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I. Introduction

A S THE second quarter of the 21st century approaches, two
schools of thought about control technology for aerospace

vehicles are emerging. One school holds that the essential concepts
and techniques of control are well established, and the principal
challenge now is to take advantage of increasingly powerful digital
technology to implement computationally demanding algorithms,
such as reinforcement learning and model predictive control. Reach-
ing this point has benefited from technological advances punctuated
by costly and sometimes tragic failures, for example, X-15 Flight
3-65-97, Northwest Orient 710, United Airlines 232, USAir 427, Air
France 447, US Airways 1549, Ariane 5 V88, Lion Air 610, NASA
Helios, and NASA X-43A, each of which involved control technol-
ogy, at least to some extent. Nevertheless, the lessons learned from
these events have vastly improved the safety, reliability, and perfor-
mance of subsequent flight vehicles.
The opposing school stresses that the challenges posed by future

flight systems will require operation in regimes and envelopes out-
side of current experience. These regimes range from subsonic flight
of flexible vehicles prone to aeroelastic instability [1] to hypersonic
vehicles subject to severe thermal loads [2,3]. The extreme conditions
of hypersonic flight, in particular, demand high-authority controllers
that can learn rapidly under uncertain conditions. Another example
is data-poor applications, such as turbulent combustion, for which
extreme events are difficult to predict [4]. Meeting these needs will
require technological innovation and new perspectives.
Motivated by the latter viewpoint, this article has three objectives.

The first is to examine the widely held view that performance is
the reason for feedback control, where performance may include
the desire to modify the open-loop dynamics, for example, through
stabilization. This article refines this view by demonstrating that,
while the goal of control is performance, the reason for feedback
control is to achieve the best possible performance in the face of
uncertainty. In other words, uncertainty is the underlying driver of

feedback. To support this perspective, we show that stabilization is
inherently an uncertainty problem.
The second objective is to explore consequences of the fact that

feedback control—by virtue of its ability to mitigate uncertainty—
can mask physical variations. Consequently, the cause of the success
or failure of a feedback controller may be hidden from the designer
and operator.
Finally, to understand and expose these hidden effects, the last

objective is to propose a call to action to establish a culture of
scientifically meaningful feedback control experimentation. Unlike
hardware demonstrations for education, and unlike flight testing for
validation and verification, these experiments would be aimed at
probing the ability of a feedback controller to provide robustness to
physical variations that were not included in the control-oriented
model, even to the point of probing the failure boundary. This

objective is motivated by the fact that the failure of a feedback control
systemmayhave destructive consequences, and thus it is important to
expose the potential weaknesses of a closed-loop system. Accord-
ingly, this article is aimed at the challenges faced by feedback control
technology for future aerospace systems.
The audience for this article includes all readers with an interest

or stake in feedback control technology for aerospace applications.
For readers with limited background in feedback control, this article
provides a tutorial on the unique and perhaps surprising ability of
feedback control to mitigate uncertainty using closed-loop action.
For students and experts in control, some of this material, such as
the view that stabilization is inherently an uncertainty problem and
the observation that feedback exacerbates model incompleteness,
is nonstandard. Finally, for researchers and instructors, the call to
develop a culture of scientifically meaningful control experimenta-
tion can stimulate new and fruitful directions in the development
and teaching of control concepts and methods.
The contents of this article are as follows. Sections II–IV present

conceptual material that motivates later discussion. Sections V–VII
demonstrate how uncertainty is the underlying driver of feedback.
These sections are more technical than Secs. II–IV but are accessible
to students of control. Section VIII discusses how the ability of feed-
back control to mask physical variations leads to the fundamental
problem of feedback control, namely, the inability to definitively de-
termine the reasons for the success or failure of a feedback controller.
Section IX examines the rationale for feedback control experiments,
which may be either physical or computational, and Section X dis-
cusses the implications of these experiments for research, education,
and practice. Finally, Section XI summarizes the main points of the
article and provides some concluding remarks.

II. Uncertainty Mitigation

Uncertainty constrains performance by impeding repeatability and
predictability. Uncertainty is inherent in the fact that all models are
approximate, all data are noisy, and the ability to observe the physical
world is limited. Even if Newton’s laws, the laws of thermodynamics,
the Navier–Stokes equations, and Maxwell’s equations are accepted
as absolute ground truth, scientific and engineering experience show
that physical phenomena can be exceedingly complex. In fact, it is
all too easy to design and build circuits, structures, devices, and ve-
hicles whose dynamics are too complex for us to reliably predict their
behavior. In addition, simulation of chaotic, low-dimensional sys-
tems shows that unpredictability is not confined to high-dimensional
dynamics. It is also important to stress that uncertainty need not be
due to unknown science or chaotic dynamics. Rather, parameters
may be uncertain due to limitations in testing and measurement, as
well as unknown and unpredictable changes that occur during oper-
ation, such as icing and damage. The need to confront complex reality
and limitations on knowledge of the physical world thus require
uncertainty quantification [5] as well as uncertainty mitigation. This
article focuses on the latter.
There are many ways to mitigate uncertainty. One approach is to

improve the accuracy of models of the physical world; this is the goal
of science. Another approach is redundancy, where, for example,
multiple processors enhance reliability. Refined modeling and hard-
ware redundancy are strategies for open-loop uncertainty mitigation.
Unfortunately, open-loop uncertainty mitigation may lead to

over-engineering, which may be costly and sacrifice performance.
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For example, the wings of a lightweight aircraft may undergo severe
aeroelastic oscillations due to disturbances and aggressive maneu-
vers. An obvious fix is to make the wings more rigid, leading to a
weight penalty. An alternative approach is to use feedback control to
suppress structural oscillations. But why use feedback control rather
than open-loop control?
Feedback control enables closed-loop uncertainty mitigation,

which provides performance benefits in the presence of uncertainty
that are not possible with open-loop uncertainty mitigation. As
stated in [6, p. 3], “feedback allows a system to be insensitive both
to external disturbances and to variations in its individual elements.”
Likewise, it is noted in [7] that “uncertainty and feedback have
become inseparable in viable control applications.” Furthermore,
feedback control can be used to linearize the undesirable effect of
nonlinear components [6, p. 3]. Perhapsmost importantly, feedback
control can be used for stabilization, a critical requirement in aero-
space vehicles. As succinctly stated in [8],

