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In applications of state estimation involving data assimilation over a spatial region, it is often convenient, and
sometimes necessary, to confine the state correction to a prescribed subspace of the state space that corresponds to the
measurement location. This is the injection-constrained state-estimation problem, where the injection of the output
error is constrained to a specified subspace of the state space. Unlike full-state output-error injection, which is the dual
of static full-state feedback, constrained output-error injection is the dual of static output feedback. To address the
injection-constrained state-estimation problem, this paper develops the injection-constrained unscented Kalman
filter (IC-UKF) and the injection-constrained retrospective cost filter (IC-RCF). The performance of these filters is
evaluated numerically for linear and nonlinear state-estimation problems in order to compare their accuracy and
determine their suboptimality relative to full-state output-error injection. As a benchmark test case, IC-UKF and
IC-RCF are applied to the viscous Burgers equation for state and parameter estimation.

Nomenclature
e; = ith column of the n X n identity matrix
etk = prior error at step k + 1
€ryik+1 = Dposterior error at step k + 1
Gy = filter
I, = identity matrix of size n X n
K, = filter gain
N; = filter coefficient
Pryijk = prior error covariance at step k + 1

Piyijk+1 = posterior error covariance at step k + 1

q = forward-shift operator

uy = measured input

Vg = measurement noise

Wy = process noise

Xp = state

Rtk = prior state estimate at step k + 1
Xiyies1 =  posterior state estimate at step k + 1
Vi = measured output

kg 1lk = prior output error at step k + 1
Zkgik+1 =  posterior output error at step k + 1
I'y = injection-constraint matrix

Nk = injection signal

A = forgetting factor

Lsem = n X m matrix of ones

Subscripts

f = filter

k = iteration step

I. Introduction

HE classical Kalman filter and its variants, such as the extended
Kalman filter (EKF) [1], unscented Kalman filter (UKF) [2,3],
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and ensemble Kalman filter (EnKF) [4], construct state estimates by
injecting the output error into a model of the system dynamics. In
EKF, the state estimates are first propagated using the nonlinear
dynamics of the system, and the propagated state is then corrected
using the measurement data. The first step is referred to as the physics
update or the prediction step, whereas the second step is referred to as
data assimilation or the correction step. The Kalman gain used in the
data-assimilation step is computed using the Jacobian of the dynam-
ics along the estimated trajectory. In contrast, ensemble-based esti-
mation methods, such as EnKF, UKF, and particle filters, propagate
an ensemble of estimation models to compute the Kalman gain and
the state estimate.

As the complexity of the system increases, both of these
approaches become intractable. An example of such a system is the
upper atmosphere of a planet. The global ionosphere—thermosphere
model (GITM) is a model of the upper atmosphere that propagates the
state of the atmosphere by solving coupled continuity, momentum,
and energy equations in the computational domain comprising the
atmosphere between the altitude of 100 and 600 km [5]. In a typical
simulation, GITM propagates approximately 10 million states. EKF,
EnKF, and UKF are thus not practical in this application.

Furthermore, large-scale complex models such as GITM often
depend on parallel computing for simulation. In such cases, the
computational domain is divided into blocks, and each block is
solved on one processor. The processors propagate the states in each
block independently of the other blocks except at the boundaries
where constraints are imposed to maintain continuity. The applica-
tion of the Kalman filter and its variants requires the collection of all
of the states in the estimation model at a single processor to compute
the Kalman gain and facilitate communication of the correction term
to all of the processors. In addition to time and memory requirements,
such an implementation also requires considerable programming
expertise and effort. Thus, for high-dimensional models that depend
on parallel computing for simulation, it is convenient to restrict the
data injection to a subset of the processors, thus reducing the com-
putational cost and programming effort.

Furthermore, in applications that encompass large spatial regions,
such as in weather forecasting, the measurement data may be corre-
lated with states within only a localized region. In such cases, it may
be sufficient to confine the output-error injection to a subspace of the
state space [6—10]. Finally, for ensemble-based estimation methods,
localized subspace injection can also reduce the size of the ensemble.

For applications with linear dynamics, an injection-constrained
Kalman filter was derived in [11]. This estimator uses a modified
Riccati difference equation to update the error covariance, where an
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additional term involving an oblique projector accounts for the
injection constraint.

Although [11] can be applied to the linearized dynamics as in the
case of the EKF, the present paper focuses on alternative injection-
constrained state-estimation techniques that are applicable to non-
linear systems without requiring linearized dynamics. To address this
problem, the present paper develops two injection-constrained state
estimators, namely, the injection-constrained unscented Kalman fil-
ter (IC-UKF) and the injection-constrained retrospective cost filter
(IC-RCF). IC-UKEF is an extension of UKF, where the data injection
is constrained to a specified subspace. This constraint allows the filter
gain to be computed using a smaller ensemble size, thus reducing the
computational cost. In particular, IC-UKF requires propagation of an
ensemble of 2/, + 1 copies of the model instead of the 2/, + 1 copies
propagated by UKF, where [, and [, are the dimensions of the
subspace used for output-error injection and the state, respectively.
Like IC-UKF, IC-RCF constrains the data injection to a specified
subspace; however, the filter gain is computed using retrospective
cost optimization. A similar technique was used for state estimation
in [12]. The goal of the present paper is thus to assess the performance
of IC-UKF and IC-RCF for injection-constrained state estima-
tion (ICSE).

A special case of ICSE is addressed by the Schmidt-Kalman filter
(SKF) [13-15]. In its original form, SKF distinguishes between
uncertain parameters and dynamic states, where the covariance of
the parameters and states is propagated, but the output injection is
confined to the dynamic states. A UKF extension of SKF is presented
in [16].

The local ensemble Kalman filter (LEKF), which was motivated
by atmospheric data assimilation, also localizes the effect of the
measured data by restricting the data assimilation step to a subset
of states [7,17,18]. In LEKF, the word local implies that the states to
be updated are selected as the physical variables in the spatial vicinity
surrounding the observation location. In this sense, LEKF can be
interpreted as a special case of ICSE, where the injection constraint is
motivated by the physical proximity of observation locations and
states.

