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In applications of state estimation involving data assimilation over a spatial region, it is often convenient, and

sometimes necessary, to confine the state correction to a prescribed subspace of the state space that corresponds to the

measurement location. This is the injection-constrained state-estimation problem, where the injection of the output

error is constrained to a specified subspace of the state space.Unlike full-state output-error injection,which is the dual

of static full-state feedback, constrained output-error injection is the dual of static output feedback. To address the

injection-constrained state-estimation problem, this paper develops the injection-constrained unscented Kalman

filter (IC-UKF) and the injection-constrained retrospective cost filter (IC-RCF). The performance of these filters is

evaluated numerically for linear and nonlinear state-estimation problems in order to compare their accuracy and

determine their suboptimality relative to full-state output-error injection. As a benchmark test case, IC-UKF and

IC-RCF are applied to the viscous Burgers equation for state and parameter estimation.

Nomenclature

ei = ith column of the n × n identity matrix
ek�1jk = prior error at step k� 1

ek�1jk�1 = posterior error at step k� 1

Gf = filter
In = identity matrix of size n × n
Kk = filter gain
Ni = filter coefficient
Pk�1jk = prior error covariance at step k� 1

Pk�1jk�1 = posterior error covariance at step k� 1

q = forward-shift operator
uk = measured input
vk = measurement noise
wk = process noise
xk = state
x̂k�1jk = prior state estimate at step k� 1

x̂k�1jk�1 = posterior state estimate at step k� 1

yk = measured output
zk�1jk = prior output error at step k� 1

zk�1jk�1 = posterior output error at step k� 1

Γk = injection-constraint matrix
ηk = injection signal
λ = forgetting factor
1n×m = n ×m matrix of ones

Subscripts

f = filter
k = iteration step

I. Introduction

T HE classical Kalman filter and its variants, such as the extended
Kalman filter (EKF) [1], unscented Kalman filter (UKF) [2,3],

and ensemble Kalman filter (EnKF) [4], construct state estimates by

injecting the output error into a model of the system dynamics. In

EKF, the state estimates are first propagated using the nonlinear

dynamics of the system, and the propagated state is then corrected

using themeasurement data. The first step is referred to as the physics

update or the prediction step, whereas the second step is referred to as

data assimilation or the correction step. The Kalman gain used in the

data-assimilation step is computed using the Jacobian of the dynam-

ics along the estimated trajectory. In contrast, ensemble-based esti-

mation methods, such as EnKF, UKF, and particle filters, propagate

an ensemble of estimation models to compute the Kalman gain and

the state estimate.

As the complexity of the system increases, both of these

approaches become intractable. An example of such a system is the

upper atmosphere of a planet. The global ionosphere–thermosphere

model (GITM) is amodel of the upper atmosphere that propagates the

state of the atmosphere by solving coupled continuity, momentum,

and energy equations in the computational domain comprising the

atmosphere between the altitude of 100 and 600 km [5]. In a typical

simulation, GITM propagates approximately 10 million states. EKF,

EnKF, and UKF are thus not practical in this application.

Furthermore, large-scale complex models such as GITM often

depend on parallel computing for simulation. In such cases, the

computational domain is divided into blocks, and each block is

solved on one processor. The processors propagate the states in each

block independently of the other blocks except at the boundaries

where constraints are imposed to maintain continuity. The applica-

tion of the Kalman filter and its variants requires the collection of all

of the states in the estimation model at a single processor to compute

the Kalman gain and facilitate communication of the correction term

to all of the processors. In addition to time andmemory requirements,

such an implementation also requires considerable programming

expertise and effort. Thus, for high-dimensional models that depend

on parallel computing for simulation, it is convenient to restrict the

data injection to a subset of the processors, thus reducing the com-

putational cost and programming effort.

Furthermore, in applications that encompass large spatial regions,

such as in weather forecasting, the measurement data may be corre-

lated with states within only a localized region. In such cases, it may

be sufficient to confine the output-error injection to a subspace of the

state space [6–10]. Finally, for ensemble-based estimation methods,

localized subspace injection can also reduce the size of the ensemble.

For applications with linear dynamics, an injection-constrained

Kalman filter was derived in [11]. This estimator uses a modified

Riccati difference equation to update the error covariance, where an
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additional term involving an oblique projector accounts for the
injection constraint.
Although [11] can be applied to the linearized dynamics as in the

case of the EKF, the present paper focuses on alternative injection-
constrained state-estimation techniques that are applicable to non-
linear systemswithout requiring linearized dynamics. To address this
problem, the present paper develops two injection-constrained state
estimators, namely, the injection-constrained unscented Kalman fil-
ter (IC-UKF) and the injection-constrained retrospective cost filter
(IC-RCF). IC-UKF is an extension of UKF, where the data injection
is constrained to a specified subspace. This constraint allows the filter
gain to be computed using a smaller ensemble size, thus reducing the
computational cost. In particular, IC-UKF requires propagation of an
ensemble of 2lη � 1 copies of themodel instead of the 2lx � 1 copies
propagated by UKF, where lη and lx are the dimensions of the

subspace used for output-error injection and the state, respectively.
Like IC-UKF, IC-RCF constrains the data injection to a specified
subspace; however, the filter gain is computed using retrospective
cost optimization. A similar technique was used for state estimation
in [12]. The goal of the present paper is thus to assess the performance
of IC-UKF and IC-RCF for injection-constrained state estima-
tion (ICSE).
A special case of ICSE is addressed by the Schmidt-Kalman filter

(SKF) [13–15]. In its original form, SKF distinguishes between
uncertain parameters and dynamic states, where the covariance of
the parameters and states is propagated, but the output injection is
confined to the dynamic states. AUKF extension of SKF is presented
in [16].
The local ensemble Kalman filter (LEKF), which was motivated

by atmospheric data assimilation, also localizes the effect of the
measured data by restricting the data assimilation step to a subset
of states [7,17,18]. In LEKF, the word local implies that the states to
be updated are selected as the physical variables in the spatial vicinity
surrounding the observation location. In this sense, LEKF can be
interpreted as a special case of ICSE, where the injection constraint is
motivated by the physical proximity of observation locations and
states.
A key distinction between IC-UKF and IC-RCF is the fact that