Feedback is used in control systems to change the dynamics
of the system (usually to make the response stable and
sufficiently fast), and to reduce the sensitivity of the system
to signal uncertainty (disturbances) and model uncertainty.

By providing robustness to unknown physical variations, feedback
control aims to achieve the best possible performance in the face of

uncertainty.Although performance is the objective of control, uncer-
tainty is the raison d’être for feedback control.
As obvious as it may be that feedback mitigates uncertainty;

enhances robustness to variations in initial conditions, parameters,
disturbances, dynamics, and nonlinearities; and makes stabilization
possible, this ability has not always received the attention it deserves.
For example, the history [9] of early control developments from
ancient times to the 18th century provides no explicit recognition
of uncertainty as the driver of feedback control, although uncertainty
is implicit in the statement [9, p. 8] that “The purpose of a feedback
control system is to carry out commands; the system maintains the
controlled variable equal to the command signal in spite of external
disturbances.”
More recent developments in control technology are documented

in [10], which extends the historical survey of feedback control given
in [9] to 1930. Although [10] showcases the remarkable ingenuity of
feedback control mechanisms along with early developments in
control theory, uncertainty mitigation is not explicitly recognized
as the driver of feedback. In the history of the next phase of control
given in [11], however, robustness to unknown system variations is
mentioned within the context of Black’s negative feedback amplifier
[11, p. 74]:

Under this condition, the gain is dependent solely on the
feedback circuit network, usually a passive network; changes
in the behaviour of the active components in the forward path,
for examplebecauseof the effect of variations inpower supply
voltage or ageing of the tube, have almost no effect on the
output.

In other words, feedback control has the profound ability to precisely
set the gain of an otherwise imprecise amplifier. Other than the above
statements, there is no explicit recognition in [9–11] of uncertainty as
the driver of feedback.
In contrast to the above sources, an eloquent description of the

remarkable ability of feedback control tomitigate uncertainty is given
in [12, pp. 57, 58] in relation to metal processing:

The semi-miraculous aspect of feedback becomes apparent
here: this correction takes place whatever the cause of the
deviation. Whether the failure to reach the standard dimen-
sions be due to a change in themalleability or the ductility of
the metal, or whether it should stem from a gradual wearing
of the rolls, or from a sudden reduction of the temperature,
makes no odds! The regulator is unconcerned with causes; it
will detect the deviation and correct it. The error may even

arise from a factor whose influence has never been properly
determined hitherto, or even from a factor whose very exist-
ence is unsuspected. Whatever the cause, the disturbance
will be overcome none the less effectively.

Adding to this, Kelly [13, p. 121] notes that, “How the system finds

agreement at any one moment is beyond human knowing, and more

importantly, not worth knowing.”
The ability of a feedback controller to mask physical variations,

however, leads to the following fundamental problem: How can we

determine the extent to which a feedback controller was or will be

effective in controlling a system in view of the fact that the feedback

controller suppresses unknown and perhaps unknowable variations?

This question motivates consideration of the role of feedback control

experiments in control research, control education, and control prac-

tice. The value of control experiments is described in [14, pp. 16,

17] as follows:

Experimentation is becoming increasingly important. Per-
haps the two primary goals of experimentation for control
are model development or validation, and simulation of the
closed-loop performance. It is important to emphasize that
models suitable for open-loop simulation may not be appro-
priate for control studies. Therefore, the type of experiment
needed by the control theorist can differ from the “standard”
experiment. An obstacle here is the magnitude of some of
the systems whose control is proposed, or the costliness of
mistakes, as in the case of a space station or nuclear power
system. Actual applications often allow no room for ex-
perimentation of the kind that could lead to genuine math-
ematical insight. Opportunities for small-scale experiments
designed to test ideas on simple systems can be therefore of
great benefit to theoretical progress.

In the update [15] to [14], amore forceful call for control experiments

is made [15, p. 24]:

Finally, experimentation on representative systems must be
an integral part of the control community’s approach. The
continued growth of experiments, both in education and
research, should be supported, and new experiments that
reflect the new environment will need to be developed.
These experiments are important for the insight into appli-
cation domains that they bring, as well as the development of
software and algorithms for applying new theory. But they
also form the training ground for systems engineers, who
learn about modeling, robustness, interconnection, and data
analysis through their experiences on real systems.

In Sec. X, we will discuss the potential value of physical and

computational experimentation in control research, education, and

practice.

III. Observations on Modeling

The principal goal of science is to understand the physical world.

