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Abstract— This paper presents an adaptive autopilot for
fixed-wing aircraft and compares its performance with a fixed-
gain autopilot. The adaptive autopilot is constructed by aug-
menting the autopilot architecture with adaptive control laws
that are updated using retrospective cost adaptive control. In
order to investigate the performance of the adaptive autopilot,
the default gains of the fixed-gain autopilot are scaled to
degrade its performance. This scenario provides a venue for
determining the ability of the adaptive autopilot to compensate
for the degraded fixed-gain autopilot. Next, the performance
of the adaptive autopilot is examined under failure conditions
by simulating a scenario where one of the control surfaces
is assumed to be stuck at an unknown angle. The adaptive
autopilot is also tested in physical flight experiments under
degraded-nominal conditions, and the resulting performance
improvement is examined.

I. INTRODUCTION

Autonomous flight control of an aircraft under rapidly
changing conditions requires an autopilot that can control the
aircraft in uncertain environments and without detailed mod-
els. An autopilot for a fixed-wing aircraft typically consists
of a set of trim commands along with low-level controllers
to follow intermediate commands. The trim conditions for
an aircraft can be computed by solving nonlinear algebraic
equations for trim equilibria [1], but a detailed model of
the aircraft aerodynamics is required. Moreover, for low-
cost aircraft that are usually repaired or modified onsite, the
true aerodynamic properties may be different from nominal
aerodynamics. Consequently, a fixed-gain autopilot may not
be able to maintain performance in a rapidly changing envi-
ronment or under failure conditions such as damaged wings
or faulty actuators. In this scenario, an adaptive autopilot may
be able to compensate for the lost performance by updating
the autopilot gains accordingly. With these motivations in
mind, this paper explores the use of an in situ learning
technique to modify the autopilot during the flight.

Various adaptive control techniques have been investigated
for fixed-wing aircraft control [2]. A sliding mode fault-
tolerant tracking control scheme was used for control of
a fixed-wing UAV under actuator saturation and state con-
straints in [3], [4]. A backstepping algorithm was used in
[5] to design a nonlinear flight controller for a fixed-wing
UAV with thrust vectoring. An MRAC-based technique was
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used to augment the control system to improve the dynamic
performance of a fixed-wing aircraft in [6]. However, these
techniques rely on the availability of a sufficiently detailed
model for the control system synthesis.

In contrast, the present paper uses the retrospective cost
adaptive control (RCAC) algorithm to learn the autopilot
gains from the measured data in situ. RCAC is a digital
adaptive control technique that is applicable to stabilization,
command following, and disturbance rejection. Instead of
relying on a model of the system, RCAC uses the past mea-
sured data and past applied input to recursively optimize the
controller gains. RCAC is described in [7], and its extension
to digital PID control is given in [8]. The application of
RCAC for a multicopter autopilot are described in [9], [10].

The contribution of this paper is the development of an
adaptive autopilot for fixed-wing aircraft, and a comparison
of its performance with a well-tuned fixed-gain autopi-
lot under nominal conditions, performance recovery of a
degraded-nominal autopilot, and performance improvement
under actuator failure. In particular, this paper presents the
potential advantages of an adaptive autopilot by investigating
two scenarios. In the first scenario, a well-tuned fixed-gain
controller is degraded by scaling all of the gains by a
small factor, and it is shown that the adaptive autopilot
is able to compensate for the degraded gains by learning
the necessary gains. This scenario is investigated both in
simulation and in physical flight experiments. In the second
scenario, the aircraft is simulated with a faulty aileron, thus
emulating an actuator failure condition, and it is shown, in
simulation experiments, that the adaptive autopilot improves
the trajectory-tracking performance.

The paper is organized as follows: Section II defines the
notation used in this paper, Section III reviews the autopilot
architecture implemented in the PX4 flight stack, Section IV
presents the adaptive augmentation of autopilot, Section V
presents the simulation flight tests, and Section V presents
the outdoor flight tests. Finally, Section VII concludes the
paper with a summary and future research directions.