IC-UKF requires propagation of an ensemble of 2lη � 1 copies of the
model. In contrast, IC-RCF requires only the output error, which can
be computed using the propagation of only a single copy of the
system model. Furthermore, implementing IC-UKF requires that
the entire state be collected and assembled in order to propagate
the ensemble and compute the filter gain. The programming effort
required to implement IC-UKF can thus be prohibitively large for
high-dimensional models consisting of numerous submodels. In
contrast, IC-RCF is amodular scheme, which uses the past computed
error but does not require the state of the model. Consequently, the
programming effort required to implement IC-RCF is independent of
the complexity of the application.
As a special case of ICSE for nonlinear systems, this paper con-

siders the problem of estimating unknown parameters. By viewing
the unknown parameters as constant states, the data injection is
confined to the subspace corresponding to the unknown parameters.
For the case of linear systems with unknown coefficients, this prob-
lem is typically addressed by means of the EKF [19].
The main contribution of the present paper is the development of

injection-constrained state estimators for nonlinear systems, namely,
the injection-constrained UKF and the IC-RCF. The extension of
UKF to ICSE facilitates implementation of UKF and reduces the
required ensemble size, whereas the IC-RCF provides an ensemble-
free technique for ICSE in nonlinear systems. A numerical compari-
son of the performance of these filters is presented. A preliminary
version of some of the results in the present paper appeared in [20].
This paper is organized as follows. The ICSE problem is described

in Sec. II and a general form of injection-constrained filter is intro-
duced. Section III presents the optimal injection-constrained filter for
linear systems, and Secs. IVand V present the injection-constrained
UKF and retrospective cost filter for nonlinear systems. Numerical
examples comparing the performance of the various filters are pre-
sented in Sec. VI. Finally, conclusions are discussed in Sec. VIII.

II. Injection-Constrained State Estimation Problem

Consider the system

xk�1 � fk�xk� � wk (1)

yk � gk�xk� � vk (2)

where, for all k ≥ 0, xk ∈ Rlx ; yk ∈ Rly ; fk:R
lx → Rlx , and

gk:R
lx → Rly . Furthermore, let x0 ∼N �x0; P0j0�, and, for all

k ≥ 0, let wk ∼N �0; Qk� and vk ∼N �0; Rk� denote the disturbance
and sensor noise, respectively. The goal is to estimate xk using
knowledge of the functions f and g as well as the measurement yk;
this is the ICSE problem. A special case of Eqs. (1) and (2) is the
linear system

xk�1 � Akxk � wk (3)

yk � Ckxk � vk (4)

where, for all k ≥ 0, Ak; Ck are real matrices.
Now consider the injection-constrained state estimator

x̂k�1jk � �fk�x̂kjk� (5)

x̂k�1jk�1 � x̂k�1jk � Γkηk�1 (6)

where x̂k�1jk is the prior estimate of xk�1; x̂k�1jk�1 is the posterior

estimate of xk�1; ηk�1 ∈ Rlη , where lη < lx, is the injection signal;

and, for all k ≥ 0;Γk ∈ Rlx×lη is the injection-constraint matrix that
constrains the injection of ηk�1 to a specified subspace. In ensemble-
based filters,

�fk�x� �
Xn
i�1

σifk�x� εi� (7)

where n is the ensemble size, σi is a scalar, and εi is the state

perturbation; otherwise, �fk � fk. For all k ≥ 0;Γk is assumed to
have full-column rank. For example, the lx × lη injection-constraint
matrix

Γk �
�

Ilη
0lρ×lη

�
(8)

where lρ�Δ lx − lη, constrains the injection of ηk�1 to the first lη
components of xk. Note that the injection-constraint matrix can
always be expressed in the form (8) by permuting the components
of state xk. In this paper, the columns of Γk are assumed to be selected
from the columns of the lx × lx identity matrix. Consequently, with
appropriate permutation of the state in Eq. (1), Γk can always be
transformed in to the form given by Eq. (8). Finally, when Γk is
constant, it is written as Γ for convenience.
The injection signal ηk�1 is given by

ηk�1 � K̂�yk�1 − gk�x̂k�1jk�� (9)

where K̂ is determined by optimization below and gk�x̂k�1jk� is the
predicted output based on the prior estimate x̂k�1jk. Note that the

notation ηk�1 for the injection signal reflects the fact that the signal is
injected at step k� 1.

III. Optimal Injection-Constrained Filter
for Linear Systems

This section reviews the optimal injection-constrained filter
(OICF) presented in [11] to establish notation for the development
of injection-constrained state estimators. For the linear system
described by (3), (4), consider the injection-constrained filter
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x̂k�1jk � Akx̂kjk (10)

x̂k�1jk�1 � x̂k�1jk � ΓkK̂�yk�1 − Ck�1x̂k�1jk� (11)

where the gain matrix K̂ ∈ Rlη×ly is determined by optimization
below. For all k ≥ 0, define the prior error ek�1jk and the posterior

error ek�1jk�1 by

ek�1jk �Δ xk�1 − x̂k�1jk (12)

ek�1jk�1 �Δ xk�1 − x̂k�1jk�1 (13)

and the corresponding covariances of ek�1jk and ek�1jk�1 by

Pk�1jk �Δ E
h
ek�1jkeTk�1jk

i
(14)

Pk�1jk�1 �Δ E
h
ek�1jk�1e

T
k�1jk�1

i
(15)

The following result is given in [11]. For completeness, an abbre-
viated proof is given.
Proposition III.1: For all k ≥ 0, let the prior covariancePk�1jk and

the posterior covariance Pkjk be given by Eqs. (14) and (15), respec-
tively. Let Kk�1 denote the minimizer of trPk�1jk�1. Then, for all

k ≥ 0, the optimal injection-constrained filter gain Kk�1 is given by

Kk�1 � �ΓT
kΓk�−1ΓT

kPk�1jkCT
k�1R

−1
k�1 (16)

where

Rk�1 �Δ Ck�1Pk�1jkCT
k�1 � Rk�1 (17)

and the corresponding posterior covariance at step k� 1 is given by

Pk�1jk�1 � Pk�1jk − Pk�1jkCT
k�1R

−1
k�1Ck�1Pk�1jk

� πkPk�1jkCT
k�1R

−1
k�1Ck�1Pk�1jkπk (18)

where

Pk�1jk � AkPkjkAT
k �Qk (19)

and

πk �Δ I − Γk�ΓT
kΓk�−1ΓT

k (20)

Proof: Note that the prior and posterior errors satisfy

ek�1jk � Akekjk � wk;

ek�1jk�1 � �I − ΓkK̂Ck�1�ek�1jk − ΓkK̂vk�1

and thus the prior and posterior covariances satisfy

Pk�1jk � AkPkjkAT
k �Qk;

