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with application to a gas-turbine combustor
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ABSTRACT
A self-excited system is a nonlinear system with the property that a constant input yields a bounded, non-
convergent response. Nonlinear identification of self-excited systems is considered using a Lur’e model
structure, where a linear model is connected in feedback with a nonlinear feedback function. To facilitate
identification, the nonlinear feedback function is assumed tobe continuous andpiecewise affine (CPA). The
present paper uses least-squares optimisation to estimate the coefficients of the linear dynamics and the
slope vector of the CPA nonlinearity, as well as mixed-integer optimisation to estimate the order of the lin-
ear dynamics and the breakpoints of the CPA function. The proposed identification technique requires only
output data, and thus no measurement of the constant input is required. This technique is illustrated on a
diverse collection of low-dimensional numerical examples as well as data from a gas-turbine combustor.
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1. Introduction

A self-excited system (SES) has the property that its response
to a constant input is bounded and nonconvergent. Although
an undamped oscillator as well as some linear systems with
time delay are self-excited, these systems lack structural robust-
ness in the sense that arbitrarily small perturbations of the
dynamics can lead to either a convergent (damped) or divergent
(unbounded) response. Structurally robust SES’s are thus non-
linear. The classical example of an SES is the second-order van
der Pol oscillator, for which all trajectories except for the zero
equilibrium converge to a limit cycle. An SES, however, need
not possess a limit cycle.

Self-excited systems arise in surprisingly diverse applica-
tions. Specific examples can be found in chemical and biochem-
ical systems (Goldbeter & Berridge, 1996; Gray & Scott, 1990),
fluid-structure interaction (Blevins, 1990; Gianikos et al., 2020;
Jonsson et al., 2019), and thermoacoustic oscillation (Chen
& Driscoll, 2016; Dowling, 1997). Overviews of SES are given
in Jenkins (2013) and Ding (2010).

In view of these diverse applications, it is of interest to con-
struct models of SES based on response data. To this end, a
candidate model structure is the Lur’e model, where linear
dynamics are connected in feedback with a static nonlinear
function (Khalil, 2002). The ability of Lur’e models to exhibit
self-oscillation has been widely studied (Aguilar et al., 2009;
Chatterjee, 2011; Ding, 2010; Mees & Chua, 1979; Risau-
Gusman, 2016; Stan & Sepulchre, 2007; Zanette, 2017), and self-
excited discrete-time systems are considered in Rasvan (1998),
D’Amico et al. (2002), Gentile et al. (2011). As shown in Paredes
et al. (2021), a Lur’e model exhibits self-excited behaviour when
the linear dynamics are asymptotically stable, the nonlinear
feedback function is sigmoidal, and the loop gain is sufficiently
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high. In effect, high loop gain renders the zero equilibrium
unstable, driving the state to the saturation region, where the
system operates as an open-loop system driven by a step input.
A washout filter (an asymptotically stable transfer function with
a zero at 1 and thus zero asymptotic step response) drives the
state of the open-loop asymptotically stable dynamics back into
the linear region, which yields an oscillatory response.

The present paper applies nonlinear system identification to
construct a Lur’emodel for SES. This approach does not assume
or require that the SES possess a Lur’e structure; rather, the goal
is to estimate a linear model G and a nonlinear feedback func-
tion φ that, when combined into a Lur’e model, capture the
nonconvergent behaviour of the SES. For example, although the
van der Pol oscillator is a Lur’e model with a 2-input, 1-output
nonlinear feedback function, the present paper uses a Lur’e
model with a 1-input, 1-output nonlinear feedback function for
system identification.

For nonlinear system identification, the present paper applies
a variation of the technique in Van Pelt and Bernstein (2001). As
in Van Pelt and Bernstein (2001), the nonlinear feedback func-
tion is parameterised as a continuous, piecewise-affine (CPA)
function, where the slope of each segment is estimated for a
given partition of the domain of the CPA function. Although
the domain of φ is known from data, the number and locations
of the breakpoints of theCPA functionwere determined in Pare-
des and Bernstein (2021) by trial and error. The contribution of
the present paper is to use mixed-integer optimisation to auto-
mate and optimise a subset of the parameters needed for the
identified Lur’e model, while using least-squares optimisation
to estimate the remaining parameters. By encompassing both
continuous and discrete variables, the present paper shows that
mixed integer optimisation (Belotti et al., 2013; Floudas, 1995)
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is advantageous for identifying Lur’e models with a CPA non-
linear feedback function. Mixed integer optimisation has been
used for system identification in Roll et al. (2004), Dua (2010),
Förster et al. (2019) and Mejari et al. (2020).

Since the objective of this paper is to identify self-excited
systems, the input is assumed to be constant. However, the
approach of the present paper does not require knowledge of
the constant input, and thus measurements of only the output
are needed. Numerical examples show thatmeasurements of the
self-excited response of the system, including the transient and
asymptotic response for systems that are asymptotically peri-
odic, is sufficient for identifying a Lur’e model that reproduces
the asymptotic waveform and, in many cases, the shape of the
nonlinearity as well.

The contents of this paper are as follows. Section 2 intro-
duces the discrete-time Lur’e (DTL) system and the conditions
under which a DTL system is a SES. Section 3 introduces
the filtered time-delayed DTL (FTDDTL) system as a special
case of the DTL system. Section 4 introduces the discrete-
time Lur’e identification (DTLI) model, which has the form
of the FTDDTL, as well as the parameterisation of the CPA
function used to approximate the nonlinear feedback func-
tion. Section 5 presents the nonlinear least-squares technique
used for identifying SES using the DTLI model, which is an
modification of the technique presented in Paredes and Bern-
stein (2021). Section 6 presents the mixed-integer optimisation
framework used in this paper for identifying SES using the
DTLI model. Section 7 presents numerical examples in which
FTDDTL systems are identified using DTLI models. Section 8
presents numerical examples inwhich the logisticmapDTL sys-
tem under various parameters is identified using DTLI models.
Section 9 presents the continuous-time Lur’e (CTL) system, and
Section 10 presents numerical examples in which continuous-
time systems are identified using DTLI models. Section 11
presents the results obtained from applying the proposed iden-
tification technique on experimental data obtained from a flute
and a gas-turbine combustor. Finally, Section 12 presents con-
clusions and future work.

Notation. R �= (−∞,∞) and N0
�= {0, 1, 2, . . .}. For x ∈ R

n,
‖x‖2 is the Euclidean norm of x. For A ∈ R

n×m, vecA ∈ R
nm

is the vector formed by stacking the columns of A, vec−1 satis-
fies A = vec−1(vecA), ‖A‖F is the Frobenius norm of A, and
σmax(A) is the largest singular value of A. 1n×m ∈ R

n×m is a
matrix whose entries are all ones.

2. Discrete-time Lur’e system

We consider the discrete-time Lur’e (DTL) system shown in
Figure 1, which has the dynamics

xk+1 = Axk + Buk + Dvk, (1)

yk = Cxk. (2)

zk = Exk, (3)

uk = φ(zk), (4)

where k ∈ N0, xk ∈ R
n, uk ∈ R

m, vk ∈ R, yk ∈ R, zk ∈ R
p,

A ∈ R
n×n, B ∈ R

n×m, C ∈ R
1×n, D ∈ R

n×1, E ∈ R
p×n, and φ :

Figure 1. Discrete-time Lur’e system with constant input v, output y, and nonlin-
ear feedback function φ.

R
p→ R

m. Combining (1)–(4) yields

xk+1 = Axk + Bφ(Exk)+ Dvk, (5)

yk = Cxk. (6)

As illustrated by the following examples, many nonlinear
discrete-time systems can be written in the form of (5), (6).

Example 2.1: The dynamics of the logistic map are given by

xk+1 = γ xk − γφ(xk), (7)

yk = zk = xk, (8)

φ(xk) = x2k, (9)

where n = m = p = 1 and xk, yk, zk, γ ∈ R.

Example 2.2: The dynamics of the density-dependent Leslie
matrix with two age classes (equation 4.1 of Guckenheimer
et al., 1977) are given by

xk+1 =
[
0 0
γ 0

]
xk +

[
1
0

]
φ(xk), (10)

yk =
[
0 1

]
xk, (11)

φ(xk) = (ξ1x1,k + ξ2x2,k) e−α(x1,k+x2,k), (12)

where n = p = 2,m = 1, zk = xk = [x1,k x2,k]T ∈ R
2, yk ∈ R,

and α, γ , ξ1, ξ2 ∈ R.

Examples 2.1 and 2.2 exhibit oscillatory responses, thus
motivating the following definition.

Definition 2.3: The DTL system (5), (6) is a self-excited system
(SES) if, for all constant vk, the following statements hold:

(i) For all x0 ∈ R
n, (yk)∞k=1 is bounded.

(ii) For almost all x0 ∈ R
n, limk→∞ yk does not exist.

Numerical examples given in Section 8 show that ii) in
Definition 2.3may be satisfiedwhen y is asymptotically periodic
or chaotic.

3. Filtered time-delayed DTL system

In this section we consider a special case of the DTL system
structure. In particular, the filtered time-delayed DTL (FTD-
DTL) system shown in Figure 2 includes a transfer function G,
a time delay Gd, a washout filter Gf , and a nonlinear feedback
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Figure 2. Filtered time-delayed discrete-time Lur’e (FTDDTL) system with input
v, asymptotically stable plant G(q), time delay Gd(q), washout filter Gf(q), and
nonlinear feedback function φ.

function φ. Under suitable assumptions, it is shown in Pare-
des et al. (2020) that this structure gives rises to self-excited
oscillations.