II. NOTATION

Let FE denote an Earth-fixed frame such that k̂E is
aligned with the acceleration due to gravity

⇀
g . Let FAC

denote an aircraft-fixed frame such that ı̂AC is aligned with
the fuselage, ȷ̂AC is along the wing, and k̂AC is chosen
to complete the right-handed frame. Note that k̂AC points
vertically down. Next, let c denote the center of mass of
the aircraft, and let w be an point fixed on Earth. The
coordinates of the aircraft relative to w in the Earth frame are
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denoted by r
△
=

⇀
r c/w

∣∣
E
∈ R3. The velocity of the aircraft

relative to w in the Earth frame is v
△
=

⇀
v c/w/E

∣∣
E

∈ R3.
Let Ψ, Θ, and Φ denote the 3-2-1 azimuthal, elevation,
and bank Euler angles of the aircraft. The angular velocity
of FAC relative to FE in the aircraft-fixed frame is given
by ω

△
=

⇀
ωAC/E

∣∣
AC

∈ R3. The angular acceleration of
FAC relative to FE in the aircraft-fixed frame is given by
α

△
=

⇀
αAC/E

∣∣
AC

∈ R3. The measurement of the variable x is
denoted by xm, and the setpoint for the variable x is denoted
by xs. Finally, let e3

△
=

[
0 0 1

]T
.

The angles Ψ, Θ, and Φ comprise a 3-2-1 sequence of
Euler angles that parameterize the orientation of FAC relative
to FE. The components of ω are the yaw rate, pitch rate, and
roll rate, which are different from the azimuth rate, elevation
rate, and bank rate. Hence, integrating the components of
ω does not yield the azimuthal, elevation, and bank Euler
angles. In fact, the relation between the Euler-angle rates
and the components of ω is given by (4) in the following
section.

III. FLIGHT CONTROL ARCHITECTURE

In this work, we consider the flight control architecture
implemented in the PX4 flight stack. The control system
consists of a mission planner and two cascaded controllers
in nested loops as shown in Figure 1. The mission planner
generates position setpoints based on user-defined waypoints.

Mission
Planner

Position
Controller

Attitude
Controller

Fixed-Wing
Aircraft

rs, VT,s

Φs,
Θs

Ts

αs

rm, VT, VG

Φm,Θm, VT, VI, ωm

VG

Fig. 1. Autopilot architecture.

The outer loop, also called the position controller, consists
of two decoupled controllers for the longitudinal and lateral
motion of the aircraft, as shown in Figure 2. The longitudinal
controller is based on the total energy control system (TECS)
described in [11]–[14], and the lateral controller is based on
the guidance law described in [15]. The inputs to the position
controller are the true airspeed setpoint VT,s, the position
setpoint rs, the true airspeed VT, the position measurement
rm, and the ground velocity VG. The TECS input includes
the altitude setpoint hs

△
= eT3 rs and the altitude measurement

hm
△
= eT3 rm. The longitudinal controller generates the thrust

and the elevation setpoint, and the lateral controller generates
the bank setpoint. The output of the position controller is thus
the thrust setpoint Ts and the attitude setpoint Θs,Φs.

The inner loop, also called the attitude controller, consists
of two cascaded controllers, as shown in Figure 3. The
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Fig. 2. Position controller architecture.

first controller uses the elevation and bank errors and a
proportional control law to generate the elevation-rate and
bank-rate setpoints. In particular, the elevation-rate setpoint
Θ̇s and the bank-rate setpoint Φ̇s are given by

Θ̇s = kθ(Θs −Θm), (1)

Φ̇s = kϕ(Φs − Φm), (2)

where kθ, kϕ are the scalar gains. The azimuthal-rate is
algebraically given by

Ψ̇s =
g tanΦs cosΘs

VT
(3)

to ensure coordinated turn. Finally, the body-fixed angular-
velocity setpoint ωs is given by

ωs = S(Θm,Φm)

Φ̇s

Θ̇s

Ψ̇s

 , (4)

where

S(Θm,Φm)
△
=

1 0 sinΘm

0 cosΦm sinΦm cosΘm

0 − sinΦm cosΦm cosΘm

 . (5)