A key distinction between IC-UKF and IC-RCF is the fact that
IC-UKF requires propagation of an ensemble of 2/, + 1 copies of the
model. In contrast, IC-RCF requires only the output error, which can
be computed using the propagation of only a single copy of the
system model. Furthermore, implementing IC-UKF requires that
the entire state be collected and assembled in order to propagate
the ensemble and compute the filter gain. The programming effort
required to implement IC-UKF can thus be prohibitively large for
high-dimensional models consisting of numerous submodels. In
contrast, IC-RCF is a modular scheme, which uses the past computed
error but does not require the state of the model. Consequently, the
programming effort required to implement IC-RCF is independent of
the complexity of the application.

As a special case of ICSE for nonlinear systems, this paper con-
siders the problem of estimating unknown parameters. By viewing
the unknown parameters as constant states, the data injection is
confined to the subspace corresponding to the unknown parameters.
For the case of linear systems with unknown coefficients, this prob-
lem is typically addressed by means of the EKF [19].

The main contribution of the present paper is the development of
injection-constrained state estimators for nonlinear systems, namely,
the injection-constrained UKF and the IC-RCF. The extension of
UKF to ICSE facilitates implementation of UKF and reduces the
required ensemble size, whereas the IC-RCF provides an ensemble-
free technique for ICSE in nonlinear systems. A numerical compari-
son of the performance of these filters is presented. A preliminary
version of some of the results in the present paper appeared in [20].

This paper is organized as follows. The ICSE problem is described
in Sec. II and a general form of injection-constrained filter is intro-
duced. Section III presents the optimal injection-constrained filter for
linear systems, and Secs. IV and V present the injection-constrained
UKF and retrospective cost filter for nonlinear systems. Numerical
examples comparing the performance of the various filters are pre-
sented in Sec. VI. Finally, conclusions are discussed in Sec. VIII.

II. Injection-Constrained State Estimation Problem
Consider the system

X1 = fr(a) + wy (D

Vi = &k(xi) + v 2

where, for all k>0, x, €Rk y, €RY, fi:RY - R:, and
gi: R = RY. Furthermore, let xy ~ N (%, Py), and, for all
k> 0,let w, ~N(0, Qp) and v, ~ N (0, R;) denote the disturbance
and sensor noise, respectively. The goal is to estimate x; using
knowledge of the functions f and g as well as the measurement y;;
this is the ICSE problem. A special case of Egs. (1) and (2) is the
linear system

Xpgp1 = Apxg + wy 3)
i = Cpxp + v 4

where, for all k > 0, A;, C; are real matrices.
Now consider the injection-constrained state estimator

T = FiGu) 5)

X111 = X + Titenr (6)

where %y 1 is the prior estimate of x5 X4 k41 is the posterior
estimate of x;; x4 € R, where I, <, is the injection signal,
and, for all k > 0,T, € R¥% is the injection-constraint matrix that
constrains the injection of 77, | to a specified subspace. In ensemble-
based filters,

n

Fil® =) oifix + &) (7)

i=1
where n is the ensemble size, o; is a scalar, and ¢; is the state
perturbation; otherwise, f;, = f;. For all k > 0,I'; is assumed to
have full-column rank. For example, the [, X [, injection-constraint
matrix

1

where lpélx — I, constrains the injection of ;. to the first [,
components of x;. Note that the injection-constraint matrix can
always be expressed in the form (8) by permuting the components
of state x;. In this paper, the columns of T are assumed to be selected
from the columns of the /, X [, identity matrix. Consequently, with
appropriate permutation of the state in Eq. (1), I'; can always be
transformed in to the form given by Eq. (8). Finally, when I'; is
constant, it is written as I" for convenience.
The injection signal 77| is given by

My = Klyer — 8k Fr1)] &)

where K is determined by optimization below and g (%) is the
predicted output based on the prior estimate X, ;. Note that the
notation 77, | for the injection signal reflects the fact that the signal is
injected at step kK + 1.

III. Optimal Injection-Constrained Filter
for Linear Systems

This section reviews the optimal injection-constrained filter
(OICF) presented in [11] to establish notation for the development
of injection-constrained state estimators. For the linear system
described by (3), (4), consider the injection-constrained filter
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Tyt = Ak (10)

Fptpert = Eetpe + TeKOrgr = Crgr Eiepr ) an
where the gain matrix K € R/ is determined by optimization

below. For all k > 0, define the prior error e, and the posterior
eITOT €jt qjit1 DY

A .
Chpk = Xkr1 — Xk 1k (12)

A .
Chpkt1 = Xkl = Xkg1lk+1 (13)

and the corresponding covariances of e;.jj, and €441 by

A
Prip ZE[EHMLM] (14)

1>

Pk Eliek+l\k+lez+l\k+l:| (15)

The following result is given in [11]. For completeness, an abbre-
viated proof is given.

Proposition IIL1: Forall k > 0, let the prior covariance Py ), and
the posterior covariance Py be given by Egs. (14) and (L5), respec-
tively. Let K, denote the minimizer of trP ;. Then, for all
k > 0, the optimal injection-constrained filter gain K, is given by

K1 = (OT) ' T3 PG Ry (16)
where
—~ A
Rii1 = Cri1PrynCiyy + Risr (17)

and the corresponding posterior covariance at step k + 1 is given by

_ T pol
Pt = Pryie = Propie G 1 Rie 1 Cot Pry i

+ TP Ch Ry Cigt Prgajem (18)
where

Piyix = APyiAL + Oy 19)
and

m 21T (@) ~'IT (20)

Proof: Note that the prior and posterior errors satisfy

erpik = Arer + Wi,

Ciyiir1 = (U —TiKCrpDerpip — TieKvgg
and thus the prior and posterior covariances satisfy

P = APiA + O
Piiipsr = Py + TeK Ry KT = TR Cyy Py
— Pk CI KT @0

To minimize trPy ¢4, note that
d L
d_IetrPH”kH = 24K Ry — 203 Pk Ciy g (22)

Setting Eq. (22) to zero yields the optimal injection-constrained filter
gain (16), and setting K = K| in Eq. (21) yields Eq. (18). O

In the case where T’y = I; , note that z; = 0 and Proposition III.1
thus yields the classical Kalman filter. This section reviews the
optimal injection-constrained filter (OICF) presented in [11] to
establish notation for the development of injection constrained state
estimators.

