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Abstract— We present two extensions of recursive least
squares (RLS) with exponential forgetting (EF), namely, expo-
nential resetting (ER) RLS and cyclic resetting (CR) RLS. Both
methods guarantee that the covariance matrix is bounded above
and below in the absence of persistent excitation. Under zero
excitation, ER-RLS guarantees convergence of the covariance
matrix Pk to a user-designed positive-definite matrix P∞. How-
ever, ER-RLS is more computationally complex than EF-RLS.
In contrast, CR-RLS has the same computational complexity
as EF-RLS while guaranteeing that, under zero excitation,
the difference between the covariance matrix Pk and P∞ is
asymptotically bounded. A numerical example shows that ER-
RLS and CR-RLS both perform nearly identically to EF-RLS
under persistent excitation while protecting against covariance
windup when persistent excitation is lost.

I. INTRODUCTION

Recursive least squares (RLS) is a widely used algorithm
for online parameter estimation, which recursively updates
the minimzier of the least squares regression with Tikhonov
regularization problem, also known as Ridge regression [1].
We denote θk ∈ Rn to be the n estimated parameters at
step k, and yk ∈ Rp the p measurements at step k, for an
accumulated kp measurements by step k. Typically, n ≫ p
[2], in which case the complexity of RLS is O(pn2) per step.
In the unusual case p ≥ n, the complexity of RLS is still
O(pn2) per step.

In RLS, the covariance matrix of θk is a positive-definite
matrix denoted Pk ∈ Rn×n. A serious drawback of RLS
is the fact that the eigenvalues of Pk decrease over each
step and may become arbitrarily small, resulting in a loss
of adaptation alertness after a large amount of data has
been collected [3], [4]. A common technique for speeding
up adaptation is to introduce a forgetting factor λ ∈ (0, 1),
which exponentially discounts old information [5], [6, sec-
tion 2.2.3], often referred to as exponential forgetting (EF)
RLS [7, p. 53]. EF-RLS maintains O(pn2) complexity per
step.

While this addresses the issue of sluggish adaptation, a
critical issue that arises is, without persistent excitation,
at least one of the eigenvalues of Pk becomes arbitrarily
large [8], a phenomenon known as covariance blow up [9],
covariance windup, or estimator windup [7, p. 473]. Hence,
it has been long accepted that one of the most important
properties of RLS variations is a guaranteed upper and lower
bound for Pk in the absence of persistent excitation [10]. In
fact, [11] shows these bounds ensure the estimation error is
bounded, normalized prediction errors are square summable,
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and incremental changes in parameter estimates converge to
zero.

Another proposed property for RLS variations is resetting,
where, under zero excitation, the covariance matrix Pk

converges (resets) to a desired positive-definite matrix P∞ ∈
Rn×n. Resetting and guaranteed covariance bounds are
achieved in [10] through an algorithm inspired by analysis
in continuous time. However, P∞ cannot be selected directly
and is difficult to tune. Furthermore, the time complexity
per step is O(n3) when n ≫ p since the square of the
covariance matrix must be computed. Another algorithm with
the resetting property is covariance resetting [12], where
the covariance matrix is reinitialized to a desired value
when it becomes too small or at preset times. While this
adds little computational cost and is easily implemented, its
performance is unclear [4].

A recent method [13] achieves bounded covariance, reset-
ting, and direct selection of P∞. However, their method is
limited to the case p = 1 and P∞ = 1−λ

δ In, where δ > 0 is
a design parameter. We generalize [13] to p > 1 and arbi-
trary positive-definite P∞, an algorithm we call exponential
resetting RLS (ER-RLS). Interestingly, the covariance update
in ER-RLS matches the back-to-prior forgetting developed
from a Bayesian perspective in [14]. A drawback of ER-RLS
is O(n3) complexity per step when n≫ p.