Of course, “understand” is not a precise word, and there are many

levels of understanding. For example, the model

f � GMm

r2
(1)

shows how gravitational force depends on the masses and distance

between a pair of idealized particles, as well as the physical constant

G. Formany, if not most, aerospace applications, this model provides

excellent predictive capability. But there is much we do not under-

stand. What is the nature of the gravitational field that produces a

force that acts through space? What is mass? What determines G? It

is easy to scratch the surface of this and many other models and

raise fundamental questions. And, when we reach the next level of
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understanding, what new questions might we ask? As expressed in
[16, p. 195],

The principles need not pass any philosophical test or even
be fully understood—thus, Newton considered himself to
have explained the motions of the planets and the tides using
his theory of gravity, although he offered no explanation of
the causes of gravity itself.

In other words, the decisive test for scientific acceptance is predictive
ability rather than conceptual plausibility.
We adopt the point of view that complex reality exists independently

of howwellweunderstand it andhowwellwecanmodel it. In addition,
we accept the fact that “understanding” reality is a process of uncov-
ering an endless sequence of nested features. As stated in [17],

Now it would be very remarkable if any system existing in
the real world could be exactly represented by any simple
model. However, cunningly chosen parsimonious models
often do provide remarkably useful approximations. For
example, the lawPV � RT (sic) relating pressureP, volume
V and temperature T of an “ideal” gas via a constant R is not
exactly true for any real gas, but it frequently provides a
useful approximation and furthermore its structure is inform-
ative since it springs from a physical view of the behavior of
gas molecules. For such a model there is no need to ask the
question “Is the model true?”. If “truth” is to be the “whole
truth” the answermust be “No”. The only question of interest
is “Is the model illuminating and useful?”.

More succinctly, Box andDraper [18, p. 74] state, “Remember that
all models are wrong; the practical question is how wrong do they
have to be to not be useful.” Even more succinctly, Skogestad and
Postlethwaite [8, p. 24] state that “G is never an exact model.” These
observations express the principle of ultimate unmodelability. Never-
theless, despite ultimate unmodelability, science seeks the best pos-
sible understanding of complex reality—as it should.
The principle of ultimate unmodelability should not be construed

as downplaying the value of models, whose usefulness in under-
standing complex reality and designing and operating aerospace
vehicles cannot be overstated. Rather, our goal is to highlight the
unique ability of feedback control to mitigate the limitations of
modeling while exploring the implications of this ability.

IV. Models and Feedback Control

A. Terminology

A model of a physical system is a collection of pairs of inputs and
outputs, where, to reflect initial conditions and uncertainty, multiple
outputsmay be associatedwith the same input. Amodel is inaccurate
if, for at least one modeled input, none of the corresponding modeled
outputs is identical to the output of the physical system. Furthermore,
a model is incomplete if the set of modeled inputs does not include all
possible inputs. A model is approximate if it is either inaccurate or
incomplete; all models are inaccurate and incomplete. A model is
exact if it is not approximate; there are no exact models, but we will
use this word from time to time to facilitate discussion.
It is common practice to view a model as approximate due to

erroneous parameter values or unmodeled physics. This view sug-
gests, however, that the model can be made exact by providing the
correct parameter values or including the missing dynamics. In
reality, no model can be made exact.
A representation of amodel is a prescription (such as an algorithm

or computer code) for generating outputs from inputs. For conven-
ience, amodel will be identifiedwith its representation rather than the
collection of input–output pairs.
A simulation model is a model constructed to include as many

details as desired. In contrast, a control-oriented model is typically
a simpler model that is used as the basis for controller synthesis.
A control-oriented model typically consists of two components,
namely, 1) a nominal model and 2) an uncertainty model [19]. The

termmodel error refers to discrepancies between the physical system
and the control-orientedmodel. Ultimate unmodelability implies that
the model error is unknowable and—most importantly—cannot be
exactly represented by data or mathematical idealizations, such as
idealized geometric objects and functions.Nevertheless, it is standard
practice to use data and mathematics to characterize model error
by constructing an uncertainty model as part of a control-oriented
model. For the same nominal model, however, different modelers
may have different uncertainty models, and thus different model
errors, based on different modeling information and assumptions.
Uncertainty models and model errors are thus subjective entities that
depend on the modeler.

B. Uncertainty Models

As part of a control-oriented model, an uncertainty model must
have two main attributes. First, it must be as nonconservative as
possible relative to the possible physical variations in the physical
system, and, second, it must be tractable for controller analysis and
synthesis. For example, normbounds provide rich uncertainty set that
facilitates stability and performance guarantees through the small
gain theorem and its variants. This approach is the basis for much of
robust control.
But where do norm bounds come from? In practice, first-principles

modeling and system identification are combined to determine a
radius that encompasses the range of uncertainty. But all data are
finite and noisy, and thus it is conceivable that the magnitude of the
model error (viewing it for now as a mathematical object) might
exceed the radius of the ball. If indeed a physical feedback-control
experiment reveals unexpectedly poor performance, then the radius
of the ball can be increased until acceptable results are (hopefully)
obtained, suggesting that the model error (still viewed as a math-
ematical object) lies inside a larger ball. But is this a valid conclusion?
Let us optimistically assume for now—in violation of ultimate

unmodelability—that the model error can be represented by a math-
ematical model. How can we be sure that the space of functions that
we choose towork with includes the model error? Second, if this is in
doubt, then how much testing is needed to ensure that a controller
developed to accommodate the uncertainty model will work reliably
on the physical system? Could the system possess a slow divergence
that is revealed only after hours orweeks of operation, or could it have
a destabilizing nonlinearity that is manifested only in response to rare
disturbances? Third, open-loop system identification is performed
under certain conditions, where either we or a computer code gen-
erates the test signals. Since the nominal model and the uncertainty
model are reflections of the chosen input signals, it follows that these
choices determine the incompleteness of the model.
Under feedback operation, however, the inputs to a physical

system are generated by—itself. Since an exact model of the physical
system is not available, we cannot know in advance what those
signals will be and whether or not they are encompassed by the
chosen control-oriented model. This phenomenon is articulated in
[20] as the “Modeling for control principle: The modeling and

control problems are not separable and are necessarily iterative.”