The nth-order, asymptotically stable, strictly proper transfer
function G has the form

G(q) = B(q)
A(q) =

b1q−1 + · · · + bnq−n

1+ a1q−1 + · · · + anq−n
, (13)

where q is the forward-shift operator (used in place of the Z-
transform variable in order to include both the free and forced
response), the time delay Gd is given by

Gd(q) = q−d, (14)

where d is a nonnegative integer, the washout filter Gf is given
by

Gf (q) = q− 1
q
= 1− q−1, (15)

and the nonlinear feedback function φ : R→ R satisfies

uk = φ(zk). (16)

Using yk = G(q)(uk + vk), it follows that

A(q)yk = B(q)(φ(zk))+ vk), (17)

and thus, for all k ≥ n+ d+ 1,

yk = (1−A(q))yk + B(q)(φ(zk)+ vk)

= −a1yk−1 − · · · − anyk−n + b1φ(zk−1)+ · · ·
+ bnφ(zk−n)+ b1vk−1 + · · · + bnvk−n, (18)

where

zk = yk−d − yk−d−1, (19)

with the initial output values y0, . . . , yn+d. Note that (18), (19)
can be written as

xk+1 =
⎡
⎣ AG 0n×d 0n×1
BdCG Ad 0d×1
01×n Cd 0

⎤
⎦ xk

+
[

BG
0(d+1)×1

]
[φ([01×n Cd − 1]xk)+ vk], (20)

yk =
[
CG 01×(d+1)

]
xk, (21)

where xk ∈ R
n+d+1, (AG,BG,CG) is a minimal realisation of G,

and (Ad,Bd,Cd) is aminimal realisation ofGd. Hence, (20), (21)
is special case of (5), (6).

4. Discrete-time Lur’e identificationmodel

To facilitate identification, we consider the discrete-time Lur’e
identification (DTLI) model, which has the form of the FTD-
DTL. The DTLI model, which is shown in Figure 3, incorpo-
rates the n̂th-order, asymptotically stable, strictly proper linear
dynamics

Ĝ(q) = B̂(q)
Â(q)

= b̂1q−1 + · · · + b̂n̂q−n̂

1+ â1q−1 + · · · + ân̂q−n̂
, (22)

the constant input v̂, the time delay

Ĝd(q) = q−d̂, (23)

where d̂ is a nonnegative integer, the washout filter Gf given
by (15), and the nonlinear feedback function φ̂ : R→ Rwritten
as

ûk = φ̂(ẑk). (24)

Using ŷk = Ĝ(q)(ûk + v̂), it follows that

Â(q)ŷk = B̂(q)(φ̂(ẑk)+ v̂), (25)

and thus, for all k ≥ n̂+ d̂ + 1,

ŷk = (1− Â(q))ŷk + B̂(q)(φ̂(ẑk)+ v̂)

= −â1ŷk−1 − · · · − ân̂ŷk−n̂ + b̂1φ̂(ẑk−1)+ · · ·
+ b̂n̂φ̂(ẑk−n̂)+ (b̂1 + · · · + b̂n̂)v̂, (26)

where

ẑk = ŷk−d̂ − ŷk−d̂−1. (27)

Since v̂ is not measured in output-only identification and the
input to Ĝ is φ̂(ẑk)+ v̂, the range space of φ̂ can be shifted
arbitrarily. Hence, we assume without loss of generality that
φ̂(0) = 0.

For system identification, we use a continuous, piecewise-
affine (CPA) model φ̂ of φ with the following parameterisation.
Let (−∞, ĉ1], (ĉ1, ĉ2], . . . , (ĉp̂−1, ĉp̂], (ĉp̂,∞) be a partition of
the domain R of φ̂, and define the vector

ĉ �= [ĉ1 · · · ĉp̂]
T ∈ R

p̂. (28)

Since φ̂(0) = 0, let ĉr̂ = 0, where r̂ ∈ [1, p̂], and thus φ̂(ĉr̂) =
φ̂(0) = 0. Furthermore, for all i ∈ [1, p̂+ 1], let μ̂i denote the

Figure 3. Discrete-time Lur’e identification (DTLI) model with constant input v̂,
asymptotically stable plant Ĝ(q), time delay Ĝd(q), washout filter Gf(q), and non-
linear feedback function φ̂. The structure of the DTLI model coincides with the
structure of the FTDDTL system.
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Figure 4. Parameterization of the CPA function φ̂. Note that ĉr̂ = 0 and φ̂(ĉr̂) = φ̂(0) = 0.

slope of φ̂ in the ith partition interval, and define the slope
vector

μ̂
�= [μ̂1 · · · μ̂p̂+1]T ∈ R

p̂+1. (29)

Then, for all ẑ ∈ R, φ̂ can be written as

φ̂(ẑ) = μ̂Tη̂(ẑ), (30)

where η̂ : R→ R
p̂+1 is given by

η̂(ẑ) �=
{
η̂1(ẑ), δ̂(ẑ) < r̂ + 1,
η̂2(ẑ), δ̂(ẑ) ≥ r̂ + 1,

(31)

δ̂(ẑ) ∈ [1, p̂+ 1] is the index of the partition interval containing
ẑ, and

η̂1(ẑ)
�= [01×(δ̂(ẑ)−1) ẑ − ĉ

δ̂(ẑ) ĉ
δ̂(ẑ) − ĉ

δ̂(ẑ)+1 · · ·
ĉr̂−1 − ĉr̂ 01×(p̂+1−r̂)]T, (32)

η̂2(ẑ)
�= [01×r̂ ĉr̂+1 − ĉr̂ · · · ĉ

δ̂(ẑ)−1 − ĉ
δ̂(ẑ)−2

ẑ − ĉ
δ̂(ẑ)−1 01×(p̂+1−δ̂(ẑ))]

T. (33)

Figure 4 illustrates the parameterisation of the CPA function φ̂
in terms of ĉ, μ̂, and r̂.

Next, considerDTLI/CPA,which isDTLIwithCPA φ̂. It thus
follows from (26) and (30) that

ŷk = −â1ŷk−1 − · · · − ân̂ŷk−n̂ + b̂1μ̂Tη̂(ẑk−1)+ · · ·
+ b̂n̂μ̂Tη̂(ẑk−n̂)+ 11×n̂b̂v̂, (34)

where

â �=

⎡
⎢⎣

â1
...
ân̂

⎤
⎥⎦ , b̂ �=

⎡
⎢⎣

b̂1
...
b̂n̂

⎤
⎥⎦ . (35)

Then, (34) can be written as

ŷk = −ϕ̂Tk â+ ϕ̂Tη̂,kb̂+ 11×n̂b̂v̂ = ϕ̂Tk θ̂ , (36)

where

ϕ̂k
�=

⎡
⎣ −ϕ̂ŷ,kϕ̂η̂,k

1

⎤
⎦ ∈ R

n̂(p̂+2)+1,

θ̂
�=

⎡
⎣ â

vec(μ̂b̂T)
11×n̂b̂v̂

⎤
⎦ ∈ R

n̂(p̂+2)+1

(37)

and

ϕ̂ŷ,k
�=

⎡
⎢⎣

ŷk−1
...

ŷk−n̂

⎤
⎥⎦ ∈ R

n̂,

ϕ̂η̂,k
�=

⎡
⎢⎣
η̂(ẑk−1)

...
η̂(ẑk−n̂)

⎤
⎥⎦ ∈ R

n̂(p̂+1).

(38)

5. Nonlinear least-squares optimisation for system
identification

In this section, we use a technique based on least squares to con-
struct a DTLI/CPAmodelM that approximates the response of
the self-excited system S . This technique is a variation of the
method used in Van Pelt and Bernstein (2001). The objective is
to determine a transfer function Ĝ, delay d̂, and CPA function
φ̂ such that the response of the identified model M approxi-
mates the response of S . This technique requires a choice of
n̂, d̂, ĉ, r̂; these values are then used to obtain parameter esti-
mates â, b̂, v̂, μ̂. In the next section, an optimisation technique
is used to update the parameter estimates n̂, d̂, ĉ, r̂. In the special
case where S is a FTDDTL system with CPA function φ, the
parameters n̂, d̂, ĉ, r̂, â, b̂, v̂, μ̂ are estimates of n, d, c, r, a, b, v,μ.

For system identification, we use measurements of y from a
data window, which may include portions of the transient and
asymptotic response. To define the data window, let lu ≥ ll ≥
n̂+ d̂ + 1, and assume that measurements of yk are available
for all k ∈ [ll − n̂− d̂ − 1, lu]. The objective is to minimise a
cost function involving, for all k ∈ [ll, lu], the difference yk − ŷk
between the measurement yk from S and the output ŷk of the
DTLI/CPAmodelM, where ŷk is obtained by propagating (34),
where, for all κ ∈ [k− d̂ − n̂− 1, k− 1], the initial values are
given by ŷκ = yκ . Hence, we define the least-squares cost

J(â, b̂, v̂, μ̂) �= ‖Y −�θ̂‖2, (39)

where θ̂ is defined by (37),

Y �=

⎡
⎢⎣

yll
...
ylu

⎤
⎥⎦ ∈ R

lu−ll+1 (40)
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and

�
�= [−�y �η̂ 1(lu−ll+1)×1] ∈ R

(lu−ll+1)×(n̂(p̂+2)+1), (41)

where

�y
�=

⎡
⎢⎣
ϕy,ll
...

ϕy,lu

⎤
⎥⎦ ∈ R

(lu−ll+1)×n̂,

�η̂
�=

⎡
⎢⎣
ϕη̂,ll
...