This paper proposes a novel algorithm called cyclic re-
setting RLS (CR-RLS), which has guaranteed covariance
bounds, runs in O(pn2) time per step for any p ≥ 1, has
similar resetting properties as exponential resetting RLS, and
allows for direct selection of P∞. The tradeoff for O(pn2)
complexity is, under zero excitation, only the subsequence
of the covariance matrix every n steps converges to P∞.
The sequence of the covariance matrix at every step may
oscillate under zero excitation, but remains bounded close to
P∞. CR-RLS should only be used in place of ER-RLS when
n≫ p.

Notation: For A ∈ Rn×n, λi(A) denotes the ith largest
eigenvalue of A, λmax(A) ≜ λ1(A), and λmin(A) ≜
λn(A). For P,Q ∈ Rn×n, let P ⪯ Q denote that Q − P
is positive semidefinite.

II. EXPONENTIAL FORGETTING (EF) RLS

The exponential forgetting recursive least squares (EF-
RLS) algorithm is given by Proposition 1. With λ = 1,
Proposition 1 gives RLS without forgetting.

Proposition 1. For all k ≥ 0, let ϕk ∈ Rp×n and yk ∈ Rp.
Let θ0 ∈ Rn, R0 ∈ Rn×n be positive definite, and λ ∈ (0, 1).
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For all k ≥ 0, denote the minimizer of the function

Jk(θ̂)=

k∑
i=0

λk−i(yi−ϕiθ̂)
T(yi−ϕiθ̂)+λ

k+1(θ̂−θ0)TR0(θ̂−θ0)

(1)
by θk+1 ≜ argminθ̂∈Rn Jk(θ̂). Then, for all k ≥ 0,

Rk+1 = λRk + ϕT
k ϕk, (2)

θk+1 = θk + Pk+1ϕ
T
k (yk − ϕkθk), (3)

where, for all k ≥ 0, Pk ∈ Rn×n and Rk ∈ Rn×n are
positive definite and Rk ≜ P−1

k .

Proof. See [2].

We call Pk ∈ Rn×n the covariance matrix and Rk =
P−1
k ∈ Rn×n the information matrix. Note that when n≫ p,

it is computationally beneficial to use the matrix inversion
lemma (Lemma A.1) to rewrite (2) as

Pk+1 =
1

λ
Pk −

1

λ
Pkϕ

T
k (λIp + ϕkPkϕ

T
k )

−1ϕkPk. (4)

A. Summary and Computational Cost

Algorithm 1 Exponential Forgetting RLS (EF-RLS)

Initialize: λ ∈ (0, 1), θ0 ∈ Rn, positive-definite P0 ∈ Rn×n

for all k ≥ 0 do
if n≫ p then

Lk ← Pkϕ
T
k ▷ O(pn2)

Pk+1 ← 1
λPk − 1

λLk(λIp + ϕkLk)
−1LT

k ▷
O(pn2)

θk+1 ← θk + Pk+1ϕ
T
k (yk − ϕkθk) ▷ O(pn2)

else
Rk+1 ← λRk + ϕT

k ϕk ▷ O(pn2)
θk+1 ← θk +R−1

k+1ϕ
T
k (yk − ϕkθk) ▷ O(n3)

EF-RLS is summarized by Algorithm 1. We introduce
Lk ∈ Rn×p to optimize computational efficiency when
n ≫ p. The complexity of EF-RLS is O(pn2) in both
variations presented (n≫ p and p ≥ n).

B. Information Matrix Bounds

Proposition 2 shows that, under persistent excitation, Rk

in EF-RLS is lower bounded. Proposition 3 show that if, for
all k ≥ 0, the matrix ϕT

k ϕk is upper bounded, then Rk in
EF-RLS is upper bounded.

Definition 1. A sequence (ϕk)
∞
k=0 ⊂ Rp×n is persistently

exciting (PE) if there exist N ≥ 1 and α > 0 such that, for
all k ≥ 0, αIn ⪯

∑k+N
i=k ϕT

i ϕi. α and N are, respectively,
the “lower bound” and “persistency window” of (ϕk)

∞
k=0.

Proposition 2. (EF-RLS) If (ϕk)
∞
k=0 is PE with lower bound

α and persistency window N , then, for all k ≥ N + 1,

Rk ⪰
λN (1− λ)

1− λN+1
αIn. (5)

Proof. See Proposition 4 in [15].

