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Abstract— Online system identification entails optimization
of a sequence of cost functions that are updated by data
as it becomes available. The goal is to obtain a sequence of
minimizers that converge to the true parameters. If the true
parameters are the unique common minimizer of all of the costs
in the sequence, then convergence of a sequence of minimizers
to the true parameters can be viewed as convergence of the
state of a dynamical system to an equilibrium. This paper
investigates global asymptotic stability of the equilibrium of a
dynamical system defined by online gradient-based optimization
of a sequence of quadratic cost functions that have a unique
common minimizer, but may individually have multiple global
minimizers due to rank deficiency. Under a weak persistency-
type condition, it is shown that global asymptotic stability
can be guaranteed for this class of costs. These results are
specialized to the case of least squares costs and illustrated by
examples.

I. INTRODUCTION AND PROBLEM STATEMENT

A. Background on Online Parameter Estimation

System identification typically requires online estimation
of parameters from a linear regression model. Since data
is obtained sequentially during online operation, the task of
online identification leads to the problem of optimizing a
sequence of costs that are updated at each step by the most
recent data. For cumulative least squares costs, Recursive
Least Squares (RLS) [1–8] is a well-established method,
which includes sophisticated forgetting schemes [9–15] as
well as techniques for avoiding divergence when the regres-
sor lacks persistency of excitation [16–20]. However, RLS
has the drawback of requiring the propagation of a covariance
matrix and is restricted to a cumulative quadratic cost.

Gradient methods [21–23], [24, pp. 58–61] neither require
covariance propagation nor assume a cumulative cost, and
applications of gradient algorithms such as the stochastic
gradient [25, 26], multi-innovation [27–32], and conjugate
gradient [33–36] methods to system identification, adaptive
control, and adaptive filtering have been studied extensively.
Although stability conditions for particular gradient algo-
rithms, such as the instantaneous and instantaneous normal-
ized projected gradient methods [24, pp. 71-73], [37–40] are
known, the stability of gradient-based identification methods
for general quadratic costs is not well-studied. This can be
compared to fixed-cost optimization, where the convergence
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criteria of gradient methods for large classes of costs are
well-established [41, pp. 466-475], [42, pp. 28-35].

A third approach to sequential optimization is Online
Convex Optimization (OCO) [43–45], which has emerged
as a subfield of machine learning. The OCO literature has
studied algorithms closely related to the gradient methods
used in identification (cf. section I-E) and has treated prob-
lems similar to those of interest in system identification,
such as finding a common global minimizer [46–48] or
tracking a time-varying global minimizer [49–51] for sets of
strongly convex costs. However, as shown in section I-E, the
OCO objective of regret minimization may not be effective
for system identification since the regret can be minimized
without guaranteeing attractivity to the true parameters. This
is especially true for non-strictly convex costs, which may
have multiple global minimizers.

In this paper, we address the global asymptotic stability
of gradient descent for the purpose of online system iden-
tification. That is, gradient descent with the objective of
determining true system parameters using only sequentially
available input/output data (cf. [23], [24, pp. 58–61]). We
refer to this approach as sequential-cost gradient descent
(SGD) to distinguish it from other problems that also use
gradient descent (e.g., fixed-cost optimization). We restrict
our attention to quadratic costs, which are the most relevant
for identification, including possibly rank-deficient costs,
which are convex but not strictly convex, and hence we allow
for the existence of multiple global minimizers at each step.

Section I-B fixes notation and terms, Section I-C further
describes the motivation of the main problem, Section I-D
defines the main problem formally as P1, and section I-
E discusses the relationship of the present work to OCO.
In Section II, we present three fixed-point results that are
subsequently used to prove global asymptotic stability con-
ditions for SGD in Section III. Finally, these conditions are
specialized to least squares costs in Section IV and illustrated
with examples in Section V.