ϕη̂,lu

⎤
⎥⎦ ∈ R

(lu−ll+1)×(n̂(p̂+1)),

(42)

and, for all k ∈ [ll, lu],

ϕy,k
�= [yk−1 · · · yk−n̂] ∈ R

1×n̂, (43)

ϕη̂,k
�= [η̂(yk−d̂−1 − yk−d̂−2) · · · η̂(yk−d̂−n̂ − yk−d̂−n̂−1)]

∈ R
1×(n̂(p̂+1)). (44)

Since θ̂ defined by (37) is a nonlinear function of b̂, v̂, μ̂, we
derive an upper bound for J, which is subsequently minimised
by means of a two-step process. To do this, let θ̂μ̂ ∈ R

n̂(p̂+1) be
an approximation of vec(μ̂b̂T) and define

θ̂v̂
�= 11×n̂b̂v̂ ∈ R, (45)

θ̃
�=

⎡
⎣ â
θ̂μ̂
θ̂v̂

⎤
⎦ ∈ R

n̂(p̂+2)+1, (46)

and the cost functions

J1(θ̃ )
�= ‖Y −�θ̃‖2, (47)

J2(θ̂μ̂, μ̂, b̂)
�= ‖θ̂μ̂ − vec(μ̂b̂T)‖2. (48)

Proposition 5.1: Let θ̂μ̂ ∈ R
n̂(p̂+1), define θ̃ by (46), and define

J, J1, and J2 by (39), (47), and (48). Then,

J(â, b̂, v̂, μ̂) ≤ J1(θ̃ )+ σmax(�η̂)J2(θ̂μ̂, μ̂, b̂). (49)

Proof: Note that (39) can be written as

J(â, b̂, v̂, μ̂) = ‖Y −�θ̂ +�η̂θ̂μ̂ −�η̂θ̂μ̂‖2
= ‖Y +�yâ−�η̂ vec(μ̂b̂T)
− 1(lu−ll+1)×1θ̂v̂ +�η̂θ̂μ̂ −�η̂θ̂μ̂‖2
= ‖Y −�θ̃ +�η̂(θ̂μ̂ − vec(μ̂b̂T))‖2,

which implies that

J(â, b̂, v̂, μ̂) ≤ ‖Y −�θ̃‖2 + ‖�η̂(θ̂μ̂ − vec(μ̂b̂T))‖2
≤ ‖Y −�θ̃‖2 + σmax(�η̂)‖θ̂μ̂ − vec(μ̂b̂T)‖2
= J1(θ̃ )+ σmax(�η̂)J2(θ̂μ̂, μ̂, b̂). �

The upper bound for J given by (49) is minimised by sequen-
tially minimising J1 and J2. First, J1 is minimised to obtain θ̃ ,
such that

θ̃ =
⎡
⎣ â
θ̂μ̂
θ̂v̂

⎤
⎦ = argmin

θ̄∈Rn̂(p̂+2)+1
J1(θ̄). (50)

Since J1 is a linear least-squares function of θ̃ , we use recursive
least squares (RLS) (Aström & Wittenmark, 1995) with P0 =
106.

Next, using θ̂μ̂ given by (50), we rewrite (48) as

J2(θ̂μ̂, μ̂, b̂) = ‖ vec−1(θ̂μ̂)− μ̂b̂T‖F. (51)

Then, Bernstein (2018, Fact 11.16.39, p. 906) implies that the
rank-1 approximation of μ̂b̂T that minimises J2 is given by

μ̂b̂T = σmax(vec−1(θ̂μ̂))ψl,1(vec−1(θ̂μ̂))ψr,1(vec−1(θ̂μ̂))T,
(52)

where ψl,1(A) denotes the first left singular vector of A and
ψr,1(A) denotes the first right singular vector of A. Since μ̂ and
b̂ are not separately identifiable from (52), choosing an arbitrary
nonzero scaling parameter β̂ ∈ R and using it to separate (52)
yields

μ̂ = β̂σmax(vec−1(θ̂μ̂))ψl,1(vec−1(θ̂μ̂)), (53)

b̂ = 1
β̂
ψr,1(vec−1(θ̂μ̂)). (54)

Finally, if θ̂v̂ given by (50) is nonzero, then it follows from (45)
that 11×n̂b̂ is nonzero, and thus v̂ is given by

v̂ = θ̂v̂

11×n̂b̂
. (55)

Note that β̂ is unidentifiable, and thus it can be chosen
arbitrarily.

6. Mixed-integer optimisation for system
identification

The minimisation of (39) in Section 5 depends on the chosen
model parameters n̂, d̂, ĉ, and r̂. In this section, a mixed-integer
approach is used to determine optimal model parameters n̂,
d̂, ĉ, and r̂ such that the output of the identified model M
parameterised by the estimates â, b̂, v̂, and μ̂matches the output
of S .

In order to constrain the width of the partitions in ĉ used to
define CPA function φ, let ε̂ > 0 denote theminimum partition
width. Furthermore, let λ̂ be an integer such that λ̂ε̂ is the uni-
form distance between consecutive break points in ĉ, and let ν̂n
and ν̂p denote the number of negative and positive components
in ĉ, respectively. With this notation, (28) can be written as

ĉ = ε̂[−ν̂nλ̂ − (ν̂n − 1)λ̂ · · · (ν̂p − 1)λ̂ ν̂pλ̂]T

∈ R
ν̂n+ν̂p+1, (56)
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Figure 5. Output yk of system S for all k ∈ [0, lmax] available for MIO-ID and output ŷk of estimated DTLI/CPA model M for all k ∈ [0, lMIO,u + lshift,max] obtained by
propagating (26). J in (39) is computed using yk for all k ∈ [ll , lu], and JMIO in (57) is computed using yk for all k ∈ [lMIO,l, lMIO,u]. To compute JMIO, the output ŷ ofM is
shifted by up to lshift,max − 1 steps to minimise the difference between ŷ and the output y of S . Note that lshift is the number of shift steps that minimise the difference
between y and ŷ.

and thus p̂ = ν̂n + ν̂p + 1 and r̂ = ν̂n + 1. Since ε̂ is arbitrarily
chosen, note that (56) requires estimates of only λ̂, ν̂n, and ν̂p.
In this paper, ε̂ = 10−3.

Next, suppose yk for all k ∈ [0, lmax] are the measurements
available to use for identification, such that lmax ≥ lu. Given
n̂, d̂, λ̂, ν̂n, ν̂p, let â, b̂, v̂, μ̂ minimise (39), let lMIO,u > lMIO,l ≥
n̂+ d̂ + 1, such that lMIO,u ≤ lmax and let lshift,max be the maxi-
mum time-step shift. Then, we define the cost function

JMIO
�= ‖YMIO − ŶMIO,lshift‖2, (57)

where

YMIO
�=

⎡
⎢⎣

ylMIO,l
...

ylMIO,u

⎤
⎥⎦ ∈ R

lMIO,u−lMIO,l+1, (58)

ŶMIO,lshift
�=

⎡
⎢⎣

ŷlMIO,l−lshift
...

ŷlMIO,u−lshift

⎤
⎥⎦ ∈ R

lMIO,u−lMIO,l+1, (59)

lshift
�= argmin

lshift∈[0,lshift,max]
‖YMIO − ŶMIO,lshift‖2, (60)

subject to

d̂ ≥ 0, (61)

n̂, λ̂, ν̂n, ν̂p > 0, (62)

n̂, d̂, λ̂, ν̂n, ν̂p ∈ N0. (63)

Note that JMIO considers shifts of ŷ relative to y by up to lshift,max
steps using data yk for all k ∈ [lMIO,l, lMIO,u], and that (39) is
computed using yk for all k ∈ [ll, lu]. Figure 5 illustrates the data
sets used to compute JMIO.

To perform mixed-integer-optimisation identification (MIO-
ID), we use an integer optimisation algorithm to minimise JMIO

over n̂, d̂, λ̂, ν̂n, and ν̂p. At each iteration, a DTLI/CPA model
is estimated along with its associated JMIO cost. Let � ∈ N0
be an MIO-ID iteration, and let n̂�, d̂�, λ̂�, ν̂n,�, ν̂p,�, â�, b̂�, v̂�,
μ̂� and JMIO,� be the DTLI/CPA parameters estimated at
the �th MIO-ID iteration and their associated cost obtained
using (57). For all � ≥ 1, n̂�, d̂�, λ̂�, ν̂n,�, ν̂p,� are determined
by a 1-step mixed-integer search (1SMIS) algorithm with input
JMIO,i, n̂i, d̂i, λ̂i, ν̂n,i, ν̂p,i for all i ∈ [0, �− 1]. For � = 0, the
1SMIS function initialises n̂0, d̂0, λ̂0, ν̂n,0, ν̂p,0 randomly. Then,
for all � ∈ N0, Algorithm 1 shows how JMIO,�, â�, b̂�, v̂�, and
μ̂�, are computed using n̂�, d̂�, λ̂�, ν̂n,�, ν̂p,� as input. Note that
â�, b̂�, v̂�, and μ̂� are estimated by minimising (39) using the
least-squares optimisation technique in Section 5.

The MIO-ID process terminates at step � ≥ 1 when either
JMIO,�−1 < Jmin or � > �max, where Jmin is a chosen minimal
cost function value and �max is the chosenmaximumnumber of
optimisation iterations. Then, the identified DTLI/CPA model
M is characterised by the estimated parameters n̂ = n̂j, d̂ =
d̂j, λ̂ = λ̂j, ν̂n = ν̂n,j, ν̂p = ν̂p,j, â = âj, b̂ = b̂j, v̂ = v̂j, and μ̂ =
μ̂j, where

j = argmin
i∈[0,�−1]

JMIO,i. (64)

The flow chart shown in Figure 6 summarises MIO-ID.
The 1SMIS algorithm, which searches through the n̂, d̂, λ̂, ν̂n,

ν̂p variable space, is a single step of a derivative-free mixed-
integer optimisation algorithm. To reduce the optimisation
time, the search space is constrained by setting minimum and
maximum feasible values of n̂, d̂, λ̂, ν̂n, and ν̂p, which implies
that the values of ll and lMIO,l need to be chosen to be greater
than the sum of the maximum values set for n̂ and d̂. In this
paper, the 1SMIS algorithm consists of a single step of a mixed-
integer genetic algorithm and is implemented in Matlab by
running a single optimisation iteration of the surrogateopt
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Figure 6. Flow chart of mixed-integer-optimisation identification (MIO-ID).

function. Note that surrogateopt chooses the initial val-
ues of n̂, d̂, λ̂, ν̂n, and ν̂p based on their corresponding min-
imum and maximum feasible values. The choice of certain
optimisation parameters can determine the resulting identified
DTLI/CPAmodel. In that regard, the following suggestionsmay
improve the identification results:

• Choosing ll and lu to include the transient response of system
S , as shown in Example 7.2.

• In most cases, choosing ll = lMIO,l and lu = lMIO,u will suf-
fice. However, in cases where the oscillatory behaviour dis-
played by the output of system S is irregular, ll and lu may
be chosen to include a representative waveform, while lMIO,l
and lMIO,u may be chosen to include more periods of the
waveform, as shown in Example 11.2.

• Increasing the maximum values of n̂ and d̂ in the case where
the output of system S displays richer frequency content, as
shown in the examples in Sections 10 and 11.

• Let z be given by (19) with y as the output of system S and
d = 0. Then, the maximum values of λ̂, ν̂n, and ν̂p can be
chosen so that the values of z are within−ε̂ν̂nλ̂ and ε̂ν̂pλ̂.