Proposition 3. (EF-RLS) If there exists β ≥ 0 such that, for
all k ≥ 0, ϕT

k ϕk ⪯ βI , then, for all k ≥ 0,

Rk ⪯ λkR0 +
1− λk

1− λ
βIn. (6)

Proof. See Proposition 1 in [13].

C. A new interpretation to forgetting

A well-known property of EF-RLS is covariance windup,
where, without persistent excitation, the eigenvalues of the
covariance matrix become unbounded [8]. In particular, with
no excitation, the information matrix approaches 0n×n. This
is shown in Proposition 4.

Proposition 4. (EF-RLS) If there exists an integer N such
that, for all k ≥ N , ϕk = 0, then

lim
k→∞

Rk = 0n×n. (7)

Proof. Note that by repeated substitution of (2), it follows
that, for all k ≥ 0, Rk+N = λkRN . Hence, (7) follows.

To provide insight into why covariance windup occurs,
note that, for all k ≥ 0, (2) can be written as

Rk+1 = Rk − (1− λ)(Rk − 0n×n) + ϕT
k ϕk. (8)

Notice that, for all k ≥ 0, (1 − λ)(Rk − 0n×n) is positive
definite and ϕT

k ϕk is positive semidefinite. Hence, at each
step k ≥ 0, we see a decrease in the information matrix, Rk,
proportional to (Rk − 0n×n) and an increase of ϕT

k ϕk.

III. EXPONENTIAL RESETTING (ER) RLS
Motivated by (8), we keep the θk update (3) but consider

a new information matrix update where, for all k ≥ 0,

Rk+1 = Rk − (1− λ)(Rk −R∞) + ϕT
k ϕk, (9)

where R∞ ∈ Rn×n is positive definite. Note that (9) can be
rewritten as

Rk+1 = λRk + (1− λ)R∞ + ϕT
k ϕk (10)

We call this algorithm exponential resetting recursive least
squares (ER-RLS). Note that [13] is equivalent to ER-RLS
with p = 1 and R∞ = δ

1−λIn, where δ ≥ 0 is a design
parameter. As shown by Proposition 5, ER-RLS retains the
important property that, for all k ≥ 0, Rk is positive definite.

Proposition 5. (ER-RLS) If R0 is positive definite, then, for
all k ≥ 0, Rk is positive definite.

Proof. Proof by induction: R0 is positive definite by assump-
tion. Next, note that if Rk is positive definite, it follows that
λRk is positive definite. Moreover, (1 − λ)R∞ is positive
definite and ϕT

k ϕk is positive semidefinite. Hence, by (10),
Rk+1 is positive definite.

A. Summary and Computational Cost

ER-RLS is summarized by Algorithm 2. Note that since
the terms λRk and (1−λ)R∞ in (9) are both rank n, using
the matrix inversion lemma would not improve the compu-
tational cost to compute R−1

k+1. Hence, the computational
complexity of ER-RLS is O(max{n3, pn2}) per step.
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Algorithm 2 Exponential Resetting RLS (ER-RLS)

Initialize: λ ∈ (0, 1), θ0 ∈ Rn, positive-definite P0 ∈
Rn×n, positive-definite R∞ ∈ Rn×n

for all k ≥ 0 do
Rk+1 ← λRk + (1− λ)R∞ + ϕT

k ϕk ▷ O(pn2)
θk+1 ← θk +R−1

k+1ϕ
T
k (yk − ϕkθk) ▷ O(n3)

B. Information Matrix Lower Bound

Proposition 6 gives a tight lower bound for Rk which
depends on the step k. Corollary 1 gives a weaker lower
bound that is valid for all k ≥ 0. Note that persistent
excitation is not necessary for a guaranteed Rk lower bound.

Proposition 6. (ER-RLS) For all k ≥ 0,

Rk ⪰ λkR0 + (1− λk)R∞. (11)

Proof. By repeated substitution of (9), it follows that, for all
k ≥ 0,

Rk = λkR0 + (1− λk)R∞ +

k−1∑
i=0

λiϕT
k−i−1ϕk−i−1.