As an example of this principle [20],

The Root Locus theory presumes a fixed system while the
controller gain goes to infinity. But the fidelity of the system
model depends upon the control gain. Hence, the samemodel
of the system is not appropriate at both the vicinity of the open
loop poles and the open loop zeros. [ : : :] what the system
“looks like” depends upon the controller being used.

A case in point is a rigid body with flexible appendages. As the
controller bandwidth is increased, higher frequency modes become
increasingly relevant to the closed-loop dynamics, and thus the
control-oriented model must be chosen to accommodate properties
of the controller. Along the same lines, in reference to experiments
for system identification, Gevers [21] notes that “it pays to have
experimental conditions that closely match the conditions in which
the ‘to-be-designed controller’ will operate.” A related phenomenon
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occurs when a linear controller is used for a nonlinear system whose
unmodeled nonlinearities reduce the region of stabilization due to
peaking [22]. These observations motivate the need for closed-loop
system identification [23].
Modeling is also limited by the fact that mathematics consists of

idealizations. Just as we cannot say that a physical line is straight and
a physical plane is flat, we cannot say that a physical signal is in L2 or
is differentiable, or that a physical system resides in some space of
operators. Finally—reinvoking ultimate unmodelability—the physi-
cal system is not a mathematical object, and thus the model error is
not encompassed by any uncertainty model.
One way to potentially overcome these issues is to consider

stochastic uncertainty models with probabilistic notions of stability
and performance. Within this setting, however, the same issues arise;
namely, the uncertainty model provides only rough guidance about
the accuracy of a nominal model based onmathematical assumptions
that are not satisfied in reality.

C. Robust and Adaptive Control

Linear-quadratic-Gaussian (LQG) control uses feedback to miti-
gate the effect of stochastic disturbances, whose statistics are known
but whose time history is unknown. In addition, since LQG is an
output-feedback controller, it has no knowledge of the initial state of
the system. LQG thus uses feedback to mitigate two distinct sources
of uncertainty. As shown in [24,25], however, LQG is sensitive to
modeling errors in the system dynamics. By adopting a control-
oriented model that characterizes the assumed system uncertainty,
robust control seeks to overcome this shortcoming [26]. Within the
context of robust control, however, model uncertainty is commonly
viewed as an impediment to feedback control rather than its under-
lying driver, as in the case of Black’s amplifier.
Since robust control accounts for the assumed uncertainty, it may

sacrifice performance for the actual physical system. Adaptive con-
trol aims to overcome this tradeoff by incorporating data-driven
learning. The challenge is then to learn during operation in the
presence of sensor noise and unmodeled dynamics [27–29]. For
systems that are open-loop unstable, an additional challenge is the
need for sufficiently fast learning to avoid unacceptable transient
response. In any event, learning requires data, and data require
sensing; consequently, learning is a feedback process.

D. Feedback Control and Model Incompleteness

As discussed above, all models are approximate due to inaccuracy
and incompleteness. Although feedback control mitigates the effect
of inaccuracy, it can also exacerbate incompleteness. To illustrate
how this can happen, consider the incompleteness of the standard
resistor modelV � IR. When the potential dropV across the resistor
is 10 V, we have a reasonable model of the current I, but the behavior
is harder to predict when the potential drop is 1000 V, in which case,
as the temperature T of the resistor rises, the resistance is more
accurately modeled as R�T�. The accuracy of a model of a physical
system thus depends on the inputs to the physical system; this is the
essence of incompleteness.
Of course, amodelmust be appropriate for its intendedusage,which

is directly related to the set of possible inputs. Since a feedback
controller is driven by a physical system, the actual inputs to the
physical system arise from the actual response of the actual physical
system. Ultimate unmodelability thus implies that it is not possible to
know a priori which inputs the physical system will be subjected to.
Hence, the feedback controller may subject the system to input signals
that are unknown when a system model is chosen and thus may be
outside the assumed set of possible inputs. Therefore, feedback control
compounds uncertainty by exacerbating model incompleteness.

V. Stabilization

A. Open-Loop Control of an Unstable System

In order to view stabilization from the perspective of uncer-
tainty, we consider stabilization in terms of open-loop control. For
simplicity, consider the scalar system

_x�t� � ax�t� � u�t� (2)

where a is a real number, the initial state x�0� is nonzero, and the

goal is to bring x�t� from the nonzero initial state x�0� to zero. To do
this, we view Eq. (2) as a truth model, that is, a true representation

of reality.
If a is negative, then no control is needed, and x�t� � eatx�0�

converges to zero. If, however, a is positive, then x�t� � eatx�0�
diverges to�∞, and thus the control u�t� is needed. In this case, by
choosing the open-loop control

u�t� � −2ae−atx�0� (3)

it follows that the solution to Eq. (2) is given by

x�t� � eatx�0�|��{z��}
free response

− eatx�0� � e−atx�0�|�������������{z�������������}
forced response

(4)