7. Application of MIO-ID to FTDDTL systems

In this section, we apply MIO-ID to FTDDTL systems. Since
these systems have the form of the DTLI model, we evaluate the
accuracy of MIO-ID by comparing the estimates Ĝ and φ̂ with
G and φ, respectively. Hence, in these examples, the unidentifi-
able parameter β̂ is chosen to minimise the root-mean-square
(RMS) fit between φ and φ̂. Furthermore, the power spectral
density (PSD) and the waveforms of the outputs, the nonlin-
earities, and the frequency responses of the linear dynamics of
FTDDTL system S and the estimated DTLI/CPA modelM are

Table 1. Examples with FTDDTL systems.

Example System type n d SNR (dB) φ

7.1 FTDDTL 2 4 ∞ and 30 CPA, monotonic, odd
7.2 3 4 C∞ monotonic, not odd
7.3 6 0 C∞ nonmonotonic, odd

compared. Table 1 summarises details of the FTDDTL systems
considered in this section, including the signal-to-noise ratio
(SNR) considered in each example.

All computational results in this paper were obtained using
a PC running Windows 10 Education, version 21H2, OS build
19044.1586 with 8-core 16-thread AMD Ryzen 3700X running
at 3.59 GHz and 32GB DDR4 3600 MHz RAM running in dual
channel with MATLAB version R2020a Update 7.

Example 7.1: FTDDTLwithmonotonic, odd φ

Consider the FTDDTL system S with d = 4,

G(q) = q− 0.5
q2 − 1.6q+ 0.8

, (65)

and the CPA, monotonic, odd φ shown in Figure 7. The
domain of φ is partitioned by c = [−10 − 9 · · · 9 10]T,
and φ is constructed such that, for all i ∈ [1, 21], φ(ci) =
18.75 tanh(1.2ci/2.5). To obtain data for identification, yk is
generated by simulating S subject to v = 37.5. For MIO-ID, we
let n̂ ∈ [1, 10], d̂ ∈ [0, 10], λ̂ ∈ [1, 2000], ν̂n ∈ [1, 30], and ν̂p ∈
[1, 30], with ll = lMIO,l = 100, lu = 500, and lMIO,u = 10,000,
that is, yk for all k ∈ [100, 500] is used for least-squares optimi-
sation, and yk and ŷk for all k ∈ [100, 10,000] is used to compute
JMIO.

Figure 8 compares the response of the model M identified
usingMIO-IDwith the response ofS . The estimatedDTLI/CPA
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Algorithm 1: Computation of JMIO,�

Input: n̂�, d̂�, λ̂�, ν̂n,�, ν̂p,�
Output: JMIO,�, â�, b̂�, v̂�, μ̂�

1 ĉ�← ε̂ [−ν̂n,�λ̂� − (ν̂n,� − 1)λ̂� · · · (ν̂p,� − 1)λ̂� ν̂p,�λ̂�]T

2 â�, b̂�, v̂�, μ̂�← argmina∗,b∗,v∗,μ∗ J(a
∗, b∗, v∗,μ∗)

� Given n̂�, d̂�, ĉ�, and yk for all k ∈ [ll, lu], minimise (39) using the least-squares optimisation technique in Section 5.
3 ŷ← [0 · · · 0]T ∈ R

lMIO,u+lshift,max

4 for k← n̂� + d̂� + 1 to lMIO,u + lshift,max do
5 ŷk ← ϕ̂Tk [â

T
� (vec(μ̂�b̂

T
� ))

T v̂�11×n̂� b̂�]
T

� Simulates DTL model with identified parameters given n̂�, d̂�, and ĉ�.
6 NaNFlag← isNaN(ŷ)
� Determines whether the output of the simulated model yields a NaN response.

7 JMIO,�←∞
8 if NaNFlag is true then
9 return JMIO,�, â�, b̂�, v̂�, μ̂�

10 for j← 0 to lshift do
11 stemp←

∑lMIO,u
k=lMIO,l

(
yk − ŷk+j

)2
12 if stemp < JMIO,� then
13 JMIO,�← stemp

� Local cost function computation with shift to account for the phase shift of the identified model.
14 return JMIO,�, â�, b̂�, v̂�, μ̂�

Figure 7. Example 7.1: Continuous piecewise-affine feedback mapping φ(z) par-
titioned by c and the estimated φ̂(z) partitioned by ĉ.

model parameters are

Ĝ(q) = 1.0002q− 0.4996
q2 − 1.6000q+ 0.8001

, (66)

d̂ = 4, v̂ = 37.46, ν̂n = 20, ν̂p = 26, and φ̂ shown in Figure 8.
The optimisation process required 30.29 s, during which JMIO
was computed 263 times. The minimum values of JMIO up to
each optimisation iteration � are shown in Figure 9. Further-
more, the response of the identified model as the number of
optimisation iterations increase is displayed in Figure 10 at three
snapshots during MIO-ID, that is, for all � ∈ {1, 50, 250}.

Now, consider the output of S with sensor noise with stan-
dard deviation

√
1.5, which yields an output signal with 30 dB

SNR. Figure 11 compares the response of the modelM identi-
fied using MIO-ID in the presence of noisy measurements with
the response of S . The estimated DTLI/CPA model parameters
are

Ĝ(q) = 1.0911q2 − 0.1186q− 0.2134
q3 − 1.2092q2 + 0.1745q+ 0.3128

, (67)

d̂ = 4, v̂ = 34.345, ν̂n = 4, ν̂p = 12, and φ̂ shown in Figure 11.
The optimisation process required 95.55 s, during which JMIO
was computed 767 times.

Figure 12 shows the time domain responses of identified
models estimated via MIO-ID by fixing n̂ and d̂, such that
{n̂, d̂} ∈ {1, 2, 3} × {2, 3, 4}. Note that small changes in n̂ and d̂
can yield significantly different responses and thus different val-
ues of JMIO. The complex changes of JMIO over the n̂, d̂, λ̂, ν̂l, ν̂p
parameter space motivated the use of a genetic algorithm for
mixed-integer optimisation. Furthermore, note that, in the cases
where d̂ = d and n̂ > n, the responses of the identified models
are very similar to those of S , which implies that, under appro-
priate coefficients, higher order linear systems can approximate
the response of lower order linear systems. 


Example 7.2: FTDDTL systemwithmonotonic, not odd φ

Consider the FTDDTL system S with d = 4,

G(q) = q2 − 2.3q+ 1.5725
q3 − 2.35q2 + 2q− 0.6

, (68)

and a C∞, monotonic, not odd φ, such that, for all z ∈ R,

φ(z) = 15 tanh(1.2(z − 3)/2.5)+ 2.2342. (69)

To obtain data for identification, yk is generated by simulat-
ing S subject to v = 40. For identification, we let n̂ ∈ [1, 20],
d̂ ∈ [0, 20], λ̂ ∈ [1, 2000], ν̂n ∈ [1, 30], and ν̂p ∈ [1, 30], with
ll = lMIO,l = 100, lu = 1500, and lMIO,u = 10,000, that is, yk for
all k ∈ [100, 1500] is used for least-squares optimisation, and
yk and ŷk for all k ∈ [100, 10,000] is used to compute JMIO.
Figure 13 compares the response of the model M identified
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Figure 8. Example 7.1: MIO-ID of FTDDTL system using noiseless measurements. (a) compares the PSD of the output of S with the PSD of the output ofM. (b) Shows
φ of S and φ̂ ofM. (c) Shows the output yk of S with v = 37.5 for all k ∈ [0, 100]. (d) Shows the output ŷk ofM with v̂ = 37.46. (e) Shows the output yk of S and the
output ŷk ofM for all k ∈ [800, 900]. (f,g) Compare the frequency responses G and Ĝ.

Figure 9. Example 7.1: Minimal cost min
i∈[0,�]

JMIO,i up to iteration � used in MIO-ID.

The identified model M, whose response is shown in Figure 8 is obtained by
minimising (57).

Figure 10. Example 7.1: Responses of S and the identified model M that min-
imises JMIO as the number of optimisation iterations increases. The responses ofM
are displayed for all � ∈ {1, 50, 250}.

usingMIO-IDwith the response ofS . The estimatedDTLI/CPA
model parameters are

Ĝ(q) = 0.1209q2 + 0.1204q+ 0.1043
1.0000q3 − 0.5577q2 + 0.0173q− 0.0494

,

d̂ = 17, v̂ = 39.5712, ν̂n = 5, ν̂p = 6, and φ̂ shown in Figure 13.
Note that, although the MIO-ID parameter estimates are dif-
ferent from those of S , the output of the identified system M
closely matches that of S .

Next, consider the output of S with sensor noise with stan-
dard deviation

√
40, which yields an output signal with 30 dB

SNR. Figure 14 compares the response of the modelM identi-
fied using MIO-ID in the presence of noisy measurements with
the response of S . The estimated DTLI/CPA model parameters
are n̂ = 8, d̂ = 9, v̂ = 60.1698, ν̂n = 8, ν̂p = 12, and φ̂ shown in
Figure 14. Similarly to the noiseless case, while the parameters
of the identified model differ from those of S , the output of the
identified systemM closely matches that of S .

Now, we show that the parameters of the identified system
estimated byMIO-ID canmatch those ofS in the casewhere the
input is known and nonconstant. In order to do this, the inner-
loop nonlinear least-squares optimisation shown in Section 5
is modified for nonconstant v, as shown in Section 5 of Paredes
andBernstein (2020). Consider the system (68) simulatedwith v
as a Gaussian random variable with mean 5 and standard devi-
ation

√
1.5. Figure 15 compares the response of the model M

identified using MIO-ID with the response of S , both driven by
the constant input v = v̂ = 40. The estimatedDTLI/CPAmodel
parameters are

Ĝ(q) = 1.0147q2 − 2.3314q+ 1.5921
1.0000q3 − 2.3500q2 + 1.9999q− 0.6000

, (70)

d̂ = 4, ν̂n = 6, ν̂p = 10, and φ̂ shown in Figure 15. Note that,
unlike the cases where the input is assumed to be unknown
and constant, the estimated DTLI/CPA model parameters are
similar to those of S , which shows that MIO-ID is more accu-
rate when the input is known and more persistent, as shown in
Figure 16.