Pk�1jk�1 � Pk�1jk � ΓkK̂Rk�1K̂
TΓT

k − ΓkK̂Ck�1Pk�1jk

− Pk�1jkCT
k�1K̂

TΓT
k (21)

To minimize trPk�1jk�1, note that

d

dK̂
trPk�1jk�1 � 2ΓT

kΓkK̂Rk�1 − 2ΓT
kPk�1jkCT

k�1 (22)

Setting Eq. (22) to zero yields the optimal injection-constrained filter

gain (16), and setting K̂ � Kk�1 in Eq. (21) yields Eq. (18). □

In the case where Γk ≡ Ilx , note that πk ≡ 0 and Proposition III.1
thus yields the classical Kalman filter. This section reviews the
optimal injection-constrained filter (OICF) presented in [11] to
establish notation for the development of injection constrained state
estimators.
Proposition III.2:Let k ≥ 0. LetPkjk be the posterior covariance of

ekjk. Let Γk ≠ Ilx and let P
ICF
k�1jk�1 denote the posterior covariance at

step k� 1, which is given by Eq. (18). Let PKF
k�1jk�1 denote the

posterior covariance at step k� 1 given by the Kalman filter, which
is obtained by setting πk � 0 in Eq. (18). Then,

trPKF
k�1jk�1 ≤ trPICF

k�1jk�1 (23)

Proof: Note that

PKF
k�1jk�1 − PICF

k�1jk�1 � −πkPk�1jkCT
k�1R

−1
k�1Ck�1Pk�1jkπk ≤ 0

The fact that trace is a linear operator yields Eq. (23). □

If Ak; Ck, and Γk are constant, then the posterior error satisfies

ek�1jk�1 � �I − ΓK̂C�Aekjk � �I − ΓK̂C�wk − ΓK̂vk�1 (24)

The stability of Eq. (24) depends on the existence of a gain K̂ such that

Af�ΔA − ΓK̂CA is asymptotically stable; when such a gain exists, the
triple �A;Γ; CA� is called static-output-feedback stabilizable. Various
necessary and/or sufficient conditions for static-output-feedback sta-
bilizability are given in [21–23]. It is easy to see that, if �A;Γ; CA� is
static-output-feedback stabilizable, then �A;Γ� is stabilizable and
�A;CA� is detectable. The converse is not true; that is, if �A;Γ� is
stabilizable and �A;CA� is detectable, then �A;Γ; CA�may ormay not
be static-output-feedback stabilizable. However, if �A;Γ� is not stabi-
lizable, then �A;Γ; CA� is not static-output-feedback stabilizable.
Furthermore, as shown by the next example, static-output-feed-

back stabilizability of �A;Γ; CA� is not a sufficient condition for the
OICF to be asymptotically stable.
Example III.1:Consider Eqs. (3) and (4) with the Lyapunov-stable

LTI dynamics

A �
2
4 1.1 −0.2 −0.5

1 0 0

0 1 0

3
5; C � � 0.9 0.1 −0.9 � (25)

For Γ � e1 and K � 0.2, the spectral radius of Af is 0.87, and, for
Γ � e2 and K � −0.2, the spectral radius of Af is 0.95. The triple
�A;Γ; CA� is thus static-output-feedback stabilizable for both choices
of Γ.
For all k ≥ 0, let Qk � 10−4I3 and Rk � 10−3. Let �x0 �

� 1 1 1 �T and P0j0 � 10I3. Figure 1 shows the norm of the pos-

terior error ekjk, the trace of the posterior covariancePkjk, and the filter
gainKk for two choices of Γ. For Γ � e1, OICF is stable as shown in
the subplots on the left by the decrease in the posterior error and the
convergence of the posterior covariance. However, for Γ � e2, OICF
is unstable as shown in the subplots on the right by the diverging
posterior error and posterior covariance. Note that OICF gain con-
verges for both choice of Γ. ⋄

Example III.1 shows that the stability of the error system (24) is not
guaranteed for the OICF gain given by Eq. (16) and, unlike the
Kalman filter, OICF is not necessarily asymptotically stable. How-
ever, as shown in Example VI.2, IC-RCF converges to a stabilizing
gain in this particular case.
Next, to facilitate the development of IC-UKF, the OICF gain and

the posterior covariance are reformulated in terms of covariance
matrices. For all k ≥ 0, define the prior output error zk�1jk and the
posterior output error zk�1jk�1 by

zk�1jk �Δ Ck�1ek�1jk (26)
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zk�1jk�1 �Δ Ck�1ek�1jk � vk�1 (27)

and define the covariance of zk�1jk�1 and the cross-covariance of

ek�1jk and zk�1jk by

Pzk�1jk�1
�Δ E

h
zk�1jk�1z

T
k�1jk�1

i
(28)

Pe;zk�1jk �
Δ
E
h
ek�1jkzTk�1jk

i
(29)

which, for all k ≥ 0, satisfy

Pzk�1jk�1
� Ck�1Pk�1jkCT

k�1 � Rk�1 (30)

Pe;zk�1jk � Pk�1jkCT
k�1 (31)

Note that Pzk�1jk�1
� Rk�1.

Next, substituting Eqs. (30) and (31) in Eqs. (21), (16), and (18),
the posterior covariance for any value of K̂ can be written as

Pk�1jk�1 � Pk�1jk � ΓkK̂Pzk�1jk�1
K̂TΓT

k − ΓkK̂PT
e;zk�1jk

− Pe;zk�1jk K̂
TΓT

k (32)

the optimal gain can be written as

Kk�1 � �ΓT
kΓk�−1ΓT

kPe;zk�1jkP
−1
zk�1jk�1

(33)

and the corresponding posterior covariance can be written as

Pk�1jk�1 � Pk�1jk − Pe;zk�1jkPzk�1jk�1
PT
e;zk�1jk

� πkPe;zk�1jkPzk�1jk�1
PT
e;zk�1jkπk (34)

The posterior covariance and the optimal filter gain in Eqs. (32–34)
are written in terms of covariance matrices instead of the matrices Ak

andCk to facilitate presentation in the later sections. As shown in the
next section, UKF approximates these covariance matrices using
ensembles.