Next, a feedforward and a PI control law generates the
angular-acceleration setpoint αs. In particular, αs is given
by

αs =
VT,0

VT
Gω,ffωs +

(
VI,0

VI

)2

Gω,PI(q) (ωs − ωm) , (6)

where Gω,ff = kω,ff is a proportional control law,

Gω,PI(q) = kω,P +
kω,I

q − 1
is a PI control law, VI is the

indicated airspeed, and VT,0 and VI,0 are the true airspeed
and the indicated airspeed at trim conditions respectively,
which are aircraft parameters. Note that q is the forward-shift
operator, kω,ff , kω,P, and kω,I are 3 × 3 diagonal matrices,
and are thus parameterized by 9 scalar gains. Finally, using
the angular-acceleration setpoint, the actuator deflections are
computed using control allocation methods.

The fixed-wing autopilot thus consists of 11 gains. In
practice, these 11 gains are tuned manually, which requires
considerable expertise. We assume that the default gains
implemented in PX4 are well tuned, and thus we refer to the
autopilot with the default PX4 gains as the nominal autopilot.

To investigate potential improvements and demonstrate the
ability of the adaptive autopilot to recover performance, the
gains in the nominal autopilot are multiplied by a scalar αd
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Fig. 3. Attitude controller architecture.

in order to degrade its performance. A fixed-gain autopilot
with the degradation factor αd ̸= 1 is referred to as the
degraded-nominal autopilot. Note that αd ̸= 1 is equivalent
to the case of a poor choice of controller gains in the fixed-
gain autopilot.

IV. ADAPTIVE AUTOPILOT

This section describes the adaptive autopilot, which is con-
structed by augmenting the nominal autopilot. The nominal
autopilot is the autopilot described in Section III with fixed
gains. In the adaptive autopilot, the fixed-gain control laws
of the nominal autopilot are augmented with adaptive control
laws, whose coefficients are updated by the retrospective cost
adaptive control (RCAC) algorithm described in [7], [8].
RCAC is used to augment the fixed-gain controllers of a
multicopter autopilot in [9], [10]. The output of a modified
controller in the adaptive autopilot is thus given by the sum
of the fixed-gain and the adaptive control law, as shown in
Figure 4.
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+ + +

Adaptive
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−
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Fig. 4. Adaptive augmentation in the attitude controller.

The bank and elevation rate setpoints Φ̇s, Θ̇s in the adap-
tive autopilot are given by

Θ̇s = kθ(Θs −Θm) + uΘ, (7)

Φ̇s = kϕ(Φs − Φm) + uΦ, (8)

where the scalar adaptive control signals uΘ and uΦ are
computed by RCAC. Similarly, the angular acceleration
setpoint in the adaptive autopilot is given by

αs =
VT,0

VT
Gω,ffωs

+

(
VI,0

VI

)2

Gω,PI(q) (ωs − ωm) + uω,PI, (9)

where uω,PI is computed by RCAC. Note that uω,PI ∈ R3,
and each component of uω,PI is updated by RCAC, where
the error variable is the corresponding error term.

V. SIMULATION RESULTS

In this section, we investigate the performance of the
adaptive autopilot and compare it to the performance of
the nominal autopilot, implemented in PX4, in the Gazebo
simulation environment. The aircraft dynamics simulated in
Gazebo are based on the standard catapult-launched plane
model1 and are integrated in the PX4 version V1.13.0dev2.
We also consider the case of a faulty actuator. To simulate a
fault scenario, we assume that one of the ailerons is frozen
at an unknown angle.

Numerical simulations show that the aircraft performance
is robust to TECS and the lateral controller gains. Therefore,
in this work, we focus on augmenting only the attitude
controller with the adaptive control law, and thus αd degrades
only the attitude controller in the nominal autopilot. The
hyperparameters P0, Ru, and σ used in RCAC are shown
in Table I. Furthermore, we set Rz = 1 in all adaptive
controllers and all tests. Note that once the RCAC hyper-
parameters are tuned, they are fixed and thus they are not
changed as αd is varied across the simulation tests.