Next, we consider the identification ofS using noiselessmea-
surements that include the transient response of the system. Let
ll = n̂+ d̂ + 1, lu = 1500, lMIO,l = 100, and lMIO,u = 10,000,
that is, yk for all k ∈ [n̂+ d̂ + 1, 1500] is used for least-squares
optimisation, and yk and ŷk for all k ∈ [100, 10,000] is used to
compute JMIO, such that the transient response of S is used
for identification, unlike previous cases. Figure 17 compares
the response of the model M identified using MIO-ID in the
presence of noiseless measurements that include the transient
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Figure 11. Example 7.1: MIO-ID of FTDDTL system using noisy measurements. (a) compares the PSD of the output ofS with the PSD of the output ofM. (b) Shows φ of
S and φ̂ ofM. (c) Shows the output yk ofS with v = 37.5 for all k ∈ [0, 100]. (d) Shows the output ŷk ofMwith v̂ = 34.345 for all k ∈ [0, 100]. (e) Shows the output yk
of S and the output ŷk ofM for all k ∈ [800, 900]. (f,g) Compare the frequency responses of G and Ĝ.

Figure 12. Example 7.1: MIO-ID of FTDDTL system with fixed n̂ and d̂, such that {n̂, d̂} ∈ {1, 2, 3} × {2, 3, 4}. These plots compare the output ŷk of the identified model
Mwith the output yk of system S for all k ∈ [0, 400].
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Figure 13. Example 7.2: MIO-ID of FTDDTL system using noiseless measurements. (a) compares the PSD of the output of S with the PSD of the output ofM. (b) Shows
φ of S and φ̂ ofM. (c) Shows the output yk of S with v = 40 for all k ∈ [0, 1000]. (d) Shows the output ŷk ofM with v̂ = 39.5712 for all k ∈ [0, 1000]. (e) Shows the
output yk of S for all k ∈ [2500, 2550] and the output ŷk ofM for all k ∈ [2508, 2558]. (f,g) Compare the frequency responses of G and Ĝ.

Figure 14. Example 7.2: MIO-ID of FTDDTL using noisy measurements. (a) compares the PSD of the output of S with the PSD of the output ofM. (b) Shows φ of S and
φ̂ ofM. (c) Shows the output yk ofS with v = 40 for all k ∈ [0, 200]. (d) Shows the output ŷk ofMwith v̂ = 60.1698 for all k ∈ [0, 200]. (e) Shows the output yk ofS for
all k ∈ [2500, 2550] and the output ŷk ofM, for all k ∈ [2499, 2549]. (f,g) Compare the frequency responses of G and Ĝ.

Figure 15. Example 7.2: MIO-ID of FTDDTL system using noiselessmeasurements with a Gaussian random variable as input. (a) Compares the PSD of the output ofS with
the PSD of the output ofM. (b) Shows φ of S and φ̂ ofM. (c) Shows the output yk of S with v = 40 for all k ∈ [0, 200]. (d) Shows the output ŷk ofM with v̂ = 40 for
all k ∈ [0, 200]. (e) Shows the output yk of S for all k ∈ [2500, 2550] and the output ŷk forM for all k ∈ [2503, 2553]. (f,g) Compare the frequency responses of G and Ĝ.
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Figure 16. Example 7.2: (zk , uk) pairs from S for all k ∈ [2, 300], plotted with φ
using Gaussian white noise as input. Note the persistency in the data.

response with the response of S . The estimated DTLI/CPA
model parameters are

Ĝ(q) = 1.0147q2 − 2.2974q+ 1.5604
1.0000q3 − 2.3499q2 + 1.9997q− 0.5999

, (71)

d̂ = 4, v̂ = 39.87, ν̂n = 20, ν̂p = 22, and φ̂ shown in Figure 17.
Furthermore, Figure 18 plots the (zk, uk) pairs fromS for all k ∈
[2, 300], which implies that the φ̂ estimate of φ is more accurate
in regionswithmore data points. Compared to the identification
results in Figure 13, the estimatedDTLI/CPAmodel parameters
are similar to those ofS when the transient response is included
in identification data window, which show thatMIO-ID is more
accurate when the measurements are more persistent.

Example 7.3: FTDDTL systemwith nonmonotonic, odd φ

Consider the FTDDTL system S with d = 0,

G(q) = q2 + 1.5q+ 0.8125
q6 − 3.5442q5 + 5.21974q4 − 3.92160q3
+1.5316q2 − 0.2722q− 0.02153

, (72)

Figure 18. Example 7.2: (zk , uk) pairs from S for all k ∈ [2, 300], plotted with φ
and φ̂ obtained fromMIO-ID of FTDDTL system using noiseless measurements that
include the transient response of the system. Note that the φ̂ estimate of φ is less
accurate in regions with scarce data points and large changes in φ, such as for all
z ∈ [0, 8]. Note that |z| ≥ 20 is truncated since they exceed themaximum possible
estimates of ν̂nλ̂/ν̂pλ̂ and are therefore saturated.

and the C∞, nonmonotonic, odd φ, such that, for all z ∈ R,

φ(z) = −φmax
1

σφ
√
2π

e−
1
2 ((z+μφ)/σφ)2

+ φmax
1

σφ
√
2π

e−
1
2 ((z−μφ)/σφ)2 , (73)

with φmax = 4, σφ = 1.75, andμφ = 4. To obtain data for iden-
tification, yk is generated by simulating S subject to v = 2.
For identification, we let n̂ ∈ [1, 20], d̂ ∈ [0, 20], λ̂ ∈ [1, 2000],
ν̂n ∈ [1, 30], and ν̂p ∈ [1, 30], with ll = lMIO,l = 100, lu = 1500,
and lMIO,u = 10,000, that is, yk for all k ∈ [100, 1500] is used
for least-squares optimisation, and yk and ŷk for all k ∈
[100, 10,000] is used to compute JMIO. Figure 19 compares the
response of the model M identified using MIO-ID with the
response of S . The estimated DTLI/CPA model parameters are

Ĝ(q) = 0.1228q+ 0.1579
q2 − 1.5938q+ 0.7528

,

d̂ = 4, v̂ = 19.6144, ν̂n = 15, ν̂p = 9, and φ̂ shown in Figure 19.
As in Example 7.2, although the MIO-ID parameter estimates

Figure 17. Example 7.2: MIO-ID of FTDDTL system using noiseless measurements that include the transient response of the system. (a) Compares the PSD of the output
of S with the PSD of the output ofM. (b) Shows φ of S and φ̂ ofM. (c) Shows the output yk of S with v = 40 for all k ∈ [0, 200]. (d) Shows the output ŷk ofM with
v̂ = 39.87 for all k ∈ [0, 200]. (e) Shows the output yk ofS for all k ∈ [2500, 2550] and the output ŷk forM for all k ∈ [2503, 2553]. (f,g) Compare the frequency responses
of G and Ĝ.
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Figure 19. Example 7.3: MIO-ID of FTDDTL system using noiselessmeasurements. (a) Compares the PSD of the output ofS with the PSD of the output ofM. (b) Showsφ
ofS and φ̂ ofM. (c) Shows the output yk ofS with v = 2 for all k ∈ [0, 1000]. (d) Shows the output ŷk ofMwith v̂ = 19.6144 for all k ∈ [0, 1000]. (e) Shows the output
yk of S for all k ∈ [8500, 8550] and the output ŷk ofM for all k ∈ [8496, 8546]. (f,g) Compare the frequency responses of G and Ĝ.

Figure 20. Example 7.3: MIO-ID of FTDDTL system using noisy measurements. (a) Compares the PSD of the output ofS with the PSD of the output ofM. (b) Shows φ of
S and φ̂ ofM. (c) Shows the output yk of S with v = 2 for all k ∈ [0, 1000]. (d) Shows the output ŷk ofMwith v̂ = 9.03 for all k ∈ [0, 1000]. (e) Shows the output yk of
S for all k ∈ [8500, 8550] and the output ŷk ofM for all k ∈ [8493, 8543]. (f,g) Compare the frequency responses of G and Ĝ.

are different from those of S , the output of the identified system
M closely matches that of S .

Next, consider the output of S with sensor noise with stan-
dard deviation

√
45, which yields an output signal with 30 dB

SNR. Figure 20 compares the response of the modelM identi-
fied using MIO-ID in the presence of noisy measurements with
the response of S . The estimated DTLI/CPA model parameters
are n̂ = 9, d̂ = 10, v̂ = 9.03, ν̂n = 9, ν̂p = 20, and φ̂ shown in
Figure 20. Similarly to the noiseless case, while the parameters
of the identified model differ from those of S , the output of the
identified systemM closely matches that of S .

Next, we show that the parameters of parameters of the
identified system estimated by MIO-ID can match those of S
in the case where the input is known and nonconstant, as in
Example 7.2. Consider the system (72) simulated with v as a
Gaussian random variable with mean 3 and standard deviation√
5. Figure 21 compares the response of the model M identi-

fied using MIO-ID in the presence of noisy measurements with
the response of S , both driven by the constant input v = 5. The

estimated DTLI/CPA model parameters are

Ĝ(q) =
4.3 · 10−4q5 + 1.4 · 10−5q4 − 8.2 · 10−4q3
+0.9872q2 + 1.4816q+ 0.8030

q6 − 3.5442q5 + 5.1973q4 − 3.9160q3
+1.5317q2 − 0.2723q+ 0.0154

,

d̂ = 0, ν̂n = 12, ν̂p = 14, and φ̂ shown in Figure 21. As in
Example 7.2, MIO-ID is more accurate when the input is more
persistent.

8. Application of MIO-ID to the logistic map

In this section, we apply MIO-ID to data obtained from the
logistic map given by (7)–(9) under various parameters. Note
that, although the logistic map is a DTL system, it does not
include a washout filter, and thus it does not have the form of
an FTDDTL model. We thus set β̂ = 1. Table 2 summarises the
details of the examples considered in this section.
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Figure 21. Example 7.3: MIO-ID of FTDDTL system using noiseless measurements with Gaussian random variable as input. (a) Compares the PSD of the output of S with
the PSD of the output ofM. (b) Shows φ ofS and φ̂ ofM. (c) Shows the output yk ofS with v = 2 for all k ∈ [0, 1000]. (d) Shows the output ŷk ofMwith v̂ = 2 for all
k ∈ [0, 1000]. (e) Shows the output yk of S for all k ∈ [8500, 8550] and the output ŷk ofM for all k ∈ [8498, 8548]. (f,g) Compare the frequency responses of G and Ĝ.