Then, since
∑k−1

i=0 λiϕT
k−i−1ϕk−i−1 is positive semidefinite,

(11) follows.

Corollary 1. (ER-RLS) For all k ≥ 0,

λmin(Rk) ≥ min{λmin(R0),λmin(R∞)}. (12)

Proof. Define rmin ≜ min {λmin(R0),λmin(R∞)}. Apply-
ing Lemma A.2 to (11), it follows that, for all k ≥ 0,

λmin(Rk) ≥ λkλmin(R0) + (1− λk)λmin(R∞),

≥ λkrmin + (1− λk)rmin = rmin. □

C. Information Matrix Upper Bound

Proposition 7 gives a tight upper bound for Rk which
depends on the step k. Corollary 2 gives a weaker upper
bound that is valid for all k ≥ 0.

Proposition 7. (ER-RLS) If there exists β ≥ 0 such that, for
all k ≥ 0, ϕT

k ϕk ⪯ βI, then, for all k ≥ 0,

Rk ⪯ λkR0 + (1− λk)R∞ +
1− λk

1− λ
βIn. (13)

Proof. By repeated substitution of (9), for all k ≥ 0,

Rk = λkR0 + (1− λk)R∞ +

k−1∑
i=0

λiϕT
k−i−1ϕk−i−1.

Since
∑k−1

i=0 λiϕT
k−i−1ϕk−i−1 ⪯

∑k−1
i=0 λiβIn, (13) follows

by geometric series.

Corollary 2. (ER-RLS) If there exists β ≥ 0 such that, for
all k ≥ 0, ϕT

k ϕk ⪯ βI, then, for all k ≥ 0,

λmax(Rk)⪯max {λmax(R0),λmax(R∞)}+ β

1−λ
. (14)

Proof. Define rmax ≜ max {λmax(R0),λmax(R∞)}. Note
that, for all k ≥ 0,

λkλmax(R0) +
(
1− λk

)
λmax(R∞) +

1− λk

1− λ
β

≤ λkrmax +
(
1− λk

)
rmax +

β

1− λ
= rmax +

β

1− λ
.

Hence, by Lemma A.2, (14) follows from (13).

D. Resetting Property

Proposition 8 gives the resetting property of ER-RLS,
which states that, under no excitation, the sequence {Rk}∞k=0

converges to R∞.

Proposition 8. (ER-RLS) If there exists an integer N > 0
such that, for all k ≥ N , ϕk = 0, then

lim
k→∞

Rk = R∞. (15)

Proof. By repeated substitution of (9), it follows that, for all
k ≥ 0, Rk+N = λkRN + (1− λk)R∞, implying (15).

IV. CYCLIC RESETTING (CR) RLS

The motivation for cyclic resetting recursive least squares
(CR-RLS) is to develop an RLS extension with guaranteed
covariance bounds and similar resetting properties to ER-
RLS, but which runs in O(pn2) time complexity per step.

To begin, we choose a positive-definite R∞ ∈ Rn×n and
write an orthogonal diagonalization of R∞ as

R∞ = V∞D∞V T
∞, (16)

where V∞ ∈ Rn×n is orthogonal and D∞ ∈ Rn×n is
diagonal. Next, we write V∞ and D∞ as

V∞ =
[
v∞,0 · · · v∞,n−1

]
, (17)

D∞ = diag
([
d∞,0 · · · d∞,n−1

])
, (18)

where, for all i = 0, . . . , n− 1, v∞,i ∈ Rn is an eigenvector
of R∞ and d∞,i ∈ R>0 is its associated eigenvector. Next,
for all i = 0, . . . , n− 1, define R∞,i ∈ Rn×n by

R∞,i ≜ d∞,iv∞,iv
T
∞,i. (19)

Note that, for all i = 0, . . . , n − 1, rank(R∞,i) = 1 and
R∞,i is positive semidefinite. Furthermore,

R∞ = R∞,0 + · · ·+R∞,n−1. (20)

