturbance. The present paper proves this fact for
first- and second-order systems with a single-tone harmonic
disturbance and demonstrates that the ability to forecast
the free-plus-forced response of the true system with the
harmonic disturbance enables MPC to reject the harmonic
disturbance despite the fact that it is unmeasured, unmatched,
and unknown with completely unknown spectrum.

II. A SURPRISING FEATURE OF THE IDENTIFIED MODEL

In this section, we illustrate the phenomenon described in
the previous section. As an illustrative example, consider the
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SISO system

yk = G(q)(uk + wk), (1)

where G is given by

G(q) =
q− 0.3

q2 − 1.4q + 0.58
. (2)

Note that, unlike the Z-transform variable, the time-domain,
forward-shift operator q captures the effect of nonzero initial
conditions without an additional term that displays the initial
condition. This distinction is discussed in [7].

The true system (1) is driven by the sum of a Gaus-
sian white-noise signal uk ∼ N (0, 10) and an unmodeled
sinusoid wk = sin 0.5k. The system (1) is simulated for
k ∈ [0, 1000], and samples of yk and uk are used to fit the
coefficients of G. Note that, since wk is unmodeled, the input
data uk used for regression are erroneous, and the output data
yk are corrupted by wk.

Although the model order is 2, we choose a 4th-order
model structure; using recursive least squares [8], the poles
and zeros of the identified model are shown in Figure 1. As
can be seen, the identified model correctly estimates the poles
and zeros of the true system. However, a pair of complex
conjugate poles on the unit circle are also evident; these
poles, which are accommodated by the model-order overpa-
rameterization, are not present in the true system and thus
are spurious. In addition, the pair of complex conjugate poles
are coincident with the spurious zeros. Close examination
reveals that the frequency of the spurious pole/zero pairs is
precisely the frequency of the unmodeled disturbance.
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Fig. 1. Poles and zeros of the true system G and the identified model.

Clearly, the spurious pole/zero pairs are an artifact of
the unmodeled disturbance. Since the poles and zero of the
true system are correctly identified, it appears that, upon
cancellation of the spurious pole/zero pairs, an acceptable
model is obtained. In fact, as shown below, a better strategy
from the point of view of prediction is to retain the spurious
pole/zero pairs.

Next, we simulate the identified model and compare its
response to the response of the true system. The identified
model and the true system are initialized with yk, uk data
obtained from a window of length 4 steps prior the end of
the previous simulation. In particular, without cancelling the
spurious poles and zeros, the identified model is simulated
with zero input, yielding the free response for the given initial

data Alternatively, the true system is simulated with input
consisting only of wk and with uk set to zero. The resulting
response yk of the true system is thus given by the sum of its
free response and forced response with initial yk, uk + wk

data obtained from a window of length 2 steps prior the
end of the previous simulation and with wk applied at all
subsequent steps. Figure 2 shows that the response of the
identified model and true system are identical. We examine
this phenomenon in the next section.
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Fig. 2. This plot shows that the free response of identified model and the
free-plus-forced response of the true system are identical. Note that, after the
initial transients, which are identical, the steady-state harmonic responses
are identical in frequency, amplitude, and phase.

III. IDENTIFIED MODELS WITH COINCIDENT POLE/ZERO
PAIRS

Figures 1 and 2 suggest that the spurious poles and
zeros that are present in the identified model and the initial
condition determined by a prior window of data are somehow
able to capture the forced response of the true system. To
examine this phenomenon more closely, we refer to the
spurious poles and zeros in the identified model as coincident
poles and zeros in order to reflect the fact that they exactly
cancel.