Table 2. Examples with logistic map.

Example System type Parameter SNR (dB) Remark

8.1.1 Logistic Map γ = 3 ∞ Response has a 2-step oscillation
8.1.2 γ = 3.5 Response has a 4-step oscillation
8.1.3 γ = 3.565 Response has a 8-step oscillation
8.1.4 γ = 4 Response is chaotic

Example 8.1: Logistic map

Let S be the discrete-time model described by the logistic map
is given by (7)–(9) where γ ∈ R. Note that, in the case where
γ ∈ [3, 1+√6], response of the logistic map approaches to a
solution that oscillates between two γ -dependent values, that
is, there exists k0 > 0 such that, for all k ≥ k0,

yk ∈
{
1
2
+ 1−√(γ − 3)(γ + 1)

2γ
,
1
2

+ 1+√(γ − 3)(γ + 1)
2γ

}
. (74)

For all k> 1, the logistic map equation is propagated to obtain
data. Since the value of γ determines the response of the logistic
map, MIO-ID is applied to data obtained from the logistics map
with γ ∈ {3, 3.5, 3.565, 4}.

Example 8.1.1: Logistic mapwith γ = 3
Let γ = 3 and x0 = 0.5. For identification, we let n̂ ∈ [1, 20],
d̂ ∈ [0, 20], λ̂ ∈ [1, 50,000], ν̂n ∈ [1, 20], and ν̂p ∈ [1, 20], with
ll = lMIO,l = 3000, lu = 3100, and lMIO,u = 10,000 that is, yk for
all k ∈ [3000, 3100] is used for least-squares optimisation, and
yk and ŷk for all k ∈ [3000, 10,000] is used to compute JMIO.
Figure 22 compares the response of the model M identified
usingMIO-IDwith the response ofS . The estimatedDTLI/CPA
model parameters are n̂ = 1, d̂ = 0, ν̂n = 12, ν̂p = 10, v̂ =
−3.076, Ĝwith a frequency response shown in Figure 23, and φ̂
shown in Figure 23.

Example 8.1.2: Logistic mapwith γ = 3.5
Let γ = 3.5 and x0 = 0.5. Note that, in the case where γ ∈
(1+√6, 3.544), the response of the logistic map has a 4-step
oscillation. For identification, we let n̂ ∈ [1, 50], d̂ ∈ [0, 50],
λ̂ ∈ [1, 50,000], ν̂n ∈ [1, 20], and ν̂p ∈ [1, 20], with ll = lMIO,l =
3000, lu = 3100, and lMIO,u = 10,000 that is, yk for all k ∈
[3000, 3100] is used for least-squares optimisation, and yk and
ŷk for all k ∈ [3000, 10,000] is used to compute JMIO. Figure 24
compares the response of the model M identified using MIO-
ID with the response of S . The estimated DTLI/CPA model
parameters are n̂ = 1, d̂ = 1, ν̂n = 3, ν̂p = 2, v̂ = −2.8305, Ĝ
with a frequency response shown in Figure 25, and φ̂ shown in
Figure 25.

Example 8.1.3: Logistic mapwith γ = 3.565
Let γ = 3.565 and x0 = 0.5. For this value of γ , the response
of the logistic map has a 8-step oscillation. For identification,
we let n̂ ∈ [1, 50], d̂ ∈ [0, 50], λ̂ ∈ [1, 50,000], ν̂n ∈ [1, 20], and
ν̂p ∈ [1, 20], with ll = lMIO,l = 3000, lu = 3100, and lMIO,u =
10,000 that is, yk for all k ∈ [3000, 3100] is used for least-squares
optimisation, and yk and ŷk for all k ∈ [3000, 10,000] is used to
compute JMIO. Figure 26 compares the response of the model
M identified using MIO-ID with the response of S . The esti-
mated DTLI/CPAmodel parameters are n̂ = 2, d̂ = 0, ν̂n = 14,
ν̂p = 19, v̂ = 5.0736, Ĝ with a frequency response shown in
Figure 27, and φ̂ shown in Figure 27.

Example 8.1.4: Logistic mapwith γ = 4 (chaotic response)
Let γ = 4 and x0 = 0.1. For this value of γ , the response
of the logistic map is chaotic. For this example, we remove
the washout filter in the DTLI/CPA model such that yf =
yd, and the method in Section 5 is applied with n̂ = 1, d̂ =
0, ĉ = [−1.2 − 1.19 · · · 1.19 1.2], r̂ = 121, ll = 2 and
lu = 1500. Figure 28 shows the response of the modelM, esti-
mated using the method in Section 5, as well as the estimated
nonlinearity. Note that (7)–(9) can be written as

xk+1 = φ(xk), (75)
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Figure 22. Example 8.1.1: MIO-ID of the logistic map equations (7)–(9) with γ = 3, using noiseless measurements. (a) Compares the PSD of the output ofS with the PSD
of the output ofM. (b) Shows the output yk of S for all k ∈ [0, 50]. (c) Shows the output ŷk ofMwith v̂ = −3.076 for all k ∈ [0, 50]. (d) Shows the output yk of S for all
k ∈ [2500, 2510], and the output ŷk ofM for all k ∈ [2500, 2510].

Figure 23. Example 8.1.1: MIO-ID of the logistic map equations (7)–(9) with γ = 3, using noiseless measurements. (a,b) Shows the frequency response of Ĝ. (c) Shows
the estimated nonlinearity φ̂.

where φ(xk) = γ (xk − x2k), which corresponds to the identified
feedback nonlinearity, as shown in Figure 28. Since xk = yk ∈
[0, 1] for all k ≥ 0, the nonlinearity is identified within only this
interval, remaining 0 otherwise.

9. Continuous-time Lur’e system

For all t ≥ 0, consider the continuous-time Lur’e (CTL) system
shown in Figure 29, which has the dynamics

ẋ(t) = Ax(t)+ Bu(t)+ Dv(t), (76)

y(t) = Cx(t). (77)

z(t) = Ex(t), (78)

u(t) = φ(z(t)), (79)

where x(t) ∈ R
n, u(t) ∈ R

m, v(t) ∈ R, y(t) ∈ R, z(t) ∈ R
p,A ∈

R
n×n, B ∈ R

n×m, C ∈ R
1×n, D ∈ R

n×1, E ∈ R
p×n, and φ :

R
p→ R

m. Combining (76)–(79) yields

ẋ(t) = Ax(t)+ Bφ(Ex(t))+ Dv(t), (80)

y(t) = Cx(t). (81)

It is assumed that, for all T> 0, (80), (81) has a unique solution
on [0,T). This assumption rules out equations that lack either
uniqueness or global existence or both, such as ẋ = √|x|, ẋ =
x2, and ẋ = x1/3 + x3.

Example 9.1: The dynamics of the van der Pol oscillator can be
written as

ẋ(t) =
[
0 1
−1 0

]
x(t)+

[
0
γ

]
φ(x(t)), (82)

y(t) = [1 0]x(t), (83)

φ(x(t)) = (1− x21(t))x2(t), (84)
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Figure 24. Example 8.1.2: MIO-ID of the logistic map equations (7)–(9) with γ = 3.5, using noiseless measurements. (a) Compares the PSD of the output of S with the
PSD of the output ofM. (b) Shows the output yk of S for all k ∈ [0, 50]. (c) Shows the output ŷk ofMwith v̂ = −2.8305 for all k ∈ [0, 50]. (d) Shows the output yk of S
for all k ∈ [2500, 2510], and the output ŷk ofM for all k ∈ [2502, 2512].

Figure 25. Example 8.1.2: MIO-ID of the logistic map equations (7)–(9) with γ = 3.5, using noiseless measurements. (a,b) Shows the frequency response of Ĝ. (c) Shows
the estimated nonlinearity φ̂.

Figure 26. Example 8.1.3: MIO-ID of the logistic map equations (7)–(9) with γ = 3.5, using noiseless measurements. (a) Compares the PSD of the output of S with the
PSD of the output ofM. (b) Shows the output yk ofS for all k ∈ [0, 50]. (c) Shows the output ŷk ofMwith v̂ = 5.0736 for all k ∈ [0, 50]. (d) Shows the output yk ofS for
all k ∈ [2500, 2510], and the output ŷk ofM for all k ∈ [2502, 2512].
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Figure 27. Example 8.1.3: MIO-ID of the logistic map equations (7)–(9) with γ = 3.5, using noiseless measurements. (a,b) Shows the frequency response Ĝ. (c) shows the
estimated nonlinearity φ̂.

Figure 28. Example 8.1.4: Nonlinear identification of the logistic map equations (7)–(9) with γ = 4, using noiseless measurements. (a) Shows the output yk of S for all
k ∈ [0, 50]. (b) Shows the output ŷk ofMwith v̂ = 0 for all k ∈ [0, 50]. (c) Shows the nonlinearity of the logistic map φ in (75) and the estimated nonlinearity φ̂ ofM.

Figure 29. Continuous-time Lur’e system with input v, nonlinear feedback func-
tion φ, and output y.

where n = p = 2,m = 1, x(t) = [x1(t) x2(t)]T, y(t) = x1(t),
and γ ∈ R.

Example 9.2: The dynamics of the Lotka-Volterra predator-
prey system where the output is the number of prey can be
written as

ẋ(t) =
[
α 0
0 −γ

]
x(t)+

[−ζ
ξ

]
φ(x(t)), (85)

y(t) = [1 0]x(t), (86)

φ(x(t)) = x1(t)x2(t), (87)

where n = p = 2,m = 1, x(t) = [x1(t) x2(t)]T, y(t) = x2(t),
and α, γ , ζ , ξ ∈ R.

10. Application to continuous-time numerical
examples

In this section, we present examples to illustrate the applica-
tion of MIO-ID to data obtained from numerical simulations
from continuous-time systems. In these examples, since no true
nonlinearity is available, the scaling parameter is chosen to be
β̂ = 1. Furthermore, the phase portrait of the responses of both
the continuous-time system S and the estimated modelM are
displayed, in which an estimate of the output derivative is used,
such that, for all k> 1,

ẏk
�= yk+1 − yk−1

2Ts
, (88)

˙̂yk �= ŷk+1 − ŷk−1
2Ts

, (89)

where Ts denotes the sampling time. Table 3 summarises the
details of the considered continuous-time systems.