B. Notation and Terminology

We define N 4= {1, 2, 3, . . . } and N0
4
= {0}∪N. The sym-

bols Sn,Nn, and Pn denote the sets of real n×n symmetric,
positive-semidefinite, and positive-definite matrices, respec-
tively. For A ∈ Sn, λi(A) denotes the ith largest eigenvalue
of A, λmax(A)

4
= λ1(A), and λmin(A)

4
= λn(A). For all

A ∈ Rn×n, R(A) and N(A) denote the range and null space
of A, respectively, and A+ denotes the generalized inverse
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of A. The notation |U | denotes the cardinality of the set U .
The notation (xk)k∈N0 ⊂ U indicates that the components
x0, x1, . . . of the sequence (xk)k∈N0 are elements of U . For
convenience, we write (xk) for (xk)k∈N0

. The empty product
and empty sum are defined to be 1 and 0, respectively. Given
the n-tuple J = (j1, . . . , jn) of indices and r × r matrices
Aj1 , . . . , Ajn , we define

∏
j∈JAj

4
= AjnAjn−1

· · ·Aj1 .

C. Identification Using Costs with Multiple Minimizers

Let D ⊂ Rn and let J be a set of differentiable functionals
J : D → R. For all J ∈ J, let MJ denote the set of global
minimizers of J , and denote MJ

4
= ∩J∈JMJ . It is frequently

useful in system identification to consider sets J such that,
for all J ∈ J, |MJ | > 1 but |MJ| = 1. For example, the set
of instantaneous least squares costs Jk(x) = 1

2‖yk −φkx‖
2,

k ≥ 0, where (yk) ⊂ Rm and (φk) ⊂ Rm×n is a sequence
of regressor matrices such that rank(φk) < min(m,n),
satisfies this property in the case where yk = φkx

∗ and
∩k≥1N(φk) = {0}. The objective is to identify the single
element x∗ ∈ MJ, which corresponds to the true system
parameters, using only knowledge of the individual costs
in J. In particular, since each set MJ contains elements
other than x∗, perhaps infinitely many, an algorithm for
determining x∗ must be capable of distinguishing between
points that are only minimizers of a proper subset of the
costs in J and the universal minimizer of every cost in J.
Section I-D proposes a simple gradient descent strategy for
pursuing this objective.

D. sequential-cost gradient descent

Based on the discussion in the preceding paragraph, we
make the following assumption:

A1. There exists a set J
4
= {J : D ⊂ Rn → R} of

differentiable functionals such that, for all J ∈ J, |MJ | ≥ 1,
and |MJ| = 1.

Thus, we allow for the possibility that, for all J ∈ J, |MJ | >
1, but need not assume this a priori.

A2. J contains a sequence (Jk) such that ∩kMJk =MJ.

We refer to a sequence satisfying A2 as an exhaustive
sequence in J.

Since we are interested in online operation, where each
cost Jk is not available until step k, we also make an
assumption restricting the availability of costs.

A3. At each step k, the only available cost is Jk.

Although it is possible to use the previous costs J0, . . . , Jk−1
in addition to Jk at step k, we shall show that it is possible
to identify x∗ using only the current cost Jk, which is
significantly more computationally efficient than holding
multiple costs in memory.

Since the most important in system identification appli-
cations are quadratic functions, for simplicity in this initial
research, we make the following final assumption:

A4. For all k ≥ 0, Jk is a quadratic function. That is, there
exist Ak ∈ Nn\{0}, bk ∈ R(Ak), and ck ∈ R, such that
Jk(x)

4
= 1

2x
TAkx+ bTk x+ ck.

Note that by restricting attention to quadratic functions, we
also assume that D = Rn. The assumption that bk ∈ R(Ak)
is necessary to ensure the existence of finite-norm minimiz-
ers, while the assumption that Ak is not necessarily full rank
implies that Jk is convex, but not necessarily strictly convex,
and hence that there may exist multiple global minimizers.
Note that a quadratic cost sequence satisfies A1-2 if and only
if | ∩k≥0 [−A+

k bk +N(Ak)]| = 1.
Let (µk) ⊂ [0,∞). Then the gradient iteration of (Jk) is

defined as

xk+1 = xk − µk∇Jk(xk), (1)
x0 ∈ Rn, (2)

where µk is the step size at step k. We refer to the use of the
gradient iteration to determine x∗ as sequential-cost gradient
descent. Note that x∗ is an equilibrium point of the gradient
iteration (1)–(2). The main problem that we address in this
paper may be stated as follows:

P1. Under assumptions A1–A4, determine sufficient
conditions such that x∗ is a GAS equilibrium of (1)–(2).