IV. Injection-Constrained Unscented Kalman Filter

This section briefly reviews the UKF to establish notation and
terminology used in the development of the injection-constrained
filters. The UKF algorithm is formulated using a compact matrix-
based notation and is based on the algorithm presented in [2].
Let x ∈ Rlx and P ∈ Rlx×lx be positive definite. The ensemble

X�x; P� ∈ Rlx×�2lx�1� is the matrix

X�x; P� �Δ �xx� p1 · · · x� plxx − p1 · · · x − plx � (35)

Let α > 0. Define

W �Δ 1

2α2lx

�
2�α2 − 1�lx

12lx×1

�
∈ R2lx�1 (36)

The weighted mean of the ensemble X is �x�Δ XW, and the ensemble
perturbation is

~X�Δ X −H� �x� (37)

where, for v ∈ Rn,

H�v� �Δ 11×2lx�1 ⊗ v ∈ Rn×2lx�1 (38)

Note that⊗ is the Kronecker product [24].

A. Summary of the Unscented Kalman Filter

To compute the filter gainKk�1. UKFapproximates the covariance
matrices Pk�1jk; Pzk�1jk�1

, and Pe;zk�1jk in Eqs. (33) and (34) by propa-

gating an ensemble of 2lx � 1 sigma points. For all k ≥ 0, the ith
sigma point x̂σi ;k is defined as the ith column of the lx × �2lx � 1�
ensemble matrix

Xkjk �Δ X

�
x̂kjk; α

������������
lxPkjk

q �
(39)

Then, for all i � 1; : : : ; 2lx � 1, the sigma points are propagated as

x̂σi ;k�1 � fk�x̂σi ;k� (40)

The prior estimate and the prior covariance at step k� 1 are given by

x̂k�1jk � Xk�1jkW (41)

Pk�1jk � ~Xk�1jkWd
~XT
k�1jk �Qk (42)

where

Xk�1jk �Δ
h
x̂σ1;k�1 · · · x̂σ2lx�1;k�1

i
∈ Rlx×2lx�1 (43)

Note that the prior estimate is theweighted sum of the columns of the
propagated ensemble Xk�1jk. The prior ensemble X 0

K�1jk, generated
using the prior estimate and the prior covariance, is given by

X 0
k�1jk �

Δ
X

�
x̂k�1jk; α

�����������������
lxPk�1jk

q �
(44)

and, for i � 1; : : : ; 2lx � 1, the corresponding outputs are given by

ŷσi ;k�1 � gk�1

�
X 0
k�1jkei

�
(45)

where ei is the ith column of I2lx�1. The covariance matrices Pzk�1jk�1

and Pe;zk�1jk are then given by

Pzk�1jk�1
� ~Yk�1Wd

~YT
k�1 � Rk�1 (46)

Pe;zk�1jk � ~X 0
k�1jkWd

~YT
k�1 (47)

where

Yk�1�Δ
�
ŷσ1;k�1 · · · ŷσ2lx�1;k�1

�
∈ Rly×2lx�1 (48)

Fig. 1 Example III.1. OICF posterior error, posterior covariance, and
the filter gain for two choices of the injection-constraint matrix Γ.
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Finally, the posterior estimate at step k� 1 is

x̂k�1jk�1 � x̂k�1jk � Kk�1�yk�1 − Yk�1W� (49)

and the posterior covariance at step k� 1 is

Pk�1jk�1 � Pk�1jk − Kk�1P
T
e;zk�1jk (50)

where

Kk�1 � Pe;zk�1jkP
−1
zk�1jk�1

(51)

UKF is summarized in Algorithm 1. Note that, as in the case of the

Kalman filter, the output-error injection in Eq. (49) is unconstrained,

that is, Γ � Ilx .

B. Injection-Constrained Unscented Kalman Filter

To constrain the injection of ηk to a subspace, x̂kjk is partitioned as

x̂kjk �
�
x̂c;kjk
x̂c⊥;kjk

�
(52)

where x̂c;kjk ∈ Rlη is the portion of x̂kjk in the subspace specified byΓk

given by Eq. (8). The form of Eq. (52) implies that Γk has the form

given by Eq. (8). This assumption entails no loss of generality as long

as it is feasible to change the basis of Eq. (1) if needed.
Since the output error is injected into the subspace corresponding

to x̂c;k, IC-UKF uses x̂c;k to construct a 2lη � 1-member ensemble to

compute the filter gain and the corresponding posterior covariance.

This approach is analogous to the unconstrained UKF, which uses a

2lx � 1-member ensemble to obtain a filter gain for output-error

injection. Note that each member of the reduced-order ensemble is

of dimension lx, and thus includes information from the full state of

the system.
The IC-UKF is computed as follows. Let the ith sigma point x̂cσi ;k

be given by the ith column of the lx × �2lη � 1� matrix

Xkjk �Δ
2
4X

�
ΓT
k x̂kjk; α

���������������
lηPc;kjk

p �
H�x̂c⊥;k�

3
5 (53)

where Pc;kjk �Δ ΓT
kPkjkΓk. Note that Pc;kjk is the covariance of x̂c;kjk.

For all i � 1; : : : ; 2lη � 1, the sigma points are propagated as

x̂σi ;k�1 � fk�x̂σi ;k� (54)

The prior estimate and the prior covariance at step k� 1 are given by

x̂k�1jk � Xk�1jkW (55)

Pc;k�1jk � ΓT
k
~Xk�1jkWd

~XT
c;k�1jkΓk � ΓT

kQkΓk (56)

where

Xk�1jk�Δ
h
x̂σ1;k�1 · · · x̂σ2lη�1 ;k�1

i
∈ Rlx×2lη�1 (57)

Note that Pc;k�1jk ∈ Rlη×lη is the covariance of the partitioned state.

The prior ensembleX 0
K�1jk, generated using the prior estimate and the

prior covariance, is given by

X 0
k�1jk �

Δ

2
4X

�
ΓT
k x̂k�1jk; α

�������������������
lηPc;k�1jk

p �
H�x̂c⊥;k�1jk�

3
5 (58)

and, for i � 1; : : : ; 2lx � 1, the output corresponding to the propa-
gated sigma points are given by

ŷσi ;k�1 � gk�1�X 0
k�1jkei� (59)

where ei is the ith column of I2lx�1. The covariance matrices Pzk�1jk�1

and Pe;zk�1jk are then given by

Pzk�1jk�1
� ~Yk�1Wd

~YT
k�1 � Rk�1 (60)

Pc;e;zk�1jk � ΓT
k
~X 0
k�1jkWd

~YT
k�1 (61)

where

Yk�1 �Δ
h
ŷσ1;k�1 · · · ŷσ2lη�1;k�1

i
∈ Rly×2lη�1 (62)