Table 3. Examples with continous-time models.

Example System type System order Ts (s) SNR (dB) Remark

10.1 van der Pol 2 0.1 ∞ and 30 CTL system.
10.2 Lotka-Volterra
10.3 Mackey-Glass 1 Time-delay system.
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Example 10.1: van der Pol Oscillator

Let S be the continuous-time van der Pol system, given
by (82)–(84), where, for all t ≥ 0, γ = 1, x1(0) = 0.1, and
x2(0) = 0. To obtain data for identification, for all t> 0, the van
der Pol model is simulated using ode45, and the output is sam-
pled with sampling time Ts = 0.1 s. The integration accuracy
of ode45 is set so that approximately 160 integration steps are
implemented within each sample interval. For identification, we
let n̂ ∈ [1, 20], d̂ ∈ [0, 25], λ̂ ∈ [10, 1000], ν̂n ∈ [1, 15], and ν̂p ∈
[1, 15], with ll = lMIO,l = 500, lu = 3000, and lMIO,u = 20,000
that is, yk for all k ∈ [500, 3000] is used for least-squares optimi-
sation, and yk and ŷk for all k ∈ [500, 20,000] is used to compute
JMIO.

Figure 30 compares the response of the modelM identified
using MIO-ID in the presence of noiseless measurements with
the response of S . Figure 30 also compares the phase portraits

of the continuous-time system S , and the identified model M
using (88) and (89) to approximate the derivative of the out-
put. The estimated DTLI/CPA model parameters are n̂ = 13,
d̂ = 11, ν̂n = 9, ν̂p = 10, v̂ = −70.77 · 10−4, Ĝwith a frequency
response shown in Figure 31, and φ̂ shown in Figure 31.

Next, consider the output of S with sensor noise that yields
an output signal with 30 dB SNR. Figure 32 compares the
response of the modelM identified using MIO-ID in the pres-
ence of noisy measurements with the response of S . Figure 32
also compares the phase portraits of the continuous-time sys-
tem S , with and without sensor noise, and the identified
model M using (88) and (89) to approximate the deriva-
tive of the output. The estimated DTLI/CPA model parame-
ters are n̂ = 47, d̂ = 7, ν̂n = 16, ν̂p = 10, v̂ = −0.4624, Ĝ with
a frequency response shown in Figure 33, and φ̂ shown in
Figure 33.

Figure 30. Example 10.1: MIO-ID of the continuous-time van der Pol oscillator using noiseless measurements. For the sampling time Ts = 0.1 s. (a) Compares the PSD of
the output of S with the PSD of the output ofM. (b) Shows the phase portraits of the response y of the continuous-time van der Pol systemS and the response ŷ of the
identified modelM. The derivatives of the outputs are approximated using (88) and (89) with Ts = 0.1 s. (c) Shows the output yk of S for all k ∈ [0, 500]. (d) Shows the
output ŷk ofMwith v̂ = −70.77 · 10−4 for all k ∈ [0, 500]. (e) Shows the sampled output yk of S for all k ∈ [500, 1000], and the output ŷk ofM for all k ∈ [521, 1021].

Figure 31. Example 10.1: MIO-ID of the continuous-time van der Pol oscillator using noiseless measurements. (a,b) Shows the frequency response of Ĝ. (c) Shows the
estimated nonlinearity φ̂ ofM.
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Figure 32. Example 10.1: MIO-ID of the continuous-time van der Pol oscillator with 30 dB SNR. For the sampling time Ts = 0.1 s. (a) Compares the PSD of the output
of S with the PSD of the output ofM. (b) Shows the phase portraits of the response y of the continuous-time van der Pol system S with sensor noise, response of the
continuous-time van der Pol system S without sensor noise in green, and the response ŷ of the identified modelM. The derivatives of the outputs are approximated
using (88) and (89) with Ts = 0.1 s. (c) Shows the output yk of S for all k ∈ [0, 500]. (d) Shows the output ŷk of M with v̂ = 0.6444 for all k ∈ [0, 500]. (e) Shows the
sampled output yk of S for all k ∈ [500, 1000], and the output ŷk ofM for all k ∈ [490, 990].

Figure 33. Example 10.1: MIO-ID of the continuous-time van der Pol oscillator with 30 dB SNR. (a,b) Shows the frequency response of Ĝ. (c) Shows the estimated
nonlinearity φ̂.

Example 10.2: Lotka-VolterraModel

Let S be the continuous-time Lotka-Volterra model, given
by (85)–(87) where, for all t ≥ 0, α = 2/3, γ = 1, ζ = 4/3,
ξ = 1, and x(0) = y(0) = 1. To obtain data for identification,
for all t> 0, the Lotka-Volterra model is simulated using ode45,
and the output is sampled with sampling time Ts = 0.1 s. The
integration accuracy of ode45 is set so that approximately 160
integration steps are implemented within each sample interval.
For identification, we let n̂ ∈ [1, 30], d̂ ∈ [0, 30], λ̂ ∈ [10, 5000],
ν̂n ∈ [1, 10], and ν̂p ∈ [1, 10], with ll = lM,l = 100 and lu =
lM,u = 10,000, that is, yk for all k ∈ [100, 10,000] is used for
identification. Figure 34 compares the response of themodelM,
identified using MIO-ID, with the response of S . Figure 34 also

compares the phase portraits of the continuous-time system S
and the identified modelM using (88) and (89) to approximate
the derivative of the output. The estimated DTLI/CPA model
parameters are n̂ = 14, d̂ = 16, ν̂n = 7, ν̂p = 7, v̂ = 0.258, Ĝ
with a frequency response shown in Figure 35, and φ̂ shown in
Figure 35.

Next, consider the output of S with sensor noise that yields
an output signal with 30 dB SNR. Figure 36 compares the
response of the modelM identified using MIO-ID in the pres-
ence of noisy measurements with the response of S . Figure 36
also compares the phase portraits of the continuous-time system
S , with and without sensor noise, and the identified model M
using (88) and (89) to approximate the derivative of the output.
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Figure 34. Example 10.2: MIO-ID of the continuous-time Lotka-Volterra model using noiseless measurements. (a) Compares the PSD of the output of S with sampling
time Ts = 0.1 s, with the PSD of the output ofM. (b) Shows the phase portraits of the response y of the continuous-time van der Pol system S and the response ŷ of the
identified modelM. The derivatives of the outputs are approximated using (88) and (89) with Ts = 0.1 s. (c) Shows the output yk of S for all k ∈ [0, 500]. (d) Shows the
output ŷk ofMwith v̂ = 0.258 for all k ∈ [0, 500]. (e) Shows the sampled output yk of S for all k ∈ [2500, 3000], and the output ŷk ofM for all k ∈ [2487, 2987].

Figure 35. Example 10.2: MIO-ID of the continuous-time Lotka-Volterra model using noiseless measurements. (a,b) Shows the frequency response of Ĝ. (c) Shows the
estimated nonlinearity φ̂.

The estimated DTLI/CPA model parameters are n̂ = 48, d̂ =
25, ν̂n = 7, ν̂p = 12, v̂ = −3.3042, Ĝwith a frequency response
shown in Figure 37, and φ̂ shown in Figure 37.

Example 10.3: Mackey-GlassModel

Let S be the continuous-time, time-delayed Mackey-Glass
model, given by the delay differential equation

ẋ(t) = −γ x(t)+ ζx(t − τ)
1+ xξ (t − τ) , (90)

y(t) = x(t), (91)

where γ = 0.1, ζ = 0.2, τ = 6, ξ = 10, and, for all t ≤ 0, x(t) =
0.1. Note that this system cannot be represented by the structure
proposed in Section 9. This example illustrates that MIO-ID is

able to identify systems with continuous-time delay. To obtain
data for identification, for all t> 0, theMackey Glass equation is
simulated using dde23, and the output is sampledwith sampling
time Ts = 0.1 s. The integration accuracy of dde23 is set so that
approximately 160 integration steps are implemented within
each sample interval. For identification, we let n̂ ∈ [1, 50], d̂ ∈
[0, 50], λ̂ ∈ [1, 50,000], ν̂n ∈ [1, 20], and ν̂p ∈ [1, 20], with ll =
lMIO,l = 1000, lu = 3000, and lMIO,u = 20,000, that is, yk for
all k ∈ [1000, 3000] is used for least-squares optimisation, and
yk and ŷk for all k ∈ [1000, 20,000] is used to compute JMIO.
Figure 38 compares the response of the model M identified
using MIO-ID with the response of S . Figure 38 also com-
pares the phase portraits of the continuous-time system S and
the identified model M using (88) and (89) to approximate
the derivative of the output. The estimated DTLI/CPA model
parameters are n̂ = 44, d̂ = 13, ν̂n = 9, ν̂p = 14, v̂ = 25.965, Ĝ
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Figure 36. Example 10.2: MIO-ID of the continuous-time Lotka-Volterra model with 30 dB SNR. (a) Compares the PSD of the output of S with sampling time Ts = 0.1 s,
with the PSD of the output of M. (b) Shows the phase portraits of the response y of the continuous-time van der Pol system S with sensor noise, response of the
continuous-time Lotka-Volterra model S without sensor noise in green, and the response ŷ of the identified modelM. The derivatives of the outputs are approximated
using (88) and (89) with Ts = 0.1 s. (c) Shows the output yk ofS for all k ∈ [0, 500]. (d) Shows the output ŷk ofMwith v̂ = 0.258 for all k ∈ [0, 500]. (e) Shows the sampled
output yk of S for all k ∈ [2500, 3000], and the output ŷk ofM for all k ∈ [2487, 2987].

Figure 37. Example 10.2: MIO-ID of the continuous-time Lotka-Volterra model with 30 dB SNR. (a,b) Shows the frequency response of Ĝ. (c) Shows the estimated
nonlinearity φ̂.

with a frequency response shown in Figure 39, and φ̂ shown in
Figure 39.

Next, consider the output of S with sensor noise that yields
an output signal with 30 dB SNR. Figure 40 compares the
response of the modelM identified using MIO-ID in the pres-
ence of noisy measurements with the response of S . Figure 40
also compares the phase portraits of the continuous-time system
S , with and without sensor noise, and the identified model M
using (88) and (89) to approximate the derivative of the output.
The estimated DTLI/CPA model parameters are n̂ = 50, d̂ =
48, ν̂n = 15, ν̂p = 14, v̂ = 0.1604, Ĝ with a frequency response
shown in Figure 41, and φ̂ shown in Figure 41.