The following is the main result of this paper.
Proposition 1. Let G be a SISO transfer function of order

n, and define G̃
4
= GGpz, where Gpz is a transfer function

of order 2nω where

Gpz(q)
4
=

nω∏
i=1

q2 − 2 cosωiq + 1

q2 − 2 cosωiq + 1
. (3)

Furthermore, for all k > kb, let yk denote the response of G
with initial condition determined by yka

, . . . , ykb
and uka

+
wka

, . . . , ukb
+wkb

, and with input ukb+1+wkb+1, . . . , uk0
+

wk0
, where

wk
4
=

nω∑
i=1

γi sinωik, (4)

ka
4
= k0 − 2n− 2nω + 1, (5)

kb
4
= k0 − n− 2nω. (6)

In addition, for all k > k0 let ỹk denote free response of
G̃ with initial condition determined by ykb+1, . . . , yk0 and
ukb+1, . . . , uk0 . Furthermore, for all k > k0 let uk = 0.
Then, for all k > k0, ỹk = yk.
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IV. PROOF OF PROPOSITION 1 FOR n = 1 AND n = 2
WITH nω = 1

In this section we prove Proposition 1 for first- and second-
order transfer functions of the form

G1(q) =
β1

q + α1
, (7)

G2(q) =
β1q + β2

q2 + α1q + α2
, (8)

with a single harmonic disturbance. The proof involves the
calculation of the free response of a transfer function G
cascaded with coincident poles and zeros on the unit circle
as well as the calculation of the free-plus-forced response of
G, where the forcing is a harmonic signal whose frequency is
the same as the frequency of the coincident poles and zeros.
This calculation involves a sequence of initial steps leading
to a recursion that is valid for all subsequent time steps. The
proof thus entails showing that these sequences are identical.

We show the details for n = 2. The details in the case
n = 1 are similar and simpler, and are thus omitted.

The proof of Proposition 1 uses the following identity.
Fact:

sin(α+ 2)ω ≡ 2 sin(α+ 1)ω cosω − sin(α)ω. (9)

Proof. Using (sinx) cos y ≡ 1
2 [sin(x − y) + sin(x + y)]

[9, p. 236]

sin(α+ 1)ω cosω =
1

2
[sin(α+ 1 + 1)ω

+ sin(α+ 1− 1)ω],

2 sin(α+ 1)ω cosω = sin(α+ 2)ω + sinαω,

sin(α+ 2)ω = 2 sin(α+ 1)ω cosω − sinαω.�

A. Proof of Proposition 1 for n = 2

Consider the system

G(q) =
b1q + b2

q2 + a1q + a2
. (10)

The output yk of (10) can be written as

yk+1 =

1∑
i=0

(bi+1uk−i + bi+1wk−i − ai+1yk−i). (11)

The outputs yk0−5, yk0−4 and inputs uk0−5, . . . , uk0 are
arbitrary, and

uk = 0, k > k0. (12)

The disturbance is wk = γ sinωk. Since γ can be absorbed
into the bi coefficients in (11), it follows that it suffices to
use

wk = sinωk, (13)

for the proof.
It follows from (11)–(13) that for k0 − 4 ≤ k < k0

yk+1 =

1∑
i=0

[bi+1uk−i + bi+1 sinω(k − i)− ai+1yk−i],

(14)

for k0 ≤ k < k0 + 2

yk0+1 = −a1yk0 − a2yk0−1 + b1uk0

+ b1 sinω(k0) + b2uk0−1 + b2 sinω(k0 − 1),
(15)

yk0+2 = −a1yk0+1 − a2yk0
+ b1 sinω(k0 + 1)

+ b2uk0
+ sin b2ω(k0), (16)

and for k ≥ k0 + 2

yk+1 =

1∑
i=0

[bi+1 sinω(k − i)− ai+1yk−i]. (17)

Next, consider the cascaded system

G̃(q) = G(q)
q2 − 2 cosωq + 1

q2 − 2 cosωq + 1
, (18)

whose output ỹk can be written as

(q2 − 2 cosωq + 1)ỹk+1 = (q2 − 2 cosωq + 1)·
(−a1ỹk − a2ỹk−1 + b1uk + b2uk−1)