Guaranteeing GAS will prove a fortiori that the SGD esti-
mates converge to x∗ regardless of the initialization.

E. Relationship with Online Convex Opimization

The SGD algorithm is equivalent to Online Gradient
Descent [45, pp. 9-11], [43, pp. 130-134], [44, pp. 179-183],
[46] in OCO, possibly with the addition of a projection step,
and thus we might initially consider using results from OCO
to help answer P1. Unfortunately, since OCO is based on
regret minimization, it cannot guarantee GAS when J has
costs with multiple global minimizers.

To see this, assume that A1–A4 hold and recall that the
regret of an OCO algorithm is defined [45, pp. 1-2], [43, p.
112], [44, pp. 159-161] by

RT
4
=

T∑
k=0

Jk(xk)− min
x∈Rn

T∑
k=0

Jk(x), (3)

where xk is the estimated minimum of Jk at step k. In the
OCO framework, the goal is to provide guarantees on the
asymptotic growth of RT , and the main figure of merit is
how well RT can be bounded (possibly asymptotically by
a function of T ). The ideal performance is RT = 0 for all
T > 0, but even the best OCO algorithms guarantee only
sublinear growth of RT , since the OCO framework allows
Jk to be chosen adversarially [45, p. 6].
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The task given in P1 is to prove GAS of x∗, and hence
convergence of the estimate sequence to the true parameters.
Hypothetically, if GAS could be guaranteed by bounding
RT , then the methods of OCO might be used to answer
P1. Unfortunately, as the following example shows, if J has
costs with multiple global minimizers, then even achieving
the ideal OCO performance of RT = 0 for all T > 0 is
insufficient to guarantee GAS, or even attractivity of x∗.

Example 1. Let A ∈ Nn\{0}, ‖A‖ ≤ 1, and rank(A) <
n, define J1(x) = xTAx and J2 = xT (In−A)x, and let J =
{J1, J2} and (Jk) = (J1, J2, J1, J2, . . . ). Then J satisfies A1
and (Jk) satisfies A2. Since N(A), N(In−A) 6= {0}, there
exist y1 ∈ N(A) \ {0} and y2 ∈ N(In −A) \ {0}, and thus,
for all α ∈ R, the sequence

xk
4
=

{
αky1, k = 0, 2, 4, . . .

αky2, k = 1, 3, 5, . . .
(4)

is well-defined and has RT = 0 for all T > 0. For all α > 1,
however, it follows that limk→∞ ‖xk − x∗‖ =∞. �
In Example 1, since both J1 and J2 have an infinite number
of global minimizers, there are sequences with identically
zero regret that diverge infinitely far from the true param-
eters. Hence, guarantees on RT , such as those provided
by OCO, do not guarantee attractivity, and thus cannot
satisfactorily answer P1. In the remainder of the paper,
we instead pursue a solution strategy based directly on the
definition of stability.

II. FIXED-POINT THEORY

This section reviews three fixed-point results that are
essential for the main results of the paper. Although straight-
forward, to the authors’ knowledge, they have not appeared
before in the system identification literature.

Let (M,d) be a metric space, and let f : M →M . Then, f
is nonexpansive if there exists a nonexpansion coefficient q ∈
(0, 1] such that, for all x, y ∈M , d(f(x), f(y)) ≤ qd(x, y).
The point p ∈M is a fixed point of f if f(p) = p.

Definition 1: Let (M,d) be a metric space, and let (fk)
be a sequence of functions on M . Then p ∈ M is a fixed
point of (fk) if, for all k ∈ N0, fk(p) = p. The set of all
fixed points of (fk) is denoted by Fix[(fk)].