Finally, the posterior estimate at step k� 1 is

x̂k�1jk�1 � x̂k�1jk � ΓkKk�1�yk�1 − Yk�1W� (63)

and the posterior covariance of the partitioned state at step k� 1 is
given by

Pc;k�1jk�1 � Pc;k�1jk − Kk�1P
T
c;e;zk�1jk (64)

where the IC-UKF gain is

Kk�1 � Pe;zk�1jkP
−1
zk�1jk�1

(65)

Note that, since Xk�1jk; X 0
k�1jk, and Yk�1 have 2lη � 1 in contrast to

2lx � 1 columns, the computation of Pc;k�1jk�1 requires a smaller

ensemble in contrast to UKF, but each ensemble member is still the
full state.
The full-state posterior covariance at step k� 1 is

Pk�1jk�1 � Pk�1jk � ΓkKk�1Pzk�1jk�1
KT

k�1ΓT
k − ΓkKk�1P

T
e;zk�1jk

− Pe;zk�1jkK
T
k�1ΓT

k (66)

where Kk�1 is given by Eq. (65) and the matrices Pk�1jk;
Pzk�1jk�1

; Pe;zk�1jk can be computed as shown in Sec. IV.A using an

ensemble of arbitrary size. As expected, accuracy of Pk�1jk�1

improves as the ensemble size increases. Note that Eq. (66) is
motivated by Eq. (32). Finally, since IC-UKF requires the covariance
of x̂c;kjk to compute the sigma-points, the full-state posterior covari-

ance Pk�1jk�1 does not need to be computed to implement IC-UKF.

IC-UKF is summarized in Algorithm 2.

V. Injection-Constrained Retrospective-Cost Filter

This section presents the injection-constrained retrospective-cost
filter (IC-RCF), which obviates the need to propagate an ensemble in

Algorithm 1: Unscented Kalman filter

Input : yk�1; α

Output : Pk�1jk�1; x̂k�1jk�1; Kk�1

Data : Pkjk; x̂kjk
for k > 0 do

Build 2lx � 1-member ensemble using Eq. (39);

Propagate ensemble using Eq. (40);
Compute prior estimate and prior covariance using Eqs. (41) and (42);
Build 2lx � 1-member ensemble using Eq. (44) and compute ensemble
output using Eq. (45);

Compute output covariance using Eq. (46) and cross-covariance using
Eq. (47);
Compute UKF gain using Eq. (51), the posterior covariance using
Eq. (50), and the posterior update using Eq. (49);

end
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order to compute the filter gain. For the system described by (1), (2),
IC-RCF has the form (5), (6), and (9), where the IC-RCF gain K̂ is
determined by minimizing the retrospective cost as shown below. To
obtain a computationally efficient, recursive formula for the filter
gain, the dimension of injection-matrix Γk is assumed to be a con-
stant. It thus follows that the size of ηk and Kk is a constant.
For all k ≥ 0, the injection signal ηk�1 (9) is factored as

ηk�1 � Φk�1θk�1 (67)

where

Φk�1 �Δ Ilη ⊗ zTk ∈ Rlη×lηly (68)

θk�1 �Δ vecKT
k�1 ∈ Rlηly (69)

where the vec operator stacks the columns of amatrix in a vector, and

zk�1 �Δ yk�1 − gk�1�x̂k�1jk� (70)

Note that Eq. (67) shows that ηk�1 is the product of the regressor
matrix Φk�1, whose nonzero entries are measured data, and the
vectorized IC-RCF gain Kk�1. The filter gain Kk�1 is obtained by
optimization of the retrospective cost function is defined by

Jk�θ̂� �Δ
Xk
i�0

λk−i
h
zi �Gf�q��Φiθ̂ − ηi�

i
T
h
zi �Gf�q��Φiθ̂ − ηi�

i

� λkθ̂TRθθ̂ (71)

where λ ∈ �0; 1� is the forgetting factor, Rθ ∈ Rlηly×lηly is positive
definite, q is the forward-shift operator [25], andGf is an ly × lη FIR
(finite-impulse-response) filter. In particular, Gf has the form

Gf�q� �
Xnf
i�1

1

qi
Ni (72)

where the length nf of the filter window and the filter coefficients

N1; : : : ; Nnf ∈ Rly×lη depend on the measurements ly and the dimen-

sion of the injection signal lη as shown later in this section.
Next, for all k ≥ 0, the optimal gain

θk�1 �Δ argmin
θ̂∈Rlη ly

Jk�θ̂� (73)

is computed by recursive least squares as

Pk�1 �
1

λ
Pk −

1

λ
PkΦT

f;k�λIly �Φf;kPkΦT
f;k�−1Φf;kPk (74)

θk�1 � θk − Pk�1ΦT
f;k�zk �Φf;kθk − ηf;k� (75)

where the filtered regressor Φf;k �Δ Gf�q�Φk, the filtered injection

signal ηf;k �Δ Gf�q�ηk;P0 �Δ R−1
θ , and θ0 � 0 ∈ Rlηly . Note that

Φf;k � NΦk (76)

ηf;k � Nηk (77)

where

N�Δ
h
N1 · · · Nnf

i
; Φk �Δ

2
64

Φk−1

..

.

Φk−nf

3
75; ηk �Δ

2
64

ηk−1
..
.

ηk−nf

3
75
(78)

Finally, at step k� 1, the injection signal ηk�1 is given by Eq. (67),

where the filter gain θk�1 is given byEq. (75). IC-RCF is summarized
in Algorithm 3. Note that IC-RCF does not require Pkjk to compute

the filter gain. The posterior covariance, however, can be propagated

using the method described at the end of Sec. IV.B, where Kk�1 is
given by inverting the vec operator in Eq. (69).
The next result shows that the injection signal ηk is constrained to

lie in a subspace determined by the coefficients of Gf .
Lemma V.1: Let β > 0; Rθ � βIlθ ; ηk be given by Eq. (67);Φk be

given byEq. (68);Φf;k; ηf;k; N, be given by Eqs. (76–78); and θk�1 be

defined by Eq. (73). Then, for all k ≥ 1,

ηk�1 � −
1

β
�NT

1 : : : N
T
nf �

Xk
i�1

λ−iΨk;i�zi � NΦiθk�1 − Nηi�

∈ R��NT
1 : : : N

T
nf �� (79)

where

Ψk;i �Δ
2
664

zTk�1zi−1 ⊗ Ily

..