11. Application to experimental data

In this section, we present examples to illustrate the application
of MIO-ID to data obtained via experiments from sensor data
sets and show thatMIO-IDmay be used to identify a wide range
of systems that exhibit oscillatory behaviour. In these examples,
since no true nonlinearity is available, the scaling parameter
is chosen to be β̂ = 1. Furthermore, the phase portrait of the
responses of both the system S and the estimated modelM are
displayed, in which the estimate of the output derivative shown
in (88) and (89) is used. Table 4 summarises the details of the
experimental data sets considered, where fs

�= 1/Ts denotes the
sampling rate in Hz.
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Figure 38. Example 10.3: MIO-ID of the continuous-time Mackey-Glass model using noiseless measurements. (a) Compares the PSD of the output of S with sampling
time Ts = 0.1 s, with the PSD of the output ofM. (b) Shows the phase portraits of the response y of the continuous-time van der Pol system S and the response ŷ of the
identified modelM. The derivatives of the outputs are approximated using (88) and (89) with Ts = 0.1 s. (c) Shows the output yk of S for all k ∈ [0, 1000]. (d) Shows the
output ŷk ofMwith v̂ = 25.965 for all k ∈ [0, 1000]. (e) Shows the sampled output yk ofS for all k ∈ [48,500, 48,700], and he output ŷk ofM for all k ∈ [48,503, 48,703].

Figure 39. Example 10.3: MIO-ID of the continuous-time Mackey-Glass model using noiseless measurements. (a,b) Show the frequency response of Ĝ. (c) Shows the
estimated nonlinearity φ̂.

Example 11.1: Experimental data from flute (A4 note)

In this example, the experimental data obtained from the
recording of an A4 note from a flute used in Petersen (2004)
is used for identification. Let S be the flute and consider
a sampling rate of fs = 22,050 Hz. For identification, we let
n̂ ∈ [1, 150], d̂ ∈ [0, 150], λ̂ ∈ [1, 50,000], ν̂n ∈ [1, 30], and ν̂p ∈
[1, 30], with ll = lMIO,l = 500, lu = 2500, and lMIO,u = 50,000
that is, yk for all k ∈ [500, 2500] is used for least-squares optimi-
sation, and yk and ŷk for all k ∈ [500, 50,000] is used to compute
JMIO. Since the flute was played by a human, the recorded wave-
form shows significant variation as time increases, which is
why a consistent subset of the data during the beginning of
the recording (between 0.3810 s and 0.6122 s) was chosen for
identification. Figure 42 compares the response of the model
identified usingMIO-ID with the measurements obtained from
the flute. Figure 42 also compares the phase portraits of the flute

data (system S) and the identifiedmodelM using (88) and (89)
to approximate the derivative of the output with Ts = 1/fs s.
The estimated DTLI/CPA model parameters are n̂ = 87, d̂ =
29, ν̂n = 25, ν̂p = 24, v̂ = 0.7513, Ĝ with a frequency response
shown in Figure 43, and φ̂ shown in Figure 43.

Example 11.2: Experimental data from gas-turbine
combustor (thermoacoustic oscillations)

In this example, experimental data obtained from a recording
of the sound generated by thermoacoustic oscillations during
the operation of a gas-turbine combustor is used for iden-
tification. Let S be the Dual Independent Swirl Combustor
Facility (DISCo), featured in Ramesh et al. (2021). This model
combustor was designed to exhibit thermoacoustic instabilities,
which are typically generated by the coupling of the unsteady
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Figure 40. Example 10.3: MIO-ID of the continuous-time Mackey-Glass model with 30 dB SNR. (a) Compares the PSD of the output of S with sampling time Ts = 0.1 s,
with the PSD of the output ofM. (b) Shows the phase portraits of the response y of the continuous-time van der Pol system S , response of the continuous-time van
der Pol system S without sensor noise in green, and the response ŷ of the identified modelM. The derivatives of the outputs are approximated using (88) and (89) with
Ts = 0.1 s. (c) Shows the output yk ofS for all k ∈ [0, 1000]. (d) Shows the output ŷk ofMwith v̂ = 25.965 for all k ∈ [0, 1000]. (e) Shows the sampled output yk ofS for
all k ∈ [48,500, 48,700], and he output ŷk ofM for all k ∈ [48,503, 48,703].

Figure 41. Example 10.3: MIO-ID of the continuous-time Mackey-Glass model with 30 dB SNR. (a,b) Shows the frequency response of Ĝ. (c) Shows the estimated
nonlinearity φ̂.

Table 4. Examples with experimental data.

Example System type fs (Hz)

11.1 Flute A4 Note 22,050
11.2 Gas-Turbine Combustor 15,000

combustion process with the acoustic properties of the combus-
tion chamber and air/fuel plenums. The commissioned DISCo
facility is shown in Figure 44. The combustor allows for the
independent manipulation of the mass flow rate through each
of a total of five flowpaths: fuel (ṁf ), primary air outer swirler
(ṁso), primary air inner swirler (ṁsi), secondary air outer axial
swirler (ṁao) and secondary air inner axial swirler (ṁai) lines.
The data used for identification was obtained from a micro-
phone (Kulite typeMIC-190L) placed in the combustion cham-
ber, as is shown in Figure 44, with a sensitivity of 9 Pa/mV,

computed after the signal is amplified. The pressure measure-
ments from this sensor were acquired at a sampling rate of
fs = 15,000Hz.

Consider a run of the DISCo system where the mass flow
rates of the flowpaths are kept constant, such that ṁf ≡ 0.52 g/s,
ṁso ≡ 3.84 g/s, ṁsi ≡ 6.16 g/s, ṁao ≡ 0 g/s, and ṁai ≡ 0 g/s.
The microphone measurements show that, after some time, the
pressure fluctuations display oscillatory behaviour, as is shown
in Figure 45.

For identification, we let n̂ ∈ [1, 75], d̂ ∈ [0, 75], λ̂ ∈
[1, 20,000], ν̂n ∈ [1, 30], and ν̂p ∈ [1, 30], with ll = 2505, lu =
2685, lMIO,l = 1000, and lMIO,u = 60,000 that is, yk for all k ∈
[2505, 2685] is used for least-squares optimisation, and yk and
ŷk for all k ∈ [1000, 60,000] is used to compute JMIO. This
arrangement was chosen due to the irregularity of the oscilla-
tory behaviour displayed by the data. A representative wave-
form from the available data is chosen to minimise J, and this
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Figure 42. Example 11.1: MIO-ID using the data from a recording of a flute (A4 note). (a) Compares the PSD of the sampled output of S with the PSD of the output
ofM. (b) Shows the estimated phase portraits of the response y of S and the response ŷ of the identified modelM. The derivatives of the outputs of S andM are
approximated by using (88) and (89) with Ts = 1/fs s and fs = 22,050 Hz. (c) Shows the output yk ofS for all k ∈ [0, 1000]. (d) Shows the output ŷk ofMwith v̂ = 0.7513
for all k ∈ [0, 1000]. (e) Shows the output yk of S for all k ∈ [2500, 2700], and the output ŷk ofM for all k ∈ [2480, 2780].

Figure 43. Example 11.1: MIO-ID using the data from a recording of a flute (A4 note). (a,b) Shows the frequency response of Ĝ. (c) Shows the estimated nonlinearity φ̂.

Figure 44. Example 11.2: DISCo facility. (a) Commissioned DISCo facility in atmospheric condition. (b) Placement of microphone in the combustion chamber used for
pressure data recording.
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Figure 45. Example 11.2: Original signal from DISCo combustor

waveform is used to determine the accuracy of the identified
model.

Figure 46 compares the response of the model identified
using MIO-ID with the measurements obtained from the com-
bustor. Furthermore, Figure 46 compares the phase portraits
of the combustor data (system S) and the identified model M

using (88) and (89) to approximate the derivative of the output
with Ts = 1/fs s. The estimated DTLI/CPA model parameters
are n̂ = 59, d̂ = 26, ν̂n = 9, ν̂p = 8, v̂ = 0.7765, the frequency
response of Ĝ is shown in Figure 47, and φ̂ is shown in Figure 47.

12. Conclusions

This paper presented a framework for identifying SES’s based
on a DTL model. The nonlinear feedback function was chosen
to be CPA parameterised by its slope in each interval of a par-
tition of the real line. A mixed-integer optimisation approach
was used for parameter estimation within the DTLI model as
an extension of the technique presented in Paredes and Bern-
stein (2021). This approach allows optimisation of the model
parameters that were previously chosen manually, thus improv-
ing the identification accuracy and reducing the effort required
by the user. Numerical examples included both discrete-time
and continuous-time systems with noiseless and noisy sampled
data.

Figure 46. Example 11.2: MIO-ID using the data from a recording of sound generated by thermoacoustic oscillations during the operation of a gas-turbine combustor.
(a) Compares the PSD of the sampled output ofS with the PSD of the output ofM. (b) Shows the estimated phase portraits of the response y ofS and the response ŷ of
the identifiedmodelM. The derivatives of the outputs ofS andM are approximated using (88) and (89) with Ts = 1/fs s and fs = 15,000 Hz. (c) Shows the output yk of
S for all k ∈ [0, 1000]. (d) Shows the output ŷk ofM with v̂ = 0.7765 for all k ∈ [0, 1000]. (e) Shows the output yk of S for all k ∈ [1600, 1900], and the output ŷk ofM
for all k ∈ [1611, 1911].

Figure 47. Example 11.2: MIO-ID using the data from a recording of sound generated by thermoacoustic oscillations during the operation of a gas-turbine combustor.
(a,b) Shows the frequency response of linear dynamics Ĝ ofM. (c) Shows the estimated nonlinearity φ̂ ofM.
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Finally, the MIO-ID was applied to a data set obtained from
a gas-turbine combustor, which resulted in a DTLI model that
closely reproduced the oscillatory behaviour displayed by the
combustor. Although the combustor does not have the structure
of a DTL model, the system identification technique was able
to approximately reproduce the phase-plane dynamics of these
systems. Future research will focus on adapting this approach to
the case where the nonlinearity is a hysteresis.
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