Then, for all k ≥ 0, we consider the following Rk update:

Rk+1 = λRk +
1− λn

λn−(k mod n)−1
R∞,(k mod n) + ϕT

k ϕk, (21)

It then follows by repeated substitution of (21) that, for all
k ≥ 0, and for all i = 1, . . . , n

Rkn+i=λiRkn+
1−λn

λn−i

i∑
j=0

R∞,j+

i∑
j=1

λj−1ϕT
kn+i−jϕkn+i−j ,

(22)
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and hence, for all k ≥ 0,

Rkn+n=λnRkn+(1−λn)R∞+

n∑
j=1

λj−1ϕT
kn+n−jϕkn+n−j .

(23)

Note that the n step update for CR-RLS, given by (23), is
structured similarly to the 1 step update for ER-RLS, given
by (10). Proposition 9 shows the important property that, for
all k ≥ 0, Rk is positive definite.

Proposition 9. (CR-RLS) If R0 is positive definite, then, for
all k ≥ 0, Rk is positive definite.

Proof. Proof by induction: R0 is positive definite by assump-
tion. Next, if Rk is positive definite, it follows that λnRk

is positive definite. Moreover, 1−λn

λn−(k modn)−1R∞,(kmodn) +
ϕT
k ϕk is positive semidefinite. Hence, it follows from (21)

that Rk+1 is positive definite.

A. Matrix Inversion Lemma for Efficient Computation
The main improvement of CR-RLS over ER-RLS is the

ability to use the matrix inversion lemma (Lemma A.1) for
efficient computation when n ≫ p. First, note that, for all
k ≥ 0, (21) can be written as

Rk+1 = λRk + ϕ̄T
k ϕ̄k, (24)

where

ϕ̄k ≜

[
ϕk

v̄T∞,(kmodn)

]
∈ R(p+1)×n, (25)

and, for all i = 0, . . . , n− 1,

v̄∞,i ≜

√
(1− λn)d∞,i

λn−i−1
v∞,i ∈ Rn. (26)

Then, it follows from Lemma A.1 that, for all k ≥ 0,

Pk+1 =
1

λ
Pk −

1

λ
Pkϕ̄

T
k (λIp+1 + ϕ̄kPkϕ̄

T
k )

−1ϕ̄kPk, (27)

where Pk ≜ R−1
k ,

B. Summary and Computational Cost

Algorithm 3 Cyclic Resetting RLS (CR-RLS)

Use CR-RLS only when n≫ p. Otherwise, use ER-RLS.
Initialize: λ ∈ (0, 1), θ0 ∈ Rn, positive-definite P0 ∈
Rn×n, positive-definite R∞ ∈ Rn×n

Precompute v̄∞,0, . . . , v̄∞,n−1 ∈ Rn ▷ See (26), (16)
for all k ≥ 0 do

ϕ̄k ←
[
ϕT
k v̄∞,(kmodn)

]T
L̄k ← Pkϕ̄

T
k ▷ O(pn2)

Pk+1 ← 1
λPk − 1

λ L̄k(λIp+1 + ϕ̄kL̄k)
−1L̄T

k ▷ O(pn2)
θk+1 ← θk + Pk+1ϕ

T
k (yk − ϕkθk) ▷ O(pn2)

CR-RLS is summarized by Algorithm 3. We introduce
L̄k ∈ Rn×(p+1) to optimize computational efficiency. The
computational complexity of CR-RLS is O(pn2) per step.
In the case where n≫ p, CR-RLS provides similar bounds
and resetting properties as ER-RLS with a significant im-
provement over the O(n3) complexity per step of ER-RLS.
If p ≥ n, we recommend using ER-RLS instead of CR-RLS.

C. Information Matrix Lower Bound

Theorem 1 gives a tight lower bound for Rk dependent
on the step k. Corollary 3 gives a weaker lower bound that
is valid for all k ≥ 0. We begin with a useful Lemma.