TABLE I
RCAC HYPERPARAMETERS FOR ALL SIMULATIONS.

Controller P0 Ru σ

(7), θΘ 1 0.001 −0.1

(8), θΦ 1 0.001 −0.1

The mission waypoints are shown in Figure 5. The aircraft
is assumed to be launched by a catapult from the launch
point, and is commanded to fly toward the point T while
climbing to an altitude of 20 m. The aircraft is then com-
manded to fly around point 2 in a steady-state circular flight
with a radius of 30 m for one minute. Finally, the aircraft is
commanded to land along the green strip.

Fig. 5. Waypoints used to construct the flight trajectory in simulation
experiments.

In order to quantify and compare the performance of
the autopilot, bank, elevation, and trajectory-tracking error
metrics are defined as

JΦ
△
=

√√√√ 1

N

N∑
i=1

(Φs,i − Φm,i)2, (10)

1https://docs.px4.io/main/en/simulation/gazebo vehicles.html
2https://github.com/JAParedes/PX4-Autopilot/tree/RCAC FW UM
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JΘ
△
=

√√√√ 1

N

N∑
i=1

(Θs,i −Θm,i)2, (11)

Jtraj
△
=

√√√√ 1

N

N∑
i=1

e2x−track,i, (12)

where N is the number of measurements during the flight,
ex−track is the cross-track error, which is defined as the
minimum distance between the current position and desired
trajectory. These error metrics are computed offline.

Figures 6, 7 and 8 show the simulation results. As shown
in Figure 8, the adaptive autopilot improves the performance
over the nominal performance. For αd = 0.5, the trajectory
following response degrades substantially with the degraded-
nominal autopilot. In this case, the adaptive autopilot re-
covers the baseline performance. In fact, as the nominal
controller is degraded, RCAC compensates by providing
larger values of the corresponding gains. Finally, the adaptive
autopilot is also able to learn the gains from a cold start, that
is, the case where αd = 0, which switches off the nominal
autopilot completely.

Fig. 6. Flight simulation. Ground trace of the aircraft with the nominal,
degraded-nominal, and the adaptive autopilot for several values of the
degradation factor αd.

Next, we investigate the performance of the adaptive
autopilot in the case of faulty actuators. In particular, we
consider the case where an aileron is stuck at an unknown
angle as shown in Figure 9. With the aileron stuck at an
unknown position, we command the aircraft to follow the
mission waypoints shown in Figure 5. This test is performed
with both the nominal and adaptive controller. In both
cases, note that αd = 1. Figures 10, 11 and 12 show

Fig. 7. Flight simulation. Adaptive bank and elevation controller gains
optimized by RCAC in the adaptive autopilot for several values of the
degradation factor αd. In each case, the fixed gains are degraded by αd

and RCAC updates the adaptive control laws. The fixed gains are shown
in dashes, and the adaptive gains are shown in solid for both the bank and
elevator controller.

Fig. 8. Flight simulation. Bank, elevation, and trajectory-tracking
error metrics obtained with the nominal, degraded-nominal, and adaptive
autopilots for several values of αd. Note that all metrics are normalized
by the corresponding error metric obtained with the nominal fixed-gain
autopilot.

the simulation results. As shown in Figure 12, the adaptive
autopilot improves the trajectory-tracking error in the case of
the faulty actuator and recovers the benchmark performance.

Fig. 9. Faulty actuator. The left aileron is stuck at an unknown angle.

VI. FLIGHT TEST RESULTS

This section presents the experimental flight results ob-
tained with the adaptive autopilot. In this work, the flight
tests are conducted with a Volantex Ranger 1600 fixed-wing
aircraft, shown in Figure 13, at the Scio Flyers RC model
aircraft club located at (42.298N, 83.843W). To demonstrate
the performance improvements due to the adaptive autopilot,
the performance of the nominal autopilot is degraded by
scaling its fixed gains by the degradation factor αd. In this
work, we focus only on the attitude controller, thus the gains
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Fig. 10. Faulty actuator. Ground trace of the aircraft with a faulty
actuator. The plots on the left and right are obtained with the nominal and
adaptive autopilot, respectively. Note that, in both autopilots, αd = 1.