.

zTk�1zi−nf ⊗ Ily

3
775 (80)

Proof: Note that the cost function (71) can be rewritten as

Jk�θ̂� � θ̂TAkθ̂� 2bTk θ̂� ck (81)

where

Ak �Δ
Xk
i�1

λk−iΦT
i N

TNΦi � λkRθ (82)

bk �Δ
Xk
i�1

λk−iΦT
i N

T�zi − Nηi� (83)

Algorithm 3: Injection-constrained
retrospective-cost filter (IC-RCF)

Input : zk; ηk
Output : ηk�1; Kk�1

Data : Pk, Kk

for k > 0 do

Build regressor using Eq. (68);
Filter data using Eqs. (76) and (77);
Compute Pk�1 using Eq. (74);

Compute θk�1 using Eq. (75);

Compute ηk�1 using Eq. (67);

end

Algorithm 2: Injection-constrained nscented Kalman filter
(IC-UKF)

Input : yk�1; α;Γk

Output : Pc;k�1jk�1; x̂k�1jk�1; Kk�1

Data : Pc;kjk; x̂kjk
for k > 0 do

Build 2lη � 1-member ensemble using Eq. (53);

Propagate ensemble using Eq. (54);
Compute prior estimate and prior covariance using Eqs. (55) and (56);
Build 2lη � 1-member ensemble using Eq. (58) and compute ensemble
output using Eq. (59);

Compute output covariance using Eq. (60) and cross-covariance using
Eq. (61);
Compute UKF gain using Eq. (65), and the posterior covariance using
Eq. (66), and the posterior update using Eq. (63);

end
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ck �Δ
Xk
i�1

λk−i�zi − Nηi�T�zi − Nηi� (84)

At step k, the batch least-squares minimizer θk�1 of Eq. (81) is given

by

θk�1 � −A−1
k bk (85)

which is equal to θk�1 given by Eq. (75). Note that

Φk�1Akθk�1�
Xk
i�1

λk−iΦk�1�ΦT
i N

TNΦi�θk�1�λkβΦk�1θk�1

�
Xk
i�1

�
λk−i

Xnf
j�1

�Ilu ⊗ zTk�1��Ilu ⊗ zi−j�NT
j

�
NΦiθk�1

�λkβΦk�1θk�1

�
Xk
i�1

�
λk−i

Xnf
j�1

NT
j z

T
k�1zi−j

�
NΦiθk�1�λkβΦk�1θk�1

��NT
1 · · · NT

nf �
Xk
i�1

λk−iΨk;iNΦiθk�1�λkβΦk�1θk�1

(86)

and

Φk�1bk � Φk�1

Xk
i�1

λk−iΦT
i N

T�zi − Nηi�

� �NT
1 · · · NT

nf �
Xk
i�1

λk−iΨk;i�zi − Nηi� (87)

Writing Eq. (85) asAkθk�1 � −bk, multiplying by Φk�1, and using

Eqs. (86) and (87) yields Eq. (79). □

It follows from Lemma V.1 that the injection signal ηk is con-

strained to lie in the subspace ofRlη spanned by the coefficients of the

filterGf. To allow the injection signal to be unconstrained in Rlη , the

filter coefficients are chosen such that R��NT
1 · · · NT

nf �� � Rlη . In

view of Lemma V.1, for all examples in this paper, N1; : : : ; Nnf are

constructed using blocks of Ilη as shown in Sec. VI.

If the filter coefficients are chosen such that R��NT
1 · · · NT

nf �� ⊂
Rlη , then ηk is constrained to a subspace whose dimension is strictly

less than lη. Thus, the injection signal can be written as

ηk � Gζk (88)

where lζ < lη; ζ ∈ Rlζ , and G ∈ Rlη×lζ has full column rank. In this

case, the injection-matrix Γk can be redefined as ΓkG and the injec-

tion signal ηk can be redefined as ζk. Thus, such a choice of filter

coefficients is equivalent to choosing a smaller injection subspace.

VI. Numerical Examples

This section presents numerical examples that illustrate and com-
pare the injection-constrained state estimators presented in this paper.
In particular, OICF, IC-UKF, and IC-RCF are used to estimate the
state in a Lyapunov-stable linear system, and IC-UKF and IC-RCF
are used to estimate the state in the chaotic Lorenz system and the
inviscid Burgers equation.
Example VI.1: Injection-constrained estimation in a simple har-

monic oscillator
Consider a simple harmonic oscillator

�y� ω2y � 0 (89)

which can be written in state-space form as

_x � Ax (90)

y � Cx (91)

where

x�Δ
�
y
_y

�
; A�Δ

�
0 1

−ω2 0

�
; C�Δ � 1 0 � (92)

Defining xk � x�kT�, where T > 0 is the discretization time step, it
follows that

xk�1 � Adxk (93)

where Ad �Δ eAT , Let ω � 5 rad∕s and T � 0.01 s. Let x0 �
� 1 1 �; Q � 10−4, and R � 10−4. Figures 2a and 2b show the state
error and the error covariance for Γ � e1 and Γ � I2. Note that Pkjk
converges to similar values for both choice of Γ, although the con-
vergence rate is slower for Γ � e1. Next, the posterior covariance is
propagated for several values of the process noise. Figure 2c shows
Pkjk at k � 3000 for various values of Q.

This numerical example shows that the full state can be estimated
by restricting the filter correction to only the position estimate.
Furthermore, in the case where process noise is smaller than the
measurement noise, the trace of asymptotic error covariance for both
injection-constrained and the unconstrained filter is similar.
Example VI.2: Injection-constrained state estimation for a linear

system
Consider Eqs. (3) and (4) with the Lyapunov-stable LTI dynamics

given by Eq. (25). For all k ≥ 0, let Qk � 10−4I3, Rk � 10−3, and
uk � 0, and let �x0 � � 1 1 1 �T and P0j0 � 10I3. The state xk is
estimated using OICF, IC-UKF, and IC-RCF with the values of Γ
listed in Table 1. In each estimator, same tuning parameters are used
for all choices of Γ. In particular, IC-UKF uses α � 1.2 and IC-RCF
uses λ � 1, Rθ � Ilη , and the filters Gf�q� given in Table 1.
For all three estimators and all values of Γ in Table 1, Fig. 3 shows

the norm of the posterior error ekjk and the trace of the posterior

covariance Pkjk. Note that, in all cases, the posterior error ekjk with
IC-RCF decreases, whereas, as shown in the second row of Fig. 3,

a) b) c)
Fig. 2 Example VI.1. Injection-constrained state estimation in a simple harmonic oscillator.
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the posterior error ekjk in OICF diverges, and as shown in the second

and third row of Fig. 3, the posterior error ekjk for IC-UKF does not

decrease. This example suggests that IC-RCF can improve the state
estimation accuracy in the cases where OICF and IC-UKF are

ineffective. Furthermore, the asymptotic performance of IC-RCF is

similar to that of OICF. Note that, for Γ � I3, OICF and IC-UKF

estimates are nearly identical and thus the blue trace is completely

overlaid by the red trace.
For Γ � e2, IC-UKF is ineffective as shown in the second row of