Lemma 1. (CR-RLS) For all k ≥ 0 and all i = 1, . . . , n−1,

Rkn+i ⪰ λiRkn. (28)

Proof. It follows from repeated substitution of (2) that, for
all k ≥ 0, and for all i = 1, . . . , n− 1,

Rkn+i=λiRkn+

i−1∑
j=0

1−λn

λn−i
R∞,j+λjϕT

k+n−j−1ϕk+n−j−1.

Subtracting λiRkn from both sides, it follows that Rkn+i−
λiRkn is positive semidefinite.

Theorem 1. (CR-RLS) For all k ≥ 0,

Rk ⪰ λkR0 + (λkmodn − λk)R∞ (29)

Proof. For all k ≥ 0, it follows from (23) that Rk+n ⪰
λnRk + (1− λn)R∞. It then follows from repeated substi-
tution that, for all k ≥ 0,

Rkn ⪰ λknR0 + (1− λkn)R∞.

It then follows from Lemma 1 that, for all k ≥ 0, and for
all i = 0, . . . , n− 1,

Rkn+i ⪰ λiRkn ⪰ λi
[
λknR0 + (1− λkn)R∞

]
,

which can be rewritten as (29).

Corollary 3. (CR-RLS) For all k ≥ 0,

λmin(Rk) ≥ λn−1 min {λmin(R0),λmin(R∞)} . (30)

Proof. Define rmin ≜ min {λmin(R0),λmin(R∞)}. Apply-
ing Lemma A.2 to the result of Theorem 1, it follows that,
for all k ≥ 0, λmin(Rk) ≥ λkλmin(R0) + (λkmodn −
λk)λmin(R∞) ≥ λkrmin+(λkmodn−λk)rmin ≥ λn−1rmin.

D. Information Matrix Upper Bound

Theorem 2 gives a tight upper bound for the eigenvalues
of Rk that depends on the step k. Corollary 4 gives a weaker
upper bound that is valid for all k ≥ 0.

Theorem 2. (CR-RLS) If there exists β ≥ 0 such that, for
all k ≥ 0, ϕT

k ϕk ⪯ βI , then, for all k ≥ 0,

Rk⪯λkR0+

(
1

λn−(kmodn)
−λk

)
R∞+

1−λk

1−λ
βIn.

(31)

Proof. Repeated substitution of (23) implies, for all k ≥ 0,
Rkn = λknR0 + (1 − λkn)R∞ +

∑kn
j=1 λ

j−1ϕT
kn−jϕkn−j .

Next, it follows from (22) that, for all k ≥ 0 and all i =
0, . . . , n− 1,

Rkn+i =λkn+iR0 + λi(1− λkn)R∞ +
1− λn

λn−i

∑i
j=0 R∞,j

+
∑kn+i

j=1 λj−1ϕT
kn−jϕkn−j ,

292



and note that
∑i

j=0 R∞,j ⪯ R∞. Hence, for all k ≥ 0 and
all i = 0, . . . , n − 1, Rkn+i ⪯ λkn+iR0 + (λi(1 − λkn) +
1−λn

λn−i )R∞ +
∑kn+1

j=1 λj−1βI, which simplifies to Rkn+i ⪯
λkn+iR0+

(
1

λn−i − λkn+i
)
R∞+ 1−λkn+i

1−λ βI , which can be
rewritten as (31).

Corollary 4. (CR-RLS) If there exists β ≥ 0 such that, for
all k ≥ 0, ϕT

k ϕk ⪯ βI , then, for all k ≥ 0,

λmax(Rk)≤
1

λn
max{λmax(R0),λmax(R∞)}+ β

1−λ
.

(32)

Proof. Define rmax ≜ max {λmax(R0),λmax(R∞)}. Note
that, for all k ≥ 0,

λkλmax(R0) +

(
1

λn−(kmodn)
− λk

)
λmax(R∞)

≤ λkrmax +

(
1

λn−(kmodn)
− λk

)
rmax ≤

1

λn
rmax,

and 1−λk

1−λ β ≤ β
1−λ . By Lemma A.2, (31) gives (32).

E. Cyclic Resetting and Bounded Resetting

Next, Proposition 10 gives the cyclic resetting property of
CR-RLS, which states that, under no excitation, the sequence
{Rkn}∞k=0 converges to R∞.