ỹk+1 = 2ỹk cosω − ỹk−1

+

1∑
i=0

bi+1(uk−i − 2uk−1−i cosω + uk−2−i)

+

1∑
i=0

ai+1(2ỹk−1−i cosω − ỹk−i − ỹk−2−i). (19)

Setting k = k0 in (19) yields

ỹk0+1 = −a1yk0 − a2yk0−1 + b1uk0 + b2uk0−1

+ 2yk0 cosω − yk0−1 + 2a1yk0−1 cosω

+ 2a2yk0−2 cosω − 2b1uk0−1 cosω

− 2b2uk0−2 cosω − a1yk0−2 − a2yk0−3

+ b1uk0−2 + b2uk0−3. (20)

Substituting for yk0−1 in the 6th term in (20) using (14)
yields

ỹk0+1 = −a1yk0 − a2yk0−1 + b1uk0 + b2uk0−1

+ 2yk0 cosω − b1 sinω(k0 − 2)− b2 sinω(k0 − 3)

+ 2a1yk0−1 cosω + 2a2yk0−2 cosω

− 2b1uk0−1 cosω − 2b2uk0−2 cosω. (21)

Substituting for yk0
in the 4th term in (21) using (14) yields

ỹk0+1 = −a1yk0 − a2yk0−1 + b1uk0 + b2uk0−1

+ 2b1 sinω(k0 − 1) cosω − b1 sinω(k0 − 2)

+ 2b2 sinω(k0 − 2) cosω − b2 sinω(k0 − 3).
(22)

Using (9) and (15) in (22) yields

ỹk0+1 = −a1yk0 − a2yk0−1 + b1uk0 + b2uk0−1

+ b1 sinω(k0) + b2 sinω(k0 − 1)

= yk0+1. (23)
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Using (12), (23), and setting k = k0 + 1 in (19) yields

ỹk0+2 = −a1yk0+1 − a2yk0 + b2uk0 + 2yk0+1 cosω

− yk0 + 2a1yk0 + 2a2yk0−1 cosω − 2b1uk0 cosω

− 2b2uk0−1 cosω − a1yk0−1 − a2yk0−2

+ b1uk0−1 + b2uk0−2. (24)

Substituting for yk0 and yk0+1 in the 5th and 4th terms in
(24), using (14) and (15), respectively, yields

ỹk0+2 = −a1yk0+1 − a2yk0
+ b2uk0

+ 2b1 sinω(k0) cosω

− b1 sinω(k0 − 1) + 2b2 sinω(k0 − 1) cosω

− b2 sinω(k0 − 2). (25)

Using (9) and (16) in (25) yields

ỹk0+2 = −a1yk0+1 − a2yk0 + b2uk0

+ b1 sinω(k0 + 1) + b2 sinω(k0)

= yk0+2. (26)

Using (12), (23), (26), and setting k = k0 + 2 in (19)
yields

ỹk0+3 = −a1yk0+2 − a2yk0+1 + 2yk0+2 cosω − yk0+1

+ 2a1yk0+1 cosω + 2a2yk0 cosω − 2b2uk0 cosω

− a1yk0 − a2yk0−1 + b1uk0 + b2uk0−1. (27)

Substituting for yk0+1 and yk0+2 in the 4th and 3rd terms
in (27), using (15) and (16), respectively, and using (9) and
(17) yields

ỹk0+3 = −a1yk0+2 − a2yk0+1

+ b1 sinω(k0 + 2) + b2 sinω(k0 + 1)

= yk0+3. (28)

Using (12), (23), (26), (28), and setting k = k0 +3 in (19)
yields

ỹk0+4 = −a1yk0+3 − a2yk0+2 + 2yk0+3 cosω − yk0+2

+ 2a1yk0+2 cosω + 2a2yk0+1 cosω

− a1yk0+1 − a2yk0
+ b2uk0

. (29)