PropositionI11.2: Letk > 0.Let Py be the posterior covariance of
exi- Let Ty # I, and let P}Sfl et 1 denote the posterior covariance at

step k + 1, which is given by Eq. (18). Let Pﬁl\kﬂ
posterior covariance at step k + 1 given by the Kalman filter, which

is obtained by setting 7;, = 0 in Eq. (18). Then,

denote the

(¢
P S P (23)
Proof: Note that
P/Ifil\kJrl - P}SrF]\kH =~ Py pCh Rl Copr Prppme <0
The fact that trace is a linear operator yields Eq. (23). O

If A, Cy, and I'; are constant, then the posterior error satisfies
e = U =TKO)Aeyy + (I ~TKCOyw, ~TKv (24

The stability of Eq. (24) depends on the existence of a gain K such that

AféA —TKCAis asymptotically stable; when such a gain exists, the
triple (A, T', CA) is called static-output-feedback stabilizable. Various
necessary and/or sufficient conditions for static-output-feedback sta-
bilizability are given in [21-23]. It is easy to see that, if (A, I, CA) is
static-output-feedback stabilizable, then (A,T) is stabilizable and
(A, CA) is detectable. The converse is not true; that is, if (A,I) is
stabilizable and (A, CA) is detectable, then (A, I, CA) may or may not
be static-output-feedback stabilizable. However, if (A, ') is not stabi-
lizable, then (A, T", CA) is not static-output-feedback stabilizable.

Furthermore, as shown by the next example, static-output-feed-
back stabilizability of (A, T, CA) is not a sufficient condition for the
OICF to be asymptotically stable.

Example II1.1: Consider Egs. (3) and (4) with the Lyapunov-stable
LTI dynamics

11 -02 -05
A= 1 0 0 |, C=[09 01 -09] (25
0 1 0

ForI"' = e, and K = 0.2, the spectral radius of A; is 0.87, and, for
I' = e, and K = —0.2, the spectral radius of A; is 0.95. The triple
(A, T, CA) is thus static-output-feedback stabilizable for both choices
of I'.

For all k>0, let Q, =107*I; and R, = 1073. Let X, =
[1 1 1]"and Pyo = 101;. Figure 1 shows the norm of the pos-
terior error ey, the trace of the posterior covariance Py, and the filter
gain K for two choices of I'. ForI" = e, OICF is stable as shown in
the subplots on the left by the decrease in the posterior error and the
convergence of the posterior covariance. However, forI' = e,, OICF
is unstable as shown in the subplots on the right by the diverging
posterior error and posterior covariance. Note that OICF gain con-
verges for both choice of I'. o

Example I11.1 shows that the stability of the error system (24) is not
guaranteed for the OICF gain given by Eq. (16) and, unlike the
Kalman filter, OICF is not necessarily asymptotically stable. How-
ever, as shown in Example V1.2, IC-RCF converges to a stabilizing
gain in this particular case.

Next, to facilitate the development of IC-UKEF, the OICF gain and
the posterior covariance are reformulated in terms of covariance
matrices. For all k > 0, define the prior output error zj 1, and the
posterior output error Zy k41 by

A
ik = Cry1€rt1ik (26)
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Fig. 1 Example IIL.1. OICF posterior error, posterior covariance, and
the filter gain for two choices of the injection-constraint matrix I'.

A
Zir k1 = Crgr€ranx + Vi 27

and define the covariance of z;, ;4 and the cross-covariance of
€1k and Zgy 1 by

1>

sz+1\k+| E[ZHI\HIZLqu] (28)

1>

vaZHl\k E[ekJrl\kZZJrl\k:I (29)

which, for all £ > 0, satisfy

i = Cert PerieCiyy + R (30)
P@,Z/\Jr”k = Pk+1|kcz+l (31)
Note that P, = Ry

Next, substituting Egs. (30) and (31) in Egs. (21), (16), and (18),
the posterior covariance for any value of K can be written as
Piiipsr = Poop + TWkP,,  K'TT T, KPY,

Lhk+1]k+1 k+1k

-P,, K'TT (32)

€T 1k
the optimal gain can be written as

Ky = OG0 T{P, 4, P2 (33)

L1k Th1lk+1
and the corresponding posterior covariance can be written as

_ _ T
Piiikr1 = Prvie = Pegy Prgyiir Pe.

+7Z'kP P PZ-ZI\Jrl\k”k (34)

€ Zht1lk” Th1]k+1

Lk+1k

The posterior covariance and the optimal filter gain in Eqs. (32-34)
are written in terms of covariance matrices instead of the matrices A;
and C|, to facilitate presentation in the later sections. As shown in the
next section, UKF approximates these covariance matrices using
ensembles.

IV. Injection-Constrained Unscented Kalman Filter

This section briefly reviews the UKF to establish notation and
terminology used in the development of the injection-constrained
filters. The UKF algorithm is formulated using a compact matrix-
based notation and is based on the algorithm presented in [2].

Let x € R and P € R be positive definite. The ensemble
X(x, P) € R*CLHD g the matrix

A
X(x,P)=[xx+py - x+px=—p - x=p] 35

Let a > 0. Define

A 1 [2(®-1) )
W= T | e R2H 36
2021, [ Lo i 36)

The weighted mean of the ensemble X is x 2 XW, and the ensemble
perturbation is

XE2X-H®E (37)

where, for v € R”,
H©) = 1y 1 ® v € R (38)
Note that ® is the Kronecker product [24].