Proposition 10. (CR-RLS) If there exists N > 0 such that,
for all k ≥ N , ϕk = 0, then

lim
k→∞

Rnk = R∞. (33)

Proof. Let Kn be the smallest multiple of n larger than N .
By repeated substitution of (23), R(K+k)n can be written as

R(K+k)n = λknRKn + (1− λkn)R∞.

Since λ ∈ (0, 1), limk→∞ R(K+k)n = R∞ follows.

Finally, Theorem 3 and Corollary 5 give the bounded
resetting property of CR-RLS, which states that, under no
excitation, the limit inferior (respectively, limit superior)
of the sequence {Rk}∞k=0 is bounded below (respectively,
above) by λn−1R∞ (respectively, 1

λn−1R∞).

Theorem 3. (CR-RLS) If there exists N > 0 such that, for
all k ≥ N , ϕk = 0, then, for all ε > 0, there exists M ≥ 0
such that, for all k ≥M ,

λn−1R∞ − εIn ⪯ Rk ⪯
1

λn−1
R∞ + εIn. (34)

Proof. Define rmax ≜ 1
λn max {λmax(R0),λmax(R∞)} +

β
1−λ , and note that, from Corollary 4, for all k ≥ 0, Rk ⪯
rmaxI. Let ε > 0. Let K ≥ 0 be chosen such that Kn ≥ N .
Choose M ≥ 0 to be an integer such that

M ≥ logλ

(
min

{
ε

rmax
,

ε

λmax(R∞)

})
+ (K + 1)n.

First, we prove the lower bound. Note that since, for all
k ≥ Kn, ϕk = 0, it follows from repeated substitution of
(23) that, for all k ≥ 0, R(K+k)n = λknRKn+(1−λkn)R∞.
Next, by applying Lemma 1, it follows that, for all k ≥ 0,

and for all i = 0, . . . , n − 1, R(K+k)n+i ⪰ λkn+iRKn +
λi(1− λkn)R∞. Furthermore, since, for all k ≥ 0, R∞ and
Rk are positive definite, it follows that, for all k ≥ 0 and all
i = 0, . . . , n− 1,

R(K+k)n+i ⪰ λiR∞ − λkn+iR∞

⪰ λn−1R∞ − λknλmax(R∞)In.

If (K+k)n+ i ≥M , then kn ≥ logλ(
ε

λmax(R∞) ), and thus
λkn ≤ ε

λmax(R∞) . Hence, R(K+k)n+i ⪰ λn−1R∞ − εIn.
Second, we prove the upper bound. Since limk→∞ Rnk =

R∞, Proposition 10 implies that there exists M ≥ 0 such
that, for all k ≥ M , and for i = 0, Rkn+i ⪯ R∞ + εI ⪯

1
λn−1R∞+εIn. Next, we address the cases i = 1, . . . , n−1.
Since, for all k ≥ Kn, ϕk = 0, it follows from (22) and
repeated substitution of (23) that, for all k ≥ 0 and all i =
1, . . . , n− 1, R(K+k)n+i = λkn+iRKn + λi(1− λkn)R∞ +
1−λn

λn−i

∑i
j=0 R∞,j . Moreover, since

∑i
j=0 R∞,j ⪯ R∞, it

follows that, for all k ≥ 0 and all i = 1, . . . , n− 1,

R(K+k)n+i ⪯ λkn+iRKn +

(
λi(1− λkn) +

1− λn

λn−i

)
R∞,

= λkn+iRKn +
R∞

λn−i
−R∞λkn+i ⪯ λknrmaxIn +

R∞

λn−1
.

If (K + k)n + i ≥ M , then kn ≥ logλ(
ε

rmax
), and thus

λkn ≤ ε
rmax

. Hence, R(K+k)n+i ⪯ εIn + 1
λn−1R∞.