Substituting for yk0+2 and yk0+3 in the 4th and 3rd terms
in (29), using (16) and (17), respectively, and using (9) and
(17) yields

ỹk0+4 = −a1yk0+3 − a2yk0+2

+ 2b1 sinω(k0 + 3) + b2 sinω(k0 + 2)

= yk0+4. (30)

Using (12), (23), (26), (28), (30), and setting k = k0 +
4 + p, where p ≥ 0 in (19), yields

ỹk0+5+p = −a1yk0+4+p − a2yk0+4+p

+ 2yk0+4+p cosω − yk0+3+p

+ 2a1yk0+3+p cosω + 2a2yk0+2+p cosω

− a1yk0+2+p − a2yk0+1+p. (31)

Substituting for yk0+3+p and yk0+4+p in the 4th and 3rd
terms in (31), using (17), respectively, and using (9) and
(17) yields

ỹk0+5+p = −a1yk0+4+p − a2yk0+3+p

+ b1 sinω(k0 + 4 + p) + b2 sinω(k0 + 3 + p)

= yk0+5+p. (32)

Since ỹk0+5+p = yk0+5+p for all p ≥ 0, this completes the
proof for n = 2, nω = 1. �

V. A NUMERICAL EXAMPLE

Consider the SISO system (1) where G is given by

G(q) =
(q2 − 1.4q + 0.58)(q2 − 0.4q + 0.13)

(q− 0.7)(q2 − 0.8q + 0.52)(q2 − 0.2q + 0.5)
.

(33)

The true system (33) is driven by the sum of a Gaussian
white-noise signal uk ∼ N (0, 10) and the unmodeled sum
of sinusoids

wk = sin 0.5k + 0.8 sin 1.1k + 1.3 sin 1.5k. (34)

The system (33) is simulated for k ∈ [0, 1000], and samples
of yk and uk are used to fit the coefficients of G. We use
a recursive least squares technique (RLS) with variable rate
forgetting (VRF) [10] to fit a model to the data. We choose
an 11th-order model structure to account for the 5th-order
system (33), and the disturbance (34), which is a sum of 3
sinusoids. The poles and zeros of the identified model are
shown in Figure 3. As can be seen, the identified model
correctly estimates the poles and zeros of the true system.
Three pairs of complex conjugate poles on the unit circle
with coincident zeros are also evident; these poles are at the
frequencies of the unmodeled disturbance.
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Fig. 3. Poles and zeros of the true system G, the disturbance frequencies,
and poles and zeros of the identified model.

Next, we simulate the identified model and compare its
response to the response of the true system. In particular, the
identified model, without cancelling the spurious poles and
zeros, is simulated with zero input. Therefore, the response
ỹk of the identified model is given by its free response with
initial yk, uk data obtained from a window of length 11 steps
prior the end of the previous simulation. In addition, the true
system is simulated with input consisting only of wk; uk is
set to zero. Therefore, the response yk of the true system is
given by the sum of its free response and forced response
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with initial yk, uk + wk data obtained from a window of
length 5 steps prior the end of the previous simulation and
with wk applied at all subsequent steps. Figure 4 shows that
the response of the identified model and true system are
identical. This example numerically verifies Proposition 1 for
n = 5 and nω = 3. That is for the case where the system
has order greater than 2, and the disturbance is a sum of
multiple sinusoids of different amplitudes and frequencies.
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Fig. 4. This plot shows that the free response of identified model is identical
to the free-plus-forced response of the true system. Note that, after the
initial transients, which are identical, the steady-state harmonic responses
are identical in frequency, amplitude, and phase.

VI. APPLICATION TO MODEL PREDICTIVE CONTROL

In this section we apply predictive cost adaptive control
(PCAC) [6], which combines online identification using RLS
and VRF with receding horizon optimization using quadratic
programming (QP). The receding horizon optimization in
PCAC utilizes the most recent model identified by RLS
without removing coincident, spurious poles and zeros aris-
ing from the harmonic disturbance. The following example
demonstrates the utility of these poles and zeros for harmonic
disturbance rejection.