A. Summary of the Unscented Kalman Filter

To compute the filter gain K | ;. UKF approximates the covariance
matrices Py, P, -and P, ;  inEgs. (33) and (34) by propa-
gating an ensemble of 2/, 4+ 1 sigma points. For all k£ > 0, the ith
sigma point X, , is defined as the ith column of the I, x (21, + 1)

ensemble matrix
A ~ /
Xk\k :X(xklkva lek\k) (39)

Then, forall i = 1,...,2/, 4 1, the sigma points are propagated as
Eokrt = [iGox) (40)
The prior estimate and the prior covariance at step k + 1 are given by

Fertike = Xpp1pW 1)

Pivik = XipiuWaXiii + Ok (42)

where

Aflz X2, +1
Xepn 2 [Foknr 0 Foyin | €RICWHT @)

Note that the prior estimate is the weighted sum of the columns of the

propagated ensemble X, ;c. The prior ensemble X; | It generated
using the prior estimate and the prior covariance, is given by

, A N
X1 =X(xk+l\kaa\/lxpk+]\k) (44)

and, fori = 1,...,2[, + 1, the corresponding outputs are given by

Vork+1 = 8kl (X]£+1\kei) 45)

where e; is the ith column of I5; . ;. The covariance matrices P
and P, ;1| are then given by

Tkt 1]k+1

= Vi Wa¥ i1 + Rt (46)

ThA1]k+1

P = Xi i Wa¥ip “47

€2y 1k

where

Al a ~
Yk+1=|:yn'|.k+1 yr72,x+1,k+1 ] € Rlvle,r+1 (48)
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Algorithm 1:  Unscented Kalman filter

Input  : y;,.a

Output : Pryijsts Fepijert Kirt
Data : Pk|k’2k\k

for k > 0 do

Build 2/, + 1-member ensemble using Eq. (39);
Propagate ensemble using Eq. (40);
Compute prior estimate and prior covariance using Eqs. (41) and (42);
Build 2/, + 1-member ensemble using Eq. (44) and compute ensemble
output using Eq. (45);
Compute output covariance using Eq. (46) and cross-covariance using
Eq. (47);
Compute UKF gain using Eq. (51), the posterior covariance using
Eq. (50), and the posterior update using Eq. (49);

end

Finally, the posterior estimate at step k + 1 is
etk = Fepik T Kip1 Orr = Ve W) 49)
and the posterior covariance at step k + 1 is
Pisiest = Prgrp = K1 Pisy, (50)
where

Kk+1 = Pe’zk+l\kPZ_IcL»l\k+l (51
UKF is summarized in Algorithm 1. Note that, as in the case of the

Kalman filter, the output-error injection in Eq. (49) is unconstrained,
thatis, ' =1, .

B. Injection-Constrained Unscented Kalman Filter
To constrain the injection of 7, to a subspace, Xy is partitioned as

Ry = [3?”'" ] (52)

Xel klk

where X ;. € R’ is the portion of Xy in the subspace specified by I'y
given by Eq. (8). The form of Eq. (52) implies that I'; has the form
given by Eq. (8). This assumption entails no loss of generality as long
as it is feasible to change the basis of Eq. (1) if needed.

Since the output error is injected into the subspace corresponding
to X 4, IC-UKF uses X 4 to construct a 2/, + 1-member ensemble to
compute the filter gain and the corresponding posterior covariance.
This approach is analogous to the unconstrained UKF, which uses a
21, 4+ 1-member ensemble to obtain a filter gain for output-error
injection. Note that each member of the reduced-order ensemble is
of dimension /,, and thus includes information from the full state of
the system.

The IC-UKF is computed as follows. Let the ith sigma point %, s
be given by the ith column of the I, X (2/, + 1) matrix

X (Mo ay/1,P
Xy & | TV AV ) (53)

H()’ecj_.k)

where P A rszuch- Note that P is the covariance of X .
Foralli =1,...,2l, + 1, the sigma points are propagated as

Forkr1 = Fe(o k) (54)
The prior estimate and the prior covariance at step k£ + 1 are given by

Fesipe = Xep1pW (55)

Peryip = inkmkwdiz.kmkrk +TTO Ty (56)
where

Al 2 ~
Xk+1|k=|:xa,,k+l erz;,,+|‘k+l ] € REx2h+1 (57)

Note that P s, 1 € R/ is the covariance of the partitioned state.

The priorensemble X | e generated using the prior estimate and the
prior covariance, is given by

;oA X(szckﬂlk’a\/ lr/Pc,kJrl\k) (58)

k+1]k .
H(Xey k41p)
and, for i = 1,...,2/, 4+ 1, the output corresponding to the propa-
gated sigma points are given by
Vorkr1 = gk+1(X1£+1\kei) (59)
where e; is the ith column of /; ;. The covariance matrices P,
and P, ;| are then given by
P = Vi Wa¥io + Rigy (60)
PC»&ZH]M = r‘”l{)z/iJrllde);ZJrl (61)

where

Vier [ Soaen Sonpiert | ERDTT (62)

Finally, the posterior estimate at step k + 1 is

Eepkr1 = T + DKt Okt = Y1 W) (63)

and the posterior covariance of the partitioned state at step k + 1 is
given by

Ptk = Pejie — Kk+1PI.e.zk+”k (64)
where the IC-UKF gain is

Kk‘H = Pe-1k+l\AP;kl+1\I<+l (65)
Note that, since Xy, X,LH‘,(, and Y, have 2/, + 1 in contrast to
21, + 1 columns, the computation of P ;4 requires a smaller
ensemble in contrast to UKF, but each ensemble member is still the
full state.
The full-state posterior covariance at step k + 1 is

Piitkr1 = Pryap + DK P K Tf =Ty Kyy P

Tkttt k1 €2kt 11k
- P&ZH]M K{-HFE (66)
where K., is given by Eq. (65) and the matrices P,
2 , P, . can be computed as shown in Sec. IV.A using an
ShA1]k+1 L1k —

ensemble of arbitrary size. As expected, accuracy of Pj iy
improves as the ensemble size increases. Note that Eq. (66) is
motivated by Eq. (32). Finally, since IC-UKF requires the covariance
of X, 4 to compute the sigma-points, the full-state posterior covari-
ance Py x4+ does not need to be computed to implement IC-UKF.
IC-UKF is summarized in Algorithm 2.