� e−atx�0� (5)

which converges to zero as t → ∞.
Note that implementation of the open-loop control (3) requires

knowledge of a and x�0�. In reality, however, nomatter how deep our

understanding of science is and no matter how advanced our engi-

neering technology is, a and x�0� cannot be known exactly, and thus
the implemented control will be

u�t� � −2âe−âtx̂�0� (6)

where â and x̂�0� are estimates of a and x�0�, respectively. Thus,
Eq. (6) can be written as

u�t� � −2�a� ε�e−�a�ε�t�x�0� � η� (7)

where ε denotes the error in determining a and η denotes the error in
determining x�0�. With the control (7), the solution of Eq. (2) is now

given by

x�t� � eatx�0�|��{z��}
free response

� 2a� 2ε

2a� ε
�e−�a�ε�t − eat��x�0� � η�|����������������������������{z����������������������������}

forced response

(8)

�−eat
�

ε

2a� ε
x�0�� 2a� 2ε

2a� ε
η

�
� 2a� 2ε

2a� ε
e−�a�ε�t�x�0�� η�

(9)

Hence, if either ε or η is nonzero, then, no matter how small these

numbers are,

lim
t→∞

jx�t�j � ∞ (10)

and thus x�t� diverges.

B. The Miracle of Feedback Stabilization

Consider now the feedback control

u�t� � −2ax�t� (11)

which, with the truth model (2), yields the closed-loop dynamics

_x�t� � −ax�t� (12)

whose solution x�t� � e−atx�0� converges to zero. As in the case of
the open-loop control (7), however, the parameter a and the state x�t�
are not exactly known, and thus the implemented control is

u�t� � −2âx̂�t� (13)
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where â and x̂�t� are estimates of a and x�t�, respectively. Thus,
Eq. (13) can be written as

u�t� � −2�a� ε��x�t� � η�t�� (14)

where ε denotes the error in determining a and η�t� denotes noise in
the measurement of x�t�:With the implemented feedback controller
(14), the closed-loop dynamics are given by

_x�t� � −�a� 2ε�x�t� − 2�a� ε�η�t� (15)

whose solution is

x�t� � e−�a�2ε�tx�0� − 2�a� ε�
Z

t

0

e−�a�2ε��t−τ�η�τ� dτ (16)

Assuming that 2jεj < a and that there exists η0 > 0 such that, for all
t ≥ 0, η�t� < η0, it follows from Eq. (16) that

jx�t�j ≤ e−�a�2ε�tjx�0�j � 2�a� ε�
Z

t

0

e−�a�2ε�τ dτη0

� e−�a�2ε�tjx�0�j � 2�a� ε�η0
a� 2ε

�1 − e−�a�2ε�t� (17)

Hence,

lim sup
t→∞

jx�t�j ≤ 2�a� ε�η0
a� 2ε

(18)

which implies that x�t� is bounded with an asymptotic bound deter-
mined by ε and η0.
The contrast between Eqs. (10) and (18) could not be more stark.

For the open-loop control (7), the state diverges due to infinitesimally
imperfectmodeling information,whereas, for the closed-loop control
(11), the state remains bounded with a bound that can bemanaged by
reducing the level of the sensor noise. Consequently, feedback con-
trol has drastically mitigated the effect of uncertainty and enhanced
robustness to physical variations.

VI. Enhancing Robustness to Physical Variations via
Feedback Control

As another example of uncertainty mitigation, consider the servo
loop in Fig. 1 with the system (2) as the truth model and the propor-
tional controller u�t� � ke�t�. The command signal is the step func-
tion r�t� � �r, the error is e�t� � r�t� − y�t�, and a is assumed to be
negative so that the uncontrolled system is asymptotically stable.
In the case where the feedback path is absent, the asymptotic

output is

y∞�a� � lim
t→∞

y�t� � −
k�r

a
(19)

Therefore, for the desired setpoint rdes, choosing k to be nonzero and
setting �r � −�ardes∕k� yields y∞�a� � rdes. Alternatively, in the
case where k > a and the loop is closed, the asymptotic output is

y∞�a� � lim
t→∞

y�t� � k�r

k − a
(20)

Therefore, setting �r � ��k − a�∕k�rdes yields y∞�a� � rdes. Note
that, for both controllers, the commanded setpoint �r depends on a
model of the system, namely, the parameter a.

To determine how a physical variation δa of a affects e∞�a� �
�r − y∞�a�, note that

e∞�a� δa� ≈ e∞�a� �
de∞�a�
da

δa (21)

In the case of Eq. (19),

de∞�a�
da

� −
k�r

a2
(22)

whereas, in the case of Eq. (20),

de∞�a�
da

� k�r

�k − a�2 (23)

Sincea < 0, dividing the right-hand side of Eq. (23) by the right-hand
side of Eq. (22) yields the parameter-sensitivity reduction ratio

σ�a� ≜ −
a2

�k − a�2 � −
1�

1� k
jaj
�
2

(24)

which, for all k > 0, has magnitude less than 1. The asymptotic

output is thus more robust to physical variations in a in the case of

feedback control.
An alternative way to reach the same conclusion is to use the fact

that the Laplace transform of the output is given in terms of the

complementary sensitivity function T�s� � kG�s�∕�1� kG�s�� by

ŷ�s� � T�s�r̂�s� � kG�s��r
s� skG�s� (25)

and thus the Laplace transform of the error is given in terms of the

sensitivity function S�s� � 1∕�1� kG�s�� by

ê�s� � S�s�r̂�s� � �r

s� skG�s� (26)

Then, it can be shown [8, p. 22] that

S�s� � G�s�
T�s�

dT�s�
dG�s� (27)

which can be rewritten as

dT�s�
T�s� � S�s� dG�s�

G�s� (28)

Setting s � jω to obtain the frequency response, it follows from

Eq. (28) that, at frequencies ω for which jS�jω�j < 1, the effect of

variations of G on T is mitigated by S: Finally, noting that

S�j0� � 1

1� k 1
−a

� −a
k − a

(29)

it follows from Eq. (24) that

σ�a� � −S�j0�2 (30)

which relates the DC gain of the sensitivity transfer function to the

parameter-sensitivity reduction ratio.