Proposition 1: For all k ∈ N0, let fk : M → M be
nonexpansive with nonexpansion coefficient qk. Let x0 ∈M ,
define xk+1 = fk(xk), and assume that p is a fixed point
of (fk). Then limk→∞ d(xk, p) ≤ (

∏∞
k=0 qk) d(x0, p), and,

furthermore, if
∏∞
k=0 qk = 0, then p is the only fixed point

of (fk) and limk→∞ xk = p.

Proof. Since, for all k ∈ N0, fk is nonexpansive, it follows
that d(xk+1, p) = d(fk(xk), fk(p)) ≤ qkd(xk, p), hence,
d(xk, p) ≤

∏k−1
`=0 q` d(x0, p), and thus limk→∞ d(xk, p) ≤

(
∏∞
k=0 qk) d(x0, p). Setting

∏∞
k=0 qk = 0, it follows that

limk→∞ d(xk, p) = 0. Suppose that p′ ∈ Fix[(fk)]. Then
d(p′, p) ≤ limk→∞ d(p′, xk) + limk→∞ d(xk, p) = 0. �

Proposition 2: Let (fk) be a sequence of nonexpansive
functions on (M,d) with fixed point p. Then p is a Lyapunov
stable equilibrium of the system

xk+1 = fk(xk), (5)
x0 ∈M. (6)

Proof. Let ε > 0 and x0 ∈ Bε(p). Since (fk) is non-
expansive, it follows that, for all k ≥ 0, d(xk, p) =
d(fk−1(xk−1), fk(p)) ≤ d(xk−1, p) ≤ d(x0, p) < ε. �

A bounded interval of N0 is a set {n, n+1, . . . , n+m} ⊂
N0, where n,m ∈ N0. A bounded interval partition of N0 is
a partition of N0 whose elements are bounded intervals, and
a uniformly bounded interval partition P of N0 is a bounded
interval partition of N0 such that supU∈P |U | <∞.

Proposition 3: Let (fk) be a sequence of nonexpansive
functions on (M,d) with fixed point p, let (Uk) be a bounded
interval partition of N0, and, for all k ∈ N0, define

Fk
4
= fmaxUk

◦ · · · ◦ fminUk
. (7)

Then the following statements hold:
i) p is a fixed point of (Fk).

ii) (Fk) is nonexpansive.
iii) For all x ∈ M , limk→∞ Fk ◦ · · · ◦ F0(x) = p if and

only if limk→∞ fk ◦ · · · ◦ f0(x) = p.

Proof. i) and ii) are immediate from (7). To prove iii), let
z ∈ M , and define (yk), (xk) ⊂ M by x0 = z, y0 = z,
and, for all k ∈ N0, by xk+1 = fk(xk) and zk+1 = Fk(zk).
Suppose that limk→∞ xk = p. Since (zk) is a subsequence
of (xk), it follows that limk→∞ zk = p. Conversely, suppose
that limk→∞ zk = p, and let ε > 0. Then there exists k ∈ N0

such that, for all k ≥ K, d(zk, p) < ε. Since (zk) is a
subsequence of (xk), it follows that there exists M ≥ 0 such
that zK = xM . Let m > M . Then, since fk is nonexpansive,
it follows that

d(xm, p) = d(fnm
m ◦ · · · ◦ fnM

M (xM ), fnm
m ◦ · · · ◦ fnM

M (p))

≤ d(xM , p) = d(zK , p) < ε,

and thus limk→∞ xk = p. �

III. GLOBAL ASYMPTOTIC STABILITY

In this section, we state and prove sufficient conditions
for GAS of SGD in Theorem 1, answering P1. This is our
main result, the proof of which requires the following three
lemmas.

Lemma 1: Let (Uk) be a bounded interval partition of N0

and, for all k ≥ 0, let Ak ∈ Nn, with ‖Ak‖ ≤ 1 and
limk→∞

∥∥∥∏j∈Uk
Aj

∥∥∥ = 1. Then limk→∞ ‖Ak‖ = 1.