V. Injection-Constrained Retrospective-Cost Filter

This section presents the injection-constrained retrospective-cost
filter IC-RCF), which obviates the need to propagate an ensemble in
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Algorithm 2:  Injection-constrained nscented Kalman filter
(IC-UKF)

Input  : y a1y

Output : P jpijet1s Xepipertr Kigt

Data D P Xk

for k > 0 do
Build 2/, + 1-member ensemble using Eq. (33);
Propagate ensemble using Eq. (54);
Compute prior estimate and prior covariance using Eqgs. (55) and (56);
Build 2/, + 1-member ensemble using Eq. (38) and compute ensemble
output using Eq. (39);
Compute output covariance using Eq. (60) and cross-covariance using
Eq. (61);
C?)ngp_u:e UKEF gain using Eq. (65), and the posterior covariance using
Eq. (66), and the posterior update using Eq. (63);

end

order to compute the filter gain. For the system described by (1), (2),
IC-RCF has the form (5), (6), and (9), where the IC-RCF gain K is
determined by minimizing the retrospective cost as shown below. To
obtain a computationally efficient, recursive formula for the filter
gain, the dimension of injection-matrix I'; is assumed to be a con-
stant. It thus follows that the size of 5, and K, is a constant.

For all k > 0, the injection signal 7, ; (9) is factored as

M1 = Ppy10k41 (67)

where
@y 21, @ 2f € RW¥Ub (68)
Ocsr = vec KT, | € RbD (69)

where the vec operator stacks the columns of a matrix in a vector, and

A A

Zig1 = Vi1 — k1 Crrre) (70)
Note that Eq. (67) shows that #;, is the product of the regressor
matrix ®,,;, whose nonzero entries are measured data, and the

vectorized IC-RCF gain K, . The filter gain K, is obtained by
optimization of the retrospective cost function is defined by

k
PN - A T A
3@ 2 Y2z + Gl @D - )| [z + Gr@@d - )|
i=0
+ 26" R0 (71
where 1 € (0, 1] is the forgetting factor, Ry € Rix\*lb s positive

definite, g is the forward-shift operator [25], and Gy is an [, X l,, FIR
(finite-impulse-response) filter. In particular, G; has the form

ng 1
Gilg) = Z;N,- (72)
i=1

where the length n; of the filter window and the filter coefficients
Ny,...,N, € R5*h depend on the measurements 1, and the dimen-
sion of the injection signal /, as shown later in this section.

Next, for all k£ > 0, the optimal gain

Ori1 £ argmin Jk(é) (73)
OeRM'y

is computed by recursive least squares as

1 1
Pri1 = E,Pk - EPk‘DEk(/“ 1, + O Pr®L ) D P (T4)

Algorithm 3:  Injection-constrained
retrospective-cost filter (IC-RCF)

Input : z,

Output : 7y, Kiyy

Data : P, Ky

for k > 0 do
Build regressor using Eq. (68);
Filter data using Eqs. (76) and (77);
Compute P, | using Eq. (74);
Compute ;. using Eq. (75);
Compute 7, using Eq. (67);

end

Ops1 = Ok = Pror1 @, (2 + P10k = 15.40) (75)

where the filtered regressor ®; e G(q)®, the filtered injection
signal 7 2 Ge(@)m. Po ) R;', and 0, = 0 € R". Note that

;) = N, (76)
Nrx = N1 an
where
Dy M1
A — A . _ A
NE[N e N ] eE] L aR|
(Dk—nf nk—nf
(78)

Finally, at step k 4 1, the injection signal #;, | is given by Eq. (67),
where the filter gain 6, is given by Eq. (75). IC-RCF is summarized
in Algorithm 3. Note that IC-RCF does not require Py to compute
the filter gain. The posterior covariance, however, can be propagated
using the method described at the end of Sec. IV.B, where K, is
given by inverting the vec operator in Eq. (69).

The next result shows that the injection signal #;, is constrained to
lie in a subspace determined by the coefficients of Gy.

Lemma V.1: Let p > 0; Ry = B, ; n; be given by Eq. (67); @ be
given by Eq. (68); ®s , 7 4, N, be given by Eqs. (76-78); and 0, , | be
defined by Eq. (73). Then, forall k > 1,

1 koo _ 3
Nkl = —E[N? N ] Z’l_lqjk,i[zi + N®,6;,1 — Nijj]
i=1
€ R([Nﬂlr .. .N};]) (79)
where

T
Zpr12ic1 @ Il,
A

Wi : (30)
ZFI£+1Z1'—’1f ® Ily
Proof: Note that the cost function (71) can be rewritten as
Jo(0) = 0" A6 + 2670 + ¢, 81)
where

A — —

A=Y ATDINTND; + AR, (82)
i=1

b= ) AN (z; - N7g) (83)

i=1
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k
o= Z/Ik_i(zi = Ni)"(z; = Nm) (84)

i=1

At step k, the batch least-squares minimizer 6, | of Eq. (81) is given
by

Ops1 = —Ag' by (85)

which is equal to 6, | given by Eq. (75). Note that

k
Dy 1 Ay = Zﬂk_icbkﬂ (B NTND®)Oy 1+ p® 10141
i=1

k ng
= Z (/1"" Z(ll“ Qzi U, ® Zi_j)N,T')Nq)iekH
i=1 =1
+ 2Dy 16
ng

k
= Z (/Ik_i ZN,TZZ+1 Zi—j) N® Oyt + A PPy 161
i=1 =1

k
=[NT -« NEIY AW N Oy + 2 pDpy1Opcs1

i=1

(86)

and
k .
Dppibp = Qpiy Y AN (2, — N7)
P

k
=[NT -+ NRID AWz —Nm) (87)
i=1

Writing Eq. (85) as A0, = —b;, multiplying by @, |, and using
Eqgs. (86) and (87) yields Eq. (79). O

It follows from Lemma V.1 that the injection signal 7, is con-
strained to lie in the subspace of R/ spanned by the coefficients of the
filter Gy. To allow the injection signal to be unconstrained in R", the
filter coefficients are chosen such that R(IN] --- N1]) = Rh. In
view of Lemma V.1, for all examples in this paper, Ny, ..., N, are
constructed using blocks of 1 1, as shown in Sec. VL.