Fig. 11. Faulty actuator. Adaptive bank and elevation controller gains
optimized by RCAC in the adaptive autopilot for the faulty actuator case.
The fixed gains are shown in dashes, and the adaptive gains are shown in
solid for both the bank and elevator controller.

Fig. 12. Faulty actuator. Bank, elevation, and trajectory-tracking error
metrics in the case of a faulty actuator with the nominal and adaptive
autopilots. Note that the error metrics are normalized by the corresponding
error metric obtained with the nominal autopilot and healthy actuator.

of only the attitunde controller in the nominal autopilot are
scaled. The hyperparameters P0, Ru, and σ used in RCAC
are shown in Table II. Furthermore, we set Rz = 1 in all
adaptive controllers and all tests. Note that once the RCAC
hyperparameters are tuned, they are not changed as αd is
varied across the flight tests.

TABLE II
RCAC HYPERPARAMETERS FOR PHYSICAL FLIGHT EXPERIMENTS.

Controller P0 Ru σ

(7), θΘ 0.1 0.001 0.1

(8), θΦ 0.1 0.001 −0.1

The mission waypoints are shown in Figure 14. The
aircraft is launched by hand from the launch point and is
commanded to fly towards point T while climbing to an
altitude of 20 m. The aircraft is then commanded to fly
around point 2 in a steady-state circular flight with a radius
of 20 m for around 1 to 2 minutes. Finally, the aircraft is
commanded to land along the green strip. During the takeoff
and landing phases, the autopilot is in stabilized mode, in

which the bank and elevation commands are issued by a
pilot. During the rest of the flight, the autopilot is in mission
mode, in which the bank and elevation commands are issued
by the outer loop of the autopilot.

Fig. 13. Volantex Ranger 1600 fixed-wing RC aircraft used in flight
experiments.

Fig. 14. Waypoints used to construct the flight trajectory in physical flight
experiments.

Figures 15, 16 and 17 show the experimental flight test
results. As shown in Figure 17, the augmented adaptive
autopilot improves the performance over the nominal per-
formance. For αd = 0.5, the trajectory following response
degrades substantially with the degraded-nominal autopilot,
and in this case, the adaptive autopilot recovers the baseline
performance. In fact, as the fixed-gain controller is degraded,
RCAC compensates by providing larger values of the corre-
sponding gains. Finally, the adaptive autopilot is also able
to learn the gains from a cold start, that is, the case where
αd = 0, which switches off the nominal autopilot completely.

VII. CONCLUSIONS

This paper presented an adaptive autopilot that can im-
prove an initial poor choice of controller gains in a fixed-
gain autopilot, and learn the autopilot gains without any
prior knowledge of the dynamics. The adaptive autopilot is
constructed by augmenting the fixed-gain controllers in an
autopilot with adaptive controllers. The adaptive autopilot
was used to fly a fixed-wing aircraft model in the Gazebo
simulator. The adaptive autopilot recovered the performance
in the case where the fixed-gain autopilot was degraded and
learned a set of gains in the case where the fixed-gain autopi-
lot was completely switched off. Furthermore, the adaptive
autopilot improved the trajectory-tracking performance in the
case where the aileron was stuck at an unknown angle in
simulation. The adaptive autopilot was also used to fly fixed-
wing aircraft in flight experiments conducted outdoors. Like
the simulation results, the adaptive autopilot improved the
flight performance in physical flight experiments.
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Fig. 15. Physical flight experiments. Ground trace of the aircraft with the
nominal and adaptive autopilot for several values of the degradation factor
αd.

Fig. 16. Physical flight experiments. Adaptive bank and elevation
controller gains optimized by RCAC in the adaptive autopilot for several
values of the degradation factor αd. The nominal gains are shown in dashes,
and the adaptive gains are shown in solid for both the bank and elevator
controller. Note that the autopilot is in mission mode and stabilized mode
in the blue and orange regions, respectively.
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