Proof. Let ε > 0. Since limk→∞

∥∥∥∏j∈Uk
Aj

∥∥∥ = 1 there
exists K ≥ 0 such that, for all k ≥ K and j ∈ Uk, 1− ε <
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∥∥∥∏j∈Uk
Aj

∥∥∥ ≤ ∏
j∈Uk

‖Aj‖ ≤ ‖Aj‖ ≤ 1. Thus, for all
j ≥ minUK , 1− ε ≤ ‖Aj‖ ≤ 1.

Lemma 2: Let (Uk) be a uniformly bounded interval
partition of N0 and let (ak) ⊂ R be a sequence such that
limk→∞ ak = 0. Then limk→∞

∑
j∈Uk

aj = 0.

Proof. Let ε > 0 and supk∈N0
|Uk| = M . Since

limk→∞ ak = 0, it follows that there exists K ∈ N0 such
that, for all k ≥ K, |ak| < ε/M. Since (Uk) is an interval
partition, it follows that there exists K1 ≥ 0 such that, for
all k ≥ K1, minUk > K. Let k ≥ K1. Since, for all
j ∈ Uk, j ≥ K, it follows that

∣∣∣∑j∈Uk
aj

∣∣∣ ≤∑j∈Uk
|aj | <

ε
M |Uk| ≤

ε
M supk∈N0

|Uk| = ε. �

To see that the assumption of uniform boundedness is
essential, let U0 = {0}, U1 = {1}, U3 = {2, 3}, U4 =
{4, 5, 6}, U5 = {7, 8, 9, 10}, . . . . Then (Uk) is a bounded,
but not uniformly bounded interval partition. For all k ∈ N0,
let {aj}j∈Uk

= { 1
k+1 , . . . ,

1
2k}. Then

∑
j∈Uk

aj = ln(2) +
ε2k−εk, where limk→∞ εk = 0. Thus limk→∞

∑
j∈Jk aj =

ln(2) even though limk→∞ ak = 0.

Definition 2: Let (Sk) ⊂ Nn. Then (Sk) is ultimately
positive if lim infk→∞ λmin(Sk) > 0 and weakly ultimately
positive if there exists a uniformly bounded interval partition
(Uk) of N0 such that

(∑
j∈Uk

Sj

)
is ultimately positive. The

sequence (φk) ⊂ Rn×m is ultimately positive, or weakly
ultimately positive if (φTk φk) is ultimately positive, or weakly
ultimately positive, respectively.

Lemma 3: For all k ∈ N0, let Ak ∈ Nn\{0},

µk ∈ [0, λ−1max(Ak)], (8)

and define qk
4
=

∥∥∥∏j∈Uk
(In − µjAj)

∥∥∥ . Furthermore,
assume that (µkAk) is weakly ultimately positive. Then
lim supk→∞ qk < 1.

Proof. From (8), it follows that lim supk→∞ qk ≤ 1. Hence,
suppose for contradiction that lim supk→∞ qk = 1. From
Lemma 1, it follows that lim supk→∞ ‖In−µkAk‖ = 1, and
thus lim supk→∞(1−‖In−µkAk‖) = 0. For all k ∈ N0, let
xk be the unit eigenvector of Ak corresponding to λmax(Ak)
and let ξ ∈ B1(0). Since µkAkxk = (1 − ‖I − µkAk‖)xk,
Lemma 2 implies that

lim inf
k→∞

λmin

∑
j∈Uk

µjAj

 ≤ lim inf
k→∞

∥∥∥∥∥∥
∑
j∈Jk

µjAj

 ξ
∥∥∥∥∥∥

≤ lim inf
k→∞

∥∥∥∥∥∥
∑
j∈Jk

µjAjxj

∥∥∥∥∥∥ ≤ lim inf
k→∞

∑
j∈Jk

‖µjAjxj‖

= lim inf
k→∞

∑
j∈Jk

(1− ‖In − µjAj‖)

≤ lim sup
k→∞

∑
j∈Jk

(1− ‖In − µjAj‖) = 0,

which contradicts the assumption that (µkAk) is weakly
ultimately positive. �

Theorem 1: Under the notation and assumptions A1–A4,
let (µk) ⊂ [0,∞) satisfy (8) and assume that (µkAk) is
weakly ultimately positive. Then x∗ ∈ MJ is the globally
asymptotic stable equilibrium of (1)–(2).