Fig. 3. In this case, for all k ≥ 0,

Xk �
h
x̂2;kjk x̂2;kjk � p x̂2;kjk − p

i
(94)

where p � α
����������������
P�2;2�kjk

p
and thus the propagated ensemble

Xk�1jk �
h
x̂1;kjk x̂1;kjk x̂1;kjk

i
(95)

It thus follows fromEq. (37) that ~Xk�1 � 0, and thereforeKk � 0.
In this example, the collapse of the propagated sigma points to a

single point is due to the structure ofA and the choice of Γ. Similarly,

withΓ � e3 it follows that, for all k ≥ 0; Kk � 0, and thus IC-UKF is
ineffective. In contrast, for the chosen tuning parameters and for all

Fig. 3 Example VI.2. Norm of posterior error and trace of posterior covariance for all three estimators.

Table 1 Example VI.2: filter used for IC-RCF

Γ lη Gf�q�
e1 1 −1

q

e2 1 1
q

e3 1 1
q

� e1 e2 � 2 �−1 0�
q � �0 −1�

q2

�e2 e3� 2 �−1 0 �
q � �0 −1�

q2

�e1 e3� 2 �−1 0�
q � �0 −1�

q2

I3 3 �−1 0 0�
q � �0 −1 0�

q2
� �0 0 −1�

q3
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values of Γ considered in this example, the IC-RCF error system is

asymptotically stable.
Note that, in Table 1, the sign of the filter coefficient for second and

third choice ofΓ is negative,whereas it is positive for first choice ofΓ.
This example shows that both signs of the filter coefficients need to be

tested in order to determine the sign that yields a stable IC-RCF.

Finally, note that as the rank of the injection-constraint matrix

increases, the convergence rate improves, although the asymptotic

error is of similar magnitude for all choices of Γ. ⋄

Example VI.3: Injection-constrained state estimation for the

Lorenz system
Consider the chaotic Lorenz system

_x1 � σ�x2 − x1� (96)

_x2 � x1�ρ − x3� − x2 (97)

_x3 � x1x2 − βx3 (98)

where σ � 10; ρ � 28, and β � 8∕3. Lorenz system exhibits chaotic

behavior for these parameter values. Let x�0���10 10 10�T. For all
k ≥ 0, let yk �Δ x2�kTs��vk, where Ts�0.01 s and vk∼N �0;10−6�.
The Lorenz system is propagated using the explicit Runge–Kutta

(4,5) method implemented in the MATLAB function ode45 in

between the measurements. Process noise wk ∼N �0; 10−6I3� is

added to the state at each t � kTs.
Letting P0j0 � I3, the state is estimated using IC-UKF and IC-

RCF with the values of Γ listed in Table 2. For each estimator,

the same tuning parameters are used for all values of Γ. In particular,
IC-UKF uses α � 1.2 and IC-RCF uses λ � 1, Rθ � Ilη , and the

filtersGf�q� given in Table 2.Note that filter gainKk and the injection

signal ηk are lη− dimensional vectors at each step k.

Each subplot in Fig. 4 shows the norm of the posterior error and the

trace of posterior covariance obtained with for the corresponding

choice of the filter and the injection-constraint matrix Γ. In particular,
the subplots in the first column are obtained with IC-RCF and the

subplots in the first column are obtained with IC-UKF with the

injection-constraint matrix specified below the x axis.
In this example, IC-UKF outperforms IC-RCF, in terms of both

accuracy and convergence rate, for all choices of Γ. However,

IC-UKF propagates 2lη � 1-member ensemble, whereas IC-RCF

requires only the predicted output in order to compute the injection

signal. Consequently, as the dimension of the system increases, the

computational cost of IC-UKF will increase proportionately; how-

ever, the computational cost of IC-RCF is independent of the system

dimension. ⋄

Example VI.4: Injection-constrained state estimation for the invis-

cid Burgers equation
Consider the one-dimensional inviscid Burgers equation

∂u
∂t

� ∂
∂x

u2

2
� 0 (99)

where u: �0;∞� × �0; 1� → R. To simulate the flow on an infinite

domain, the boundary conditions are set as u�t; 0� � u�t; 1�. The
spatial domain �0; 1� is discretized usingN equally spaced grid points,

so that Δx�Δ �1∕N − 1�. The time step Δt is chosen such that the

Courant–Friedrichs–Lewy condition given in [26] is satisfied. For all

j ∈ f1; : : : ; Ng, let uj;k �Δ u�kΔt; jΔx�. In this example, N � 100

and Δt � 10−4. The inviscid Burgers equation (99) is discretized as
shown in [27]. The initial condition is uj;0 � 2� sin�2πj∕25�, and
P0j0 � 10−2IN . Defining

Uk � �u1;k · · · uN;k�T ∈ RN (100)

the discretized inviscid Burgers equation is written as

Uk�1 � F�Uk� (101)

where F is a vector-valued function defined in [27]. For all k ≥ 0, let

yk � u87;k � vk (102)

where vk ∼N �0; 10−3�. Process noise wk ∼N �0; 10−3IN� is added
to the state at each t � kΔt.

Table 2 Example VI.3: filters used for IC-RCF

Γ lη Gf�q�
e1 1 −100

q

�e1 e2� 2 �−100 0�
q � �0 −100�

q2

I3 3 �−100 0 0�
q � �0 −100 0�

q2
� �0 0 −100�

q3

Fig. 4 Example VI.3. Norm of posterior error and trace of posterior covariance for IC-RCF and IC-UKF.

998 GOEL AND BERNSTEIN

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
on

 F
eb

ru
ar

y 
27

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
61

08
 



The stateUk is estimated using IC-UKFand IC-RCFwithΓ � e87.
In particular, IC-UKF uses α � 1.2 and IC-RCF uses Rθ �
105; λ � 0.9999, and Gf�q� � �−1∕q�. Figure 5 shows the norm

of the posterior error, the trace of the posterior covariance, and the

injection signal for IC-UKF and IC-RCF. Note that, in this example,

IC-RCF outperforms IC-UKF in terms of convergence rate and

accuracy.