Consider the system

yk = Gu(q)uk +Gw(q)wk, (35)

where

Gu(q)
4
=

q− 0.4

(q− 0.6)(q− 0.8)
, (36)

Gw(q)
4
= − 0.8(q− 0.2)

(q− 0.6)(q− 0.8)
. (37)

State space realizations for these transfer function show that
the disturbance wk is unmatched to the control uk. Let
wk = sin(0.35k) + 0.6 sin(0.8k + 0.1). The measurement
yk is corrupted by zero-mean, Gaussian white sensor noise
with standard deviation 0.01 yielding a signal to noise ratio
of approximately 44 dB. PCAC is applied with umin =
−5, umax = 5, ∆umin = −10, ∆umax = 10, ` =
60, Q̄ = 10I`−1, P̄ = 10, R = 0.01I`, η = 0.05,
τn = 60, τd = 200, n̂ = 10, θ0 = 10−212n̂×1, and
P0 = 103I2n̂. Output constraints are not considered. Figure
5 shows that approximately coincident, spurious poles and
zeros are identified on the unit circle, corresponding to the
spectrum of wk. Because of sensor noise, the closed-loop
identification of Gu is poor [11]. However, the identified
model correctly identifies coincident poles and zeros at the

frequencies in the disturbance wk. Figure 6 shows that, with
this model, which is updated at each time step, the harmonic
disturbance is asymptotically rejected. Consequently, the
approximately coincident, spurious poles and zeros enable
PCAC to reject the unmeasured, unknown, and unmatched
two-tone harmonic disturbance.
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Fig. 5. Poles and zeros of Gu and the identified model at k = 250. Because
of sensor noise, the closed-loop identification of Gu is poor. However,
the identified model correctly identifies coincident poles and zeros at the
frequencies in the disturbance wk .
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Fig. 6. Harmonic disturbance rejection using PCAC. The harmonic
disturbance wk is rejected asymptotically.

Next, in order to confirm that the approximately co-
incident, spurious poles and zeros on the unit circle are
truly enabling disturbance rejection, we apply PCAC with
fixed models that are identical to Gu(q) and Gw(q), which
requires setting n̂ = 2.

Figures 7 and 8 shows that the use of the model without
the approximately coincident, spurious poles and zeros on the
unit circle within PCAC does not yield asymptotic harmonic
disturbance rejection.

This numerical simulation shows that the presence of
approximately coincident, spurious poles and zeros is ben-
eficial even in the presence of an unmatched sinusoidal
disturbance, in the presence of sensor noise, and with an
overparametrizated model of the system. In particular, the
identification of the spurious poles and zeros facilitates har-
monic disturbance rejection within the framework of PCAC.
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Fig. 7. Harmonic disturbance rejection using PCAC with a fixed model
that is identical to Gu(q). Asymptotic disturbance rejection is not achieved.
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Fig. 8. Harmonic disturbance rejection using PCAC with a fixed model that
is identical to Gw(q). Asymptotic disturbance rejection is not achieved.

VII. CONCLUSIONS AND FUTURE RESEARCH

This paper described a surprising phenomenon arising
from system identification in the presence of an unmodeled
harmonic disturbance, namely, that the forced response of
the true system is predicted by the free-plus-forced response
of an identified model with the coincident, spurious poles
and zeros at the disturbance frequency. This suggests that
retaining the coincident, spurious poles and zeros has pre-
dictive value, thus contradicting the standard practice of
cancelling coincident poles and zeros. This observation was
encapsulated in Proposition 1, which was proved for first-
and second-order systems with a single harmonic distur-
bance. This proof entailed the derivation of recursions for
both systems. Future research will extend this proof through
induction as well as extending this approach to MIMO
systems.
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