Proof. The point x∗ is an equilibrium of (1)–(2) by defi-
nition. Consider the sequence (fk : Rn → Rn) defined for
all k ≥ 0 by fk(x)

4
= x − µk∇Jk(x), where (Jk) ⊂ J

is exhaustive. Since (8) implies that ‖I − µkAk‖ = 1 −
µkλmin(Ak) ∈ [0, 1], it follows that, for all x, y ∈ Rn,
‖fk(x) − fk(y)‖ ≤ ‖I − µkAk‖‖x − y‖ ≤ ‖x − y‖, and
thus (fk) is nonexpansive. From Proposition 2, it follows
that x∗ is Lyapunov stable.

To prove attractivity, let (Uk) be a uniformly bounded
interval partition for which (µkAk) is weakly ultimately pos-
itive, for all k ∈ N0, define Fk by (7) with fk given as in the
previous paragraph, and define qk

4
=
∥∥∥∏j∈Uk

(In − µjAj)
∥∥∥ .

Using (7), it follows that, for all k ∈ N0, ‖Fk(x)−Fk(y)‖ =∥∥∥[∏j∈Jk(In − µjAj)
]
(x− y)

∥∥∥ ≤ qk‖x−y‖. Finally, ‖In−
µkAk‖ ≤ 1 implies that qk ∈ [0, 1]. Next, since (µkAk) is
weakly ultimately positive, it follows that Lemma 3 holds,
and thus (3) implies that 1− lim supk→∞ qk ∈ (0, 1). Hence,
let α ∈ (0, 1− lim supk→∞ qk), and, for all k ∈ N0, define

q̃k
4
=

{
qk, qk 6= 0,

α, qk = 0.

Since, for all k ∈ N0, q̃k ∈ (0, 1] and, for all x, y ∈
Rn, ‖Fk(x) − Fk(y)‖ ≤ q̃k‖x − y‖, it follows that q̃k
is a nonexpansion coefficient for fk. Since q̃k ∈ (0, 1], it
follows that

∏∞
k=0 q̃k is either zero or positive. Suppose for

contradiction that
∏∞
k=0 q̃k is positive. Then limk→∞ q̃k =

1, which implies that qk is ultimately positive, and hence
limk→∞ qk = limk→∞ q̃k = 1, contradicting Lemma 3.
Thus

∏∞
k=0 q̃k = 0.

From A1, it follows that x∗ is the unique fixed point of
(fk). From Proposition 3, i) and 1 it follows that x∗ is the
unique fixed point of (Fk), and, for all x ∈ Rn, limk→∞ Fk◦
· · · ◦ F0(x) = x∗. Thus, it follows from Proposition 3, iii)
that limk→∞ xk = x∗. Since the initialization is arbitrary, it
follows that x∗ is GAS. �

Note that Theorem 1 combined with the uniqueness of
the universal fixed point in Proposition 1 implies that if
(µk) satisfies (8), (µkAk) is weakly ultimately positive,
and ∩k≥0[−A+

k bk + N(Ak)] 6= ∅, then, moreover, | ∩k≥0
[−A+

k bk + N(Ak)]| = 1 and x∗ ∈ ∩k≥0[−A+
k bk + N(Ak)]

is the GAS equilibrium of (1)–(2).
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IV. LEAST SQUARES COSTS

Least squares costs form a significant subset of the
quadratic costs commonly used in practice. For this special
case, the results in the previous section can be specialized.

Definition 3: The sequence (Jk) of quadratic cost func-
tions is a least squares sequence if, for all k ∈ N0, there
exist φk ∈ Rp×n\{0}, yk ∈ Rp, `k ∈ {0, . . . , k} and, for all
1 ≤ i ≤ `k, Wk,i ∈ Pp such that

Jk(x) =
1

2

`k∑
i=0

(yk−i − φk−ix)TWk,i(yk−i − φk−ix). (9)

Note that in the case where
∑`k
i=0 φ

T
k−iWk,iφk−i is rank-

deficient, Jk has an infinite number of global minimizers.