Finally, to investigate the effect ofRθ andΓ in IC-RCF, the stateUk

is estimated with various values of Rθ , where, in all cases, Γ �
e87; λ � 0.9999, and Gf�q� � �−1∕q�. Figure 6 shows the norm of

the posterior error and the trace of the posterior covariance for various

choice of Rθ in IC-RCF. Note that, as Rθ increases, the accuracy

improves but convergence rate worsens. Next, the state Uk is esti-

mated with various values of Γ, where, in all cases, Rθ � 106Ilθ ;
λ � 0.9999, and Gf�q� � �−1∕q�. Figure 7 shows the norm of the

posterior error and the trace of the posterior covariance for various

choice of Γ in IC-RCF. Note that asymptotic error is similar for all

choices ofΓ; however, the convergence rate improves as the rank ofΓ
increases.
Despite retuning attemptswith several values ofα, theUKFestimate

diverges. This observation suggests that constructing sigma points

over the entire state space may result in state estimates that are

physically unrealistic and result in divergence when propagated using

the dynamics map. Both IC-UKF and IC-RCF can alleviate this

problem since the perturbations in the state estimates can be restricted

to physically realistic scenarios by appropriately choosingΓk ⋄

VII. Application of ICSE to Parameter Estimation
in the Viscous Burgers Equation

This section shows that the parameter estimation problem is a

special case of ICSE problem described in Sec. II. Consider the system

xk�1 � Fk�xk; μ� � wk (103)

yk � Gk�xk; μ� � vk (104)

where μ ∈ Rlη is the vector of unknown constant parameters that

parameterizes the dynamics and the measurement map. The goal is

to compute an estimate μ̂ of the parameter μ using the measurements

yk. Defining the augmented dynamics

Fig. 5 Example VI.4. Norm of the posterior error, the trace of the
posterior covariance, and the injection signal for IC-UKF and IC-RCF.

Fig. 6 Example VI.4. Effect of Rθ on the posterior error ekjk for IC-RCF.

Fig. 7 Example VI.4. Effect of Γ on the posterior error ekjk for IC-RCF.
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�
μk�1

xk�1

�
�

�
μk

Fk�xk; μk� � wk

�
(105)

yk � Gk�xk; μk� � vk (106)

where the constant state μk reflects the constant “dynamics” of μ, and
using the structure of Eq. (105), the parameter estimator has the form

�
μ̂k�1

x̂k�1

�
�

�
μ̂k

Fk�x̂k; μ̂k�
�
�

�
ηk
0

�
(107)

Note that Eq. (107) has the form of Eq. (5), where the injection-

constraint matrix Γ � � Ilη 0lη×lx �T constrains the injection signal

ηk to the subspace corresponding to the vector μ of unknown param-

eters. ICSE can thus be applied to parameter estimation by using the

output error to update the parameter estimate but not the state estimate.

The following example uses ICSE to estimate an unknown parameter

in the viscous Burgers equation using both IC-UKF and IC-RCF.
Example VII.1: Parameter estimation for the viscous Burgers

equation
Consider the forced one-dimensional viscous Burgers equation

∂u
∂t

� ∂
∂x

u2

2
� ∂

∂x

�
μ
∂u
∂x

�
� q�x; t� (108)

where u: �0;∞� × �0; 1� → R, μ is the viscosity, and q�x; t� is the

external forcing given by

q�x; t� �
	
0; x ≠ 1;
sin�0.005t� � 0.25 sin�0.01t�; x � 1

(109)

In this example, μ � 0.3. The spatial and temporal discretization is

similar to Example VI.4. The initial condition is uj;0 � sin�2πj∕25�.
Defining Uk by Eq. (100), the discretized Burgers equation is aug-

mented with the unknown parameter dynamics as

�
μk�1

Uk�1

�
�

�
μk

�F�Uk; μk�
�

(110)

where �F is the corresponding function. For all k ≥ 0, let

yk � u87;k � vk (111)

where vk ∼N �0; 10−5�. Process noise wk ∼N �0; 10−5IN� is added
to the state at each t � kΔt. The augmented state � μk UT

k � in
Eq. (108) is estimated using injection-constrained filters with

Γ � e1. This value of Γ implies that only the first component of the

augmented state, that is, the parameter μk, is affected by the injection
signal ηk, whereasUk is propagated using the function �F. In particu-
lar, IC-UKF uses α � 1.2 and P0j0 � 10−3I102 and IC-RCF uses

Rθ � 105; λ � 0.9999, and Gf�q� � −1∕q. Note that lη � 1 and

thus the filter gain Kk is a scalar.
Figure 8 shows the state-error norm, the posterior covariance, the

injection signal, and the parameter estimate obtained with IC-UKF
and IC-RCF. Note that the parameter estimate does not converge to
the true value of the unknown parameter. Despite several tuning
efforts by varying α and P0j0, IC-UKF did not yield convergence of
the parameter estimate. Unlike IC-UKF, the parameter estimate con-
verges to the true value of the unknown parameter and the posterior
error decreases. ⋄

VIII. Conclusions

IC-UKFand IC-RCFwere applied to state estimation in both linear
and nonlinear systems. For the linear example, IC-UKF was ineffec-
tive for some injection-constraint matrices because the sigma points
collapsed to a single point. In contrast, IC-RCF successfully esti-
mated the states for all choices of the injection-constraint matrix. In
the nonlinear example, both IC-UKF and IC-RCF successfully esti-
mated the states for all choices of the injection-constraint matrices.
IC-UKF and IC-RCF were also applied to the problem of parameter
estimation in the Burgers equation. The IC-UKF parameter estimate
did not converge to the true value, whereas IC-RCF successfully
estimated the unknown parameter.
Numerical examples further revealed that the convergence rate of the

injection-constrained filters depends on the rank of the injection-con-
straint matrix. As the dimension of the injection subspace increases, the
convergence rate of the filter improves. Asymptotically, however, the
output error and posterior covariance reached similar orders of magni-
tude for all of the injection-constraint matrices that were considered.
This observation suggests that the degradation of the accuracy of the
state estimates due to theoutput-error injection constraint is not as severe
as might be expected. Consequently, the same asymptotic performance
as the unconstrained state estimator may be achieved at a reduced
computational cost with IC-UKF and IC-RCF. This trend is beneficial
for IC-RCF,which requires specification of asmany filter coefficients as
the rank of the injection-constraint matrix, as well as IC-UKF, which
requires a smaller ensemble and thus has a lower computational cost
than the classical UKF.
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