VII. Uncertainty Reduction via Feedback Control

Although the feedback controller (11) enhances robustness to

physical variations, it is interesting to ask whether it also reduces

uncertainty. To investigate this question, consider, in place of

Eq. (11), the feedback controlFig. 1 Feedback stabilization of a scalar system.
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u�t� � −kx�t� (31)

and assume that this control law is applied to Eq. (2) with no knowl-
edge of a: If x�t� diverges, then we learn that k < a, whereas, if x�t�
remains bounded, then we learn that k > a. The qualitative response
of the closed-loop system thus provides rudimentary knowledge
about the parameter a, thus reducing uncertainty, at least within the
context of the nominal model (2). Of course, this experiment may not
be the safest way to learn.
As another example, consider the servo loop in Fig. 2 with the

system G�s� and the integral controller k∕s, where k is chosen such
that the closed-loop dynamics are asymptotically stable. This exam-
ple mimics the fundamental discovery of Black in 1928 [30,31]. For
the setpoint command r�t� � �r, the Laplace transform of the error is
given by

ê�s� � S�s�r̂�s� � �r

s� kG�s� (32)

The final value theorem thus implies

e∞ ≜ lim
t→∞

e�t� � lim
s→0

sê�s� � lim
s→0

s�r

s� kG�s� � 0 (33)

as expected for integral control. Furthermore, the Laplace transform
of the control input is

û�s� � k�r

s2 � ksG�s� (34)

and thus, as a consequence of the internal model principle [8, p. 49],
the final value theorem implies

u∞ ≜ lim
t→∞

u�t� � lim
s→0

sû�s� � lim
s→0

k�r

s� kG�s� �
�r

G�0� (35)

Hence,

G�0� � �r

u∞
(36)

which, since u∞ is known, shows that the asymptotic control input
reveals the DC gain of the system. This example demonstrates
that a controller that possesses memory is able to learn through
feedback.

VIII. The Fundamental Problem of Feedback Control

A. Statement of the Problem and Control Engineering Practice

The fundamental problem of feedback control is the fact that
ultimate unmodelability makes it impossible to guarantee by math-
ematics, computation, and data analysis that a feedback controller
will work reliably. Nevertheless, most feedback control systems
operate successfully in practice. There are multiple reasons for
this success. First, few control systems are entirely model based.
In practice, control systems are fine-tuned—tweaked—based on
judgment and experience to work under changing, messy, unmod-
elable conditions. Tweaking helps to overcome the unmodelable
dimensions of complex reality while allowing the user to satisfy
performance criteria that are difficult to attain with textbook meth-
ods. Hence, despite the substantial development of control theory,
feedback control is partly an art, where experience and judgment are
relied on to accommodate unmodelable details.

Furthermore, feedback control systems are often engineered
under stringent levels of modeled uncertainty with advantageous
architectures. Sensors and actuators and their noise properties are
carefully modeled; disturbance and command spectra are charac-
terized; operational modes are monitored to facilitate gain sched-
uling, switching, and fault detection; and control architectures that
merge sensors, actuators, processors, and data links are designed to
minimize the complexity of the intervening dynamics by removing
right-half-plane zeros, severe nonlinearities, and other effects that
limit achievable performance and gain and phase margins [8]. In
otherwords, domain knowledge and control-theoretic principles are
used to design control architectures that are amenable to simple
controllers that minimize sensitivity to modeled uncertainty.

B. Control Theory and Mathematical Idealizations

While all branches of science usemathematics to a greater or lesser
extent, control theory has a special affinity for mathematics since
its ideas transcend specific applications. In particular, the concepts
and methods of control theory are often presented in a definition–
theorem–proof format that facilitates abstraction of essential features
and properties.
Mathematical abstractions are embraced for various reasons, such

as efficiency, richness, beauty, simplicity, theoretical effectiveness,
and—last but not least—practical utility. These abstractions, which
are proposed, culled, and refined over long periods of time, are
idealizations—intellectual constructions that facilitate the ability to
think and reason about the physical world. Notions such as smooth-
ness and convergence, for example, are bedrock ideas inmathematics
but are subjective in practical applications, where all data are finite
and noisy. Mathematical idealizations are used to construct models
that approximate complex reality. How, then, canwe know how close
a given model is to something that cannot be known—especially
since any attempt to quantify “closeness” depends on idealizations as
well as perfect knowledge of complex reality? The difficulty is that
the hypotheses of a theorem are mathematical idealizations, and thus
it is not possible to determine whether mathematical closeness will
capture the complex reality of a physical system. In other words, no
mathematical hypothesis involving complex reality can be verified.
Engineers—especially control engineers—know that mathemati-

cal idealizations must be applied with discretion to physical systems.
Margins provide confidence, but these are based on mathematical
idealizations that account only for modelable uncertainty. On the
other hand, feedback control enhances robustness to physical varia-
tions whether or not those variations can be modeled. So here is the
challenge: Since unmodelable uncertainty is unknowable, how can
we use models to guarantee that a feedback controller will stabilize a
physical systemby sufficiently enhancing robustness to unmodelable
physical variations?
In feedback-control practice, uncertainty is mitigated by applying

attention to detail, operational safeguards, and tweaking based on
experience to deliver controllers that work reliably in plausible sce-
narios. But—and this is the key point—whenwe are successful, how
can we know why a given controller worked? We may know a lot
about some features of the system, but we cannot know everything
about it—which is why feedback control was used in the first place.
Ultimate unmodelability says that complex reality cannot be captured
by any model, and thus the extent to which the success of a feedback
controller is due to its ability to enhance robustness to physical
variations is unknown.