Theorem 2: Let (φk) ⊂ Rp×n be weakly ultimately posi-
tive, and, for all k ∈ N0, define yk = φkx

∗, where x∗ ∈ Rn,
let 0 ≤ `k ≤ k, and assume that, for all 1 ≤ i ≤ `k,
Wk,i ∈ Pn and Wk,i ≥ ξIn, where ξ > 0. Finally, let
(µk) ⊂ [0,∞) be an ultimately positive sequence such that,
for all k ∈ N0,

µk ≤
1

λmax

(∑`k
i=0 φ

T
k−iWk,iφk−i

) , (10)

Then x∗ is the globally asymptotically stable equilibrium of
(1)–(2) with Jk given, for all k ≥ 0, by (9).

Proof. Note that (9) can be written as Jk(x̃)
4
= 1

2 x̃
TAkx̃,

where Ak =
∑`k
i=0 φ

T
k−iWk,iφk−i and x̃ = x∗−x. Then µk

satisfies (8) by construction. To show that (µkAk) is weakly
ultimately positive, let (Uk) be a uniformly bounded interval
partition with respect to which (φk) is weakly ultimately
positive, and for all k ∈ N0, define µ−k = minj∈Uk

µj . Since
(µk) is ultimately positive, (µ−k ) is ultimately positive, and
thus

lim inf
k→∞

λmin

∑
j∈Uk

µjAj


≥ ξ lim inf

k→∞
µ−k λmin

∑
j∈Uk

`j∑
i=0

φTj−iφj−i


≥ ξ lim inf

k→∞
µ−k λmin

∑
j∈Uk

φTj φj

 > 0. �

V. EXAMPLES

The following examples illustrate Theorems 1 and 2.

Example 2. Considering the cost set and sequence of
Example 1, for all k ∈ N0, let µk = min(1, λ−1max(A)),
and let (Uk) = ({0, 1}, {2, 3}, {4, 5}, . . . ). Then Theorem
2 implies that x∗ = 0 is the GAS equilibrium of (1)–(2). �

Example 3. Let θ = [1 2]T, and, for all k ∈ N0, define

φk =


[
0 0
0 1

k

]
, k = 0, 2, 4, . . . ,[ 1√

k
0

0 0

]
, k = 1, 3, 5, . . . ,

(11)

yk = φkθ, and let Jk(x) = 1
2‖yk − φkx‖2. Let µk = k2

and consider the uniformly bounded interval partition given
in Example 2. Then Theorem 2 implies that θ is the GAS
equilibrium of (1)–(2). Note that θ is GAS even though µk
is unbounded. �

Example 4. Let θ ∈ Rn, let Nw ≥ 0, let (φk) ⊂
Rp×n be weakly ultimately positive, and assume that β

4
=

supj≥0 λmax

(
φTj φj

)
< ∞. For all k ∈ N0, let yk =

φkθ, and define Jk(θ̂) = 1
2

∑Nw

i=0 ‖yk−i − φk−iθ̂‖2. Fi-
nally, let (µk) be an ultimately positive sequence such
that µk ∈ [0, 1

Nwβ
]. Then (µk) satisfies (10), since

λmax

(∑Nw

i=0 φ
T
k−iφk−i

)
≤ Nwβ, and Theorem 2 implies

that θ is the GAS equilibrium of (1), (2). �

VI. CONCLUSION

Sufficient conditions were given under which the
sequential-cost gradient descent is GAS with an equilib-
rium corresponding to the true system parameters. GAS
was obtained regardless of whether or not the individual
costs have a unique minimizer (that is, are strictly convex).
Since quadratic costs are the most common type in system
identification, we restricted attention to this important class
of costs. Specialized conditions were given for least squares
costs, including rank-deficient least squares costs with an
infinite number of global minimizers. Future work will
consider extensions to sequences of nonquadratic convex cost
functions, the effect of noise, and extension to costs without
a common global minimizer.
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