If the filter coefficients are chosen such that R([NT --- NL]) C
R!s, then 7, is constrained to a subspace whose dimension is strictly
less than [,,. Thus, the injection signal can be written as

. = Gk (88)

where [ < l”, ¢ € Rk, and G € R%*k has full column rank. In this
case, the injection-matrix I'; can be redefined as I',G and the injec-
tion signal 7, can be redefined as {;. Thus, such a choice of filter
coefficients is equivalent to choosing a smaller injection subspace.

VI. Numerical Examples

This section presents numerical examples that illustrate and com-
pare the injection-constrained state estimators presented in this paper.
In particular, OICF, IC-UKEF, and IC-RCF are used to estimate the
state in a Lyapunov-stable linear system, and IC-UKF and IC-RCF
are used to estimate the state in the chaotic Lorenz system and the
inviscid Burgers equation.

Example VI.1: Injection-constrained estimation in a simple har-
monic oscillator

Consider a simple harmonic oscillator

J+aoly=0 (89)
which can be written in state-space form as
X =Ax (90)

y=Cx o1

Aly Al 0 1
B} {5 o

Defining x; = x(kT), where T > 0 is the discretization time step, it
follows that

where

>

[1 0] (92

X1 = AgXy 93)

where Ay =T, Let @ = 5rad/s and T =0.01s. Let x, =
[1 1],Q0 =107* and R = 10~*. Figures 2a and 2b show the state
error and the error covariance forI' = ¢, and I' = I,. Note that Py
converges to similar values for both choice of I', although the con-
vergence rate is slower for [’ = e;. Next, the posterior covariance is
propagated for several values of the process noise. Figure 2¢ shows
Py at k = 3000 for various values of Q.

This numerical example shows that the full state can be estimated
by restricting the filter correction to only the position estimate.
Furthermore, in the case where process noise is smaller than the
measurement noise, the trace of asymptotic error covariance for both
injection-constrained and the unconstrained filter is similar.

Example VI.2: Injection-constrained state estimation for a linear
system

Consider Egs. (3) and (4) with the Lyapunov-stable LTT dynamics
given by Eq. (25). For all k > 0, let O, = 107*I5, R, = 1073, and
u,=0,andletxy=[1 1 1]" and Pojp = 1013. The state x; is
estimated using OICF, IC-UKF, and IC-RCF with the values of I
listed in Table 1. In each estimator, same tuning parameters are used
for all choices of I'. In particular, IC-UKF uses @ = 1.2 and IC-RCF
usesA=1,Ry =1 I and the filters G¢(g) given in Table 1.

For all three estimators and all values of I" in Table 1, Fig. 3 shows
the norm of the posterior error ey and the trace of the posterior
covariance Py;. Note that, in all cases, the posterior error ey, with
IC-RCF decreases, whereas, as shown in the second row of Fig. 3,

0 of ‘
10 lewel? 1 10 lexgel _2 !
tr Pk\k tr Pk|k: §
2 2 g0
10 10 =
A
b% -2
4 4 9) ——I=e
10 10 <. i
500 100015002000 500 100015002000 8 6 -4 -2 0
k k log,, @
a) I'=¢ b) I'=1 c)

Fig. 2 Example VIL1. Injection-constrained state estimation in a simple harmonic oscillator.
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Table1 Example VL2: filter used for IC-RCF
r lv[ Gf(q)
e 1 —71
e 1 é
e3 1 é
[ex e] 2 -1 0 , [0 -1]
v Tt
ez el 2 -1 01, [0 —1]
q + 7
2 -1 0 0 -1
fer el =10 o -1
15 3 [-1 0 0, [0 =1 0] ,[0 0 —1]
7 + pe + P

the posterior error ey, in OICF diverges, and as shown in the second
and third row of Fig. 3, the posterior error ey, for IC-UKF does not
decrease. This example suggests that IC-RCF can improve the state
estimation accuracy in the cases where OICF and IC-UKF are

ineffective. Furthermore, the asymptotic performance of IC-RCF is
similar to that of OICF. Note that, for I' = 15, OICF and IC-UKF
estimates are nearly identical and thus the blue trace is completely
overlaid by the red trace.

For I = e,, IC-UKF is ineffective as shown in the second row of
Fig. 3. In this case, for all k > 0,

X = I:)%Z‘klk Yopp + P Xogp — l’] 94)
where p = a,/P 2 and thus the propagated ensemble
Xiv1k = I:)Acl,k\k X ik fl,kuc] 95)

It thus follows from Eq. (37) that )Ek+1 = 0, and therefore K; = 0.
In this example, the collapse of the propagated sigma points to a
single point is due to the structure of A and the choice of I". Similarly,
withI" = ey itfollows that, forall k > 0, K; = 0, and thus IC-UKFis
ineffective. In contrast, for the chosen tuning parameters and for all

OICF IC-UKF IC-RCF

10* 10* o 10*

0 I'=e 0 Ck|k 0
10 : 10 1 Py, 10
107 107 107
108 108 108
10* 10* 10*

A r_., —_— 0
10 10 10
107 1074 107
108 108 108
10* 104 10*
100 I'=es 109 100
107 1074 107
108 108 108

= [61 63]

108

108

10*
10°
1074

104 10*
100 100
107 107

10*
10°
107

fif i dd4s

108 108
10* ~ 10*
10° 100
1074 107
108 108
10* 10*
10° 100
1074 107
SN
50 100 150 200 50 100 150 200 50 100 150 200
k k k

Fig. 3 Example VI.2. Norm of posterior error and trace of posterior covariance for all three estimators.
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values of I" considered in this example, the IC-RCF error system is
asymptotically stable.