IX. Toward ScientificallyMeaningful FeedbackControl
Experiments

One approach to confronting the fundamental problemof feedback
control is to perform feedback control experiments that reveal
unmodeled effects and their potential impact on stability and perfor-
mance. Although these experiments could be aimed at determining
the ability of a controller to mitigate uncertainty, it is important to
recognize that uncertainty is a subjective quantity that depends on
the state of knowledge of the experimentalist. In other words, since
different people have different knowledge and thus different levels of

Fig. 2 Servo loop with integral controller.

BERNSTEIN 2207

D
ow

nl
oa

de
d 

by
 6

8.
40

.8
5.

14
2 

on
 D

ec
em

be
r 

2,
 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

67
85

 



uncertainty, an experiment that depends on the knowledge state of

the experimentalist violates separation between the experiment and

the experimentalist. One solution to this quandary is to replace the

subjective quantity of uncertainty mitigation with the objective quan-

tity of robustness to physical variations. To explore how such expe-

riments might be designed, performed, and analyzed, we will first

consider physical experiments and then discuss how these can be

supported by computational experiments.

A. Physical Feedback-Control Experiments

A scientific experiment begins with a hypothesis in the form of a

theoretical prediction and ends with data that sheds light on the

hypothesis—preferably, by either validating it (which is not possible)

or invalidating it (which is the falsifiability paradigm of Popper),

thereby discriminating between competing theories [16, pp. 18, 19].

In practice, experiments are often most valuable for uncovering un-

expected effects leading to new theories and thus newpredictions [18,

pp. 7–10]. As stated in [32], however, “many experiments on robotics

and applied control systems are often more like demonstrations than

scientific experiments (which include hypotheses and controlled

variables).” Within the context of uncertainty mitigation, a natural

objective of a feedback control experiment is to examine the validity

of the hypothesis that the feedback controller is robust to a specified

class of physical variations in the physical system being controlled.A

meaningful experiment would therefore need to encompass physical

variations that can be realized and validated. Another objective is to

uncover physical variations that can lead to performance degradation

or failure. A relevant experiment would therefore need to probe the

boundaries of system operation, even to the point of failure, which,

for aerospace applications, typically corresponds to instability.
Since variations in a physical system are ultimately unmodelable,

this experimental objective is not completely achievable. Never-

theless, a first step is to design a feedback-control experiment to

provide data that can reveal hidden features to the greatest extent

possible. A key point is to distinguish modeling information used to

design and fine-tune a controller from modeling information used to

analyze closed-loop response data. In effect, the idea is to use knowl-

edge from an unrefined uncertainty model as the basis of controller

synthesis, but use knowledge of a more refined uncertainty model to

assess the robustness of the feedback controller to actual physical

variations, at least to the extent that those variations are known. To do

this, a systemdesigned for a control experimentmust be precisely and

richly perturbable, which means that it can be varied in as many

different reasonably well-known ways as possible in order to assess

the resulting closed-loop response as a means for quantifying robust-

ness to physical variations. In addition, it may be necessary to in-

strument the system not only with the sensors needed for feedback

control but also with auxiliary sensors (such as external optical

diagnostics that do not impact the system dynamics) that can provide

data for exposing hidden details. Under this scenario, competing

control-oriented models can be invoked and evaluated.
Since no physical system can be exactly modeled, a second

objective of a physical control experiment is to discover potentially

consequential effects that were captured by neither the unrefined nor

the refined uncertainty models. This objective directly impacts con-

trol practice, as discussed below.

B. Computational Feedback-Control Experiments

Simulation can be used to perform a vast number of computational

feedback-control experiments that can be informative in various

ways. Aside from details such as machine constants, digital simu-

lation (including stochastic simulation) is repeatable, which is crucial

for computational experimentation. Furthermore, aside from varia-

tions in compilers and numerical issues such as roundoff, simulation

provides omniscience, and thus the user can usually verify the code

and the selected parameter values. This is not always the case,

however, since some simulation codes are proprietary, extremely

complex, or sparsely documented. Of course, the accuracy of simu-

lation relative to complex reality depends on the accuracy of the

chosen models and the errors introduced by spatial and temporal
discretization.
Simulations can be used to probe a rich collection of system

perturbations, including variations of linear dynamics, noise with
specified statistical characteristics, and nonlinearities of endless
variety, all of which are, of course, known to the computational
experimentalist. The richness of these constructions can easily sur-
pass the ability to vary the properties of a physical experiment. The
computational environment is thus valuable for probing the ability of
a feedback controller to enhance robustness to physical variations up
to—and including—the failure boundary without destructive conse-
quences. Simulation is limited, however, by the fact that a computer
program includes only those effects that the modeler includes in the
code. Ultimate unmodelability prevents us from simulating every-
thing that can happen in complex reality, and thus simulationmay not
be able to discover physical variations that can adversely affect
stability and performance.
Beyond probing the stability and performance robustness of a

given controller, simulation is valuable for investigating anomalies
observed in a physical control system. In particular, computational
control experiments provide a diagnostic capability that can use
experimental data to analyze the performance of a physical control
system, especially when the closed-loop behavior is unexpected. A
carefully designed, well-instrumented, and multidimensionally rich
physical feedback-control experiment can yield a substantial amount
of data for subsequent analysis. When a physical feedback-control
experiment exhibits unexpected behavior, simulation can provide a
what-if environment for deducing the cause of the anomaly including
the ability to diagnose the reasons for failure.
The ease of varying the simulationmodel yields an embarrassment

of riches, however. Simulation can be used to probe dozens of types
of perturbations of varying magnitude. But what about simultaneous
perturbations of two, three, or more different types? The number of
possibilities is combinatorially large, and thus, when simulation is
used to probe the performance of a physical feedback-control experi-
ment, multiple effects can confound the ability to determine what
actually occurred. This challenge is related to the distinction in
experiment design between full factorial design and fractional facto-
rial design [33].