Note that, in Table 1, the sign of the filter coefficient for second and
third choice of I is negative, whereas it is positive for first choice of I".
This example shows that both signs of the filter coefficients need to be
tested in order to determine the sign that yields a stable IC-RCF.
Finally, note that as the rank of the injection-constraint matrix
increases, the convergence rate improves, although the asymptotic
error is of similar magnitude for all choices of I'. o

Example VI.3: Injection-constrained state estimation for the
Lorenz system

Consider the chaotic Lorenz system

X1 = o(xy —xp) (96)
Xy = x1(p—x3) =X, O7)
X3 = X% — fx3 (98)

where o = 10, p = 28,and f = 8/3. Lorenz system exhibits chaotic
behavior for these parameter values. Let x(0) =[10 10 10]". For all

k > 0,lety, 2 x,(kT,) + vz, where T, = 0.01 s and v ~\(0,1076).
The Lorenz system is propagated using the explicit Runge—Kutta
(4,5) method implemented in the MATLAB function ode45 in
between the measurements. Process noise wy ~ A (0, 107°13) is
added to the state at each r = kT,.

Letting Py = I3, the state is estimated using IC-UKF and IC-
RCF with the values of I' listed in Table 2. For each estimator,
the same tuning parameters are used for all values of I'. In particular,
IC-UKF uses a = 1.2 and IC-RCF uses A =1, Ry = 1, and the
filters G¢(g) given in Table 2. Note that filter gain K and the injection
signal 77, are /,— dimensional vectors at each step k.

Table2 Example VL3: filters used for IC-RCF

r Ly Gi(q)
e; 1 =100
q
e e] 2 =100 0] [0 —100]
7 + 7

q
I -1 -1 -1
s 30 ooqo o, [o qzoo o, [ 0,,3 00]

IC-RCF

=

= [e1 ey

0 2000 4000
k

=1,

Each subplot in Fig. 4 shows the norm of the posterior error and the
trace of posterior covariance obtained with for the corresponding
choice of the filter and the injection-constraint matrix I'. In particular,
the subplots in the first column are obtained with IC-RCF and the
subplots in the first column are obtained with IC-UKF with the
injection-constraint matrix specified below the x axis.

In this example, IC-UKF outperforms IC-RCEF, in terms of both
accuracy and convergence rate, for all choices of I'. However,
IC-UKF propagates 21, + 1-member ensemble, whereas IC-RCF
requires only the predicted output in order to compute the injection
signal. Consequently, as the dimension of the system increases, the
computational cost of IC-UKF will increase proportionately; how-
ever, the computational cost of IC-RCF is independent of the system
dimension. o

Example VI.4: Injection-constrained state estimation for the invis-
cid Burgers equation

Consider the one-dimensional inviscid Burgers equation

ou 0 u®
422 =0 99
6t+0x2 9

where u:[0, 00) X [0, 1] > R. To simulate the flow on an infinite
domain, the boundary conditions are set as u(t,0) = u(¢,1). The
spatial domain [0, 1]is discretized using N equally spaced grid points,

so that Ax 2 (1/N —1). The time step At is chosen such that the
Courant-Friedrichs—Lewy condition given in [26] is satisfied. For all

jE€{l,... N}, let uj; = u(kAt, jAx). Tn this example, N = 100
and At = 107*. The inviscid Burgers equation (99) is discretized as
shown in [27]. The initial condition is u;, = 2 + sin(2x,/25), and
Pojp = 10721 . Defining
U =[ur -+ uyy]" €RY (100)
the discretized inviscid Burgers equation is written as
U1 = F(Up) (101)
where F is a vector-valued function defined in [27]. For all k > 0, let

Y = Uggr + Ui (102)

where v, ~ N(0, 1073). Process noise w;, ~ N(0, 10731y) is added
to the state at each t = kAt.

IC-UKF

103
10°
103
10°®

m— ||CHI;||2

tr P}\,“‘.

T =[e; e

10°
10°
1073

10
0 2000 4000
A.

I'=1

Fig. 4 Example VI.3. Norm of posterior error and trace of posterior covariance for IC-RCF and IC-UKF.
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IC-UKF IC-RCF
102
10°
1072
0.06 0.06
0.04 0.04
< 0.02 < 0.02 ".",««1
0 0 ‘
-0.02 -0.02
1 2 3 4 5 1 2 3 4 5
k x10* k x10*

Fig. 5 Example VIL.4. Norm of the posterior error, the trace of the
posterior covariance, and the injection signal for IC-UKF and IC-RCF.

The state U, is estimated using IC-UKF and IC-RCF withI" = eg;.
In particular, IC-UKF uses a =1.2 and IC-RCF uses Ry =
105,21 = 0.9999, and G¢(q) = (=1/g). Figure 5 shows the norm
of the posterior error, the trace of the posterior covariance, and the
injection signal for IC-UKF and IC-RCF. Note that, in this example,
IC-RCF outperforms IC-UKF in terms of convergence rate and
accuracy.

Finally, to investigate the effect of Ry and I"in IC-RCEF, the state U,
is estimated with various values of R,, where, in all cases, I' =
eg7, 4 = 0.9999, and G;(q) = (—1/¢q). Figure 6 shows the norm of
the posterior error and the trace of the posterior covariance for various

Ry = 10? Ry =10°

Ry = 10"

choice of Ry in IC-RCF. Note that, as R, increases, the accuracy
improves but convergence rate worsens. Next, the state Uy, is esti-
mated with various values of I', where, in all cases, Ry = 1067 ly»
A =0.9999, and G¢(q) = (—1/q). Figure 7 shows the norm of the
posterior error and the trace of the posterior covariance for various
choice of I' in IC-RCF. Note that asymptotic error is similar for all
choices of I'; however, the convergence rate improves as the rank of I
increases.

Despite retuning attempts with several values of a, the UKF estimate
diverges. This observation suggests that constructing sigma points
over the entire state space may result in state estimates that are
physically unrealistic and result in divergence when propagated using
the dynamics map. Both IC-UKF and IC-RCF can alleviate this
problem since the perturbations in the state estimates can be restricted
to physically realistic scenarios by appropriately choosing I'; 3

VII. Application of ICSE to Parameter Estimation

in the Viscous Burgers Equation

This section shows that the parameter estimation problem is a
special case of ICSE problem described in Sec. II. Consider the system

X1 = Fr(xg, o) + wy (103)

Vi = Gr(xp, p) + vx (104)
where y € R% is the vector of unknown constant parameters that
parameterizes the dynamics and the measurement map. The goal is
to compute an estimate ji of the parameter y using the measurements
Vi- Defining the augmented dynamics

Rg = 105 R9 - 106 R(; = 107

HeMk”

2 E

tr Pk}k

:

5 10 5 10 5
k x 10* k x 104 k x 10*

10

5 10 5 10 5 10
k x 10* k x 10* k x 10*

Fig. 6 Example VL.4. Effect of R, on the posterior error e;; for IC-RCF.

== “Cm”?
2 2
10 — 1 PI"V" 10

1072 1072
1 2 3 4 5 1 2 3 4 5
k 4 4 k 4
x10 %10 x10
I’ = egr I'= [0.\’7 €x!)] I'= [ﬁm €87 Q\'i)]

Fig.7 Example VL4. Effect of I on the posterior error e, for IC-RCF.
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M1 | _ I
|:Xk+1i| N [Fk(xksﬂk)—l—wk] (105)

Vi = Gk, pi) + v (106)

where the constant state y, reflects the constant “dynamics” of u, and
using the structure of Eq. (105), the parameter estimator has the form

Hi+1 | _ Hi Nk

|:ffk+1 ] B [Fk(fkvflk)] + |: 0 ] (107)
Note that Eq. (107) has the form of Eq. (5), where the injection-
constraint matrix I' = [1;, 0y 5, ]' constrains the injection signal
1 to the subspace corresponding to the vector y of unknown param-
eters. ICSE can thus be applied to parameter estimation by using the
output error to update the parameter estimate but not the state estimate.
The following example uses ICSE to estimate an unknown parameter

in the viscous Burgers equation using both IC-UKF and IC-RCFE.
Example VII.1: Parameter estimation for the viscous Burgers

equation
Consider the forced one-dimensional viscous Burgers equation
ou 0 u® a ou
L = y= ,t 108
o tax2 ax(”ax)“LQ(x) (108)

where u: [0, 00) X [0, 1] - R, u is the viscosity, and g(x, ) is the
external forcing given by

_ 1o, x#1,
qlx. 1) = {sin(0.00St) +0.25sin(0.01), x=1 (109)

In this example, y = 0.3. The spatial and temporal discretization is
similar to Example V1.4. The initial condition is u;, = sin(27,/25).
Defining U by Eq. (100), the discretized Burgers equation is aug-
mented with the unknown parameter dynamics as

R (1o

where F is the corresponding function. For all k > 0, let
Vi = Ugz i+ Vi (111)
where v, ~ NV(0, 107). Process noise w;, ~ N (0, 1071y is added
to the state at each t = kAt. The augmented state [y, UJ] in

Eq. (108) is estimated using injection-constrained filters with
I' = e;. This value of I" implies that only the first component of the

IC-UKF IC-RCF

10° 10°
1072 1072

-4 —Hek\kHz -4
10 il 10
10°® 108

5 x107
0.4

. 0.4

0.1 ol
£0.05 02 3 SN 02 %
0 ow..____.—-._
0 0
200 600 1000 1000 3000 5000
k k

Fig. 8 Example VIL1. Norm of the posterior error, the trace of the
posterior covariance, injection signal, and the parameter estimate for IC-
UKEF and IC-RCF.

augmented state, that is, the parameter 4, is affected by the injection
signal #,, whereas U, is propagated using the function F. In particu-
lar, IC-UKF uses a = 1.2 and Py = 10731 102 and IC-RCF uses
Ry =10°,1=0.9999, and G;(q) = —1/q. Note that l,=1 and
thus the filter gain K, is a scalar.

Figure 8 shows the state-error norm, the posterior covariance, the
injection signal, and the parameter estimate obtained with IC-UKF
and IC-RCF. Note that the parameter estimate does not converge to
the true value of the unknown parameter. Despite several tuning
efforts by varying a and Py, IC-UKF did not yield convergence of
the parameter estimate. Unlike IC-UKF, the parameter estimate con-
verges to the true value of the unknown parameter and the posterior
error decreases. o

VIII. Conclusions

IC-UKF and IC-RCF were applied to state estimation in both linear
and nonlinear systems. For the linear example, IC-UKF was ineffec-
tive for some injection-constraint matrices because the sigma points
collapsed to a single point. In contrast, IC-RCF successfully esti-
mated the states for all choices of the injection-constraint matrix. In
the nonlinear example, both IC-UKF and IC-RCF successfully esti-
mated the states for all choices of the injection-constraint matrices.
IC-UKEF and IC-RCF were also applied to the problem of parameter
estimation in the Burgers equation. The IC-UKF parameter estimate
did not converge to the true value, whereas IC-RCF successfully
estimated the unknown parameter.

Numerical examples further revealed that the convergence rate of the
injection-constrained filters depends on the rank of the injection-con-
straint matrix. As the dimension of the injection subspace increases, the
convergence rate of the filter improves. Asymptotically, however, the
output error and posterior covariance reached similar orders of magni-
tude for all of the injection-constraint matrices that were considered.
This observation suggests that the degradation of the accuracy of the
state estimates due to the output-error injection constraint is not as severe
as might be expected. Consequently, the same asymptotic performance
as the unconstrained state estimator may be achieved at a reduced
computational cost with IC-UKF and IC-RCF. This trend is beneficial
for IC-RCF, which requires specification of as many filter coefficients as
the rank of the injection-constraint matrix, as well as IC-UKF, which
requires a smaller ensemble and thus has a lower computational cost
than the classical UKF.
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