X. Implications of Physical and Computational Control
Experiments

A. Implications for Control Research

Experiments often reveal unexpected behavior that motivates theo-
retical investigations. Physical and computational feedback-control
experiments can provide a serendipitous source of research questions
and challenges that warrant theoretical consideration, especially relat-
ing to themechanismsbywhich feedback controlmitigatesuncertainty
and enhances robustness to physical variations.

B. Implications for Control Education

In control education, computational experiments can be used
to assess the performance of a closed-loop system under various
scenarios involving system perturbations, initial conditions (to deter-
mine the domain of attraction), commands, and disturbances. For
physical control experiments, with the advent of low-cost processors,
classroom experiments are commonplace. Although control laborato-
ries help students to appreciate the value of modeling, identification,
and controller synthesis, these “experiments,” while educational, are
essentially demonstrations. By investigating the extent to which a
controller enhances robustness to physical variations, these demon-
strations can be designed to be scientifically meaningful from an
educational standpoint.

C. Implications for Control Practice

The principal impediment to experimentation in control practice is
the cost and risk of performing experiments on full-scale vehicles and
installations. The observation in [14, pp. 16, 17] quoted above that
systems that are expensive or dangerous are not viable candidates for
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control experiments—a point made graphically in [34]—implies the
need for scaled-down testbeds that capture the key physics and
features of costly and dangerous systems. The challenge is then to
determine whether or not crucial physical effects that may impact
control of a full-scale system are also manifested in the testbed.
A control experiment is maximally informative when it is operated

under rare or extreme conditions that reveal the failure boundaries.
These experimentsmay include low-probability perturbations, aggres-
sive maneuvers, and severe disturbances. The risks to a full-scale
system under extreme experimental conditions are unacceptable, how-
ever, and thus tests on full-scale systems are confined to validation,
verification, durability, fault-checking, and certification, where the
goal is not to determine the ultimate limits to safe operation but rather
to confirm that the systemwill operate reliably under the specifications
and scenarios for which it was designed. In aerospace applications,
this is done by test pilots. In practice, however, new and unexpected
phenomenamay arise as a novel system is scaledup andoperates under
real-world conditions. This is especially the case when new technol-
ogies are developed and there is limited knowledge concerning fai-
lure modes and boundaries. Although much can be learned when a
full-scale system fails, the human and societal cost of such failures
motivates and justifies the need for maximally informative control
experiments at each stage of the development cycle [35].
Among thenumerousX-planes developedovermore than75years,

the X-43A provides a case study of the implications of a full-scale
engineering experiment. This program involved two phases, namely,
a Mach 7 flight test followed by a Mach 10 flight test. For the first
flight, the Mishap Investigation Board (MIB) investigated the cause
of a failure related to the Hyper-X LaunchVehicle (HXLV) [36, p. 9]:

The MIB report root cause specified that the “HXLV failed
because the vehicle control system design was deficient for
the trajectory flown due to inaccurate analytical models.”

The response to this outcome included the following steps prior to
return to flight (RTF) [36, p. 9]:

The probability of occurrence andmagnitude of impact were
evaluated for each risk and mitigations for these were iden-
tified. Most of the RTF effort was spent on the risk reduction
activities that were derived from these mitigations. Mitiga-
tions included additional testing and analysis for hardware
and software, model and uncertainties evaluation, update
and enhancement, and independent simulations and review
where appropriate.

Lessons learned from the first flight led to modifications and sub-
sequent success in the second phase flight test [36, p. 11].

XI. Conclusions

The goal of feedback control is to achieve the best possible
performance through closed-loop uncertainty mitigation, recogniz-
ing that performance is the objective of control, but uncertainty is the
raison d’être for feedback control. As such, feedback control is at
odds with the main objective of science: Instead of trying to model
complex reality to higher levels of accuracy, feedback control seeks
the best possible performance despite unknown initial conditions,
parameters, disturbances, dynamics, and nonlinearities as well as
unmodeled and unmodelable physical variations. As a consequence
of this objective, the fundamental problem of feedback control is the
realization that it is not possible to definitively determine either the
extent towhich a feedback controller has succeeded or the reasons for
which it has failed. This problem is not due to the shortcomings of a
particular feedback control technique, but rather is due to the facts
that 1) no control-oriented model can fully capture the complex
reality of any physical system, and 2) feedback may mask the effect
of physical variations.
To address future aerospace challenges, this article issued a call

to action to establish a culture of scientifically meaningful feed-
back control experimentation, both physical and computational. In

keeping with the underlying driver of feedback, a feedback control
experiment can be aimed at determining the extent to which a
feedback controller succeeds or fails to enhance robustness to
physical variations. These experiments can be designed to probe
the physical system in order to reveal physical variations that are
masked by feedback or that contribute to degraded performance or
instability. Theory and techniques for designing such experiments
remain a challenge for future research and practice.
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