Corollary 5. (CR-RLS) If there exists N > 0 such that, for
all k ≥ N , ϕk = 0, then

lim inf
k→∞

λmin(Rk) ≥ λn−1λmin(R∞), (35)

lim sup
k→∞

λmax(Rk) ≤
1

λn−1
λmax(R∞). (36)

V. NUMERICAL EXAMPLE

Consider the following example with n = 4 and p = 2. Let
λ = 0.9, θ0 = [0 0 0 0]T, and P0 = P∞ = I4, where P∞ ≜
R−1

∞ . For all 0 ≤ k ≤ 500 and 1000 ≤ k ≤ 1500, each row
of ϕk ∈ R2×4 is i.i.d. sampled from N (0, I4) . However,
for all 500 < k < 1000, each row of ϕk is i.i.d. sampled
from N (0, 1

102 I4). Also, for all 0 ≤ k ≤ 1500, let vk ∈ R2

be i.i.d. sampled from N (0, I2), and yk ∈ R2 be given by
yk = ϕkθtrue,k+vk, where θtrue,k = [1 1 sin πk

100 cos πk
100 ]

T.
This example shows EF-RLS, ER-RLS, and CR-RLS

applied to estimate fixed and time-varying parameters in a
linear measurement process corrupted by Gaussian noise.
Figure 1 gives, for all 0 ≤ k ≤ 1500, the eigenvalues of
Pk and ∥θk − θtrue,k∥2 to show estimation performance.

For 0 ≤ k ≤ 500 and 1000 ≤ k ≤ 1500, ϕk is
persistently exciting and similar magnitude to noise vk.
During this period, EF-RLS, ER-RLS, and CR-RLS perform
nearly identically. However, for 500 < k < 1000, excitation
is poor while noise is large. As a result, EF-RLS experiences
covariance windup, the eigenvalues of Pk reaching above
102, causing sensitivity to noise and poor estimation. ER-
RLS and CR-RLS prevent covariance windup by limiting
the eigenvalues of Pk to 1 (Corollary 1) and 1/λ3 (Corollary
3), respectively, which limits estimation error. Notice that,
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TABLE I: Summary of Computational Complexities per Step and Information Matrix Properties

Complexity (n ≫ p) Complexity (p ≥ n) Rk Lower Bound Rk Upper Bound Rk Resetting

EF-RLS O(pn2) O(pn2) Prop. 2 (requires PE) Prop. 3 Prop. 4 (Resetting to 0)
ER-RLS O(n3) O(pn2) Prop. 6, Cor. 1 Prop. 7, Cor. 2 Prop. 8 (Resetting to R∞)
CR-RLS O(pn2) (Use ER-RLS Instead) Theo. 1, Cor. 3 Theo. 2, Cor. 4 Prop. 10, Theo. 3, Cor. 5 (Cyclic Resetting)

Fig. 1: Eigenvalues of Pk (top) with zoomed view and ∥θk − θtrue,k∥2
(bottom) for 0 ≤ k ≤ 1500. No persistent excitation when 500 < k <
1000.

Fig. 2: The third element of θk and θtrue,k for 0 ≤ k ≤ 1500 (bottom
shows zoomed in y-axis). No persistent excitation when 500 < k < 1000.

under little excitation, Pk nearly converges to P∞ in ER-RLS
(Proposition 8), while Pk oscillates around P∞ in CR-RLS
(Theorem 3).

For a closer look at tracking of time-varying parameters,
Figure 2 shows θ

(3)
k , the third element of θk. To track a

quickly changing θ
(3)
true,k = sin πk

100 , an aggressive forgetting
factor λ = 0.9 is needed. However, without persistent
excitation during 500 < k < 1000, EF-RLS soon becomes
sensitive to noise and the parameter estimate becomes erratic.
ER-RLS and CR-RLS both limit the rate of parameter
adaptation when persistent excitation is lost, resulting in
robustness to measurement noise.

VI. CONCLUSIONS

This paper presents two extensions of RLS with a forget-
ting factor, or EF-RLS. The first, ER-RLS, which generalizes
[13], is inspired by the interpretation that forgetting in EF-
RLS is equivalent to resetting the information matrix to 0.
ER-RLS extends EF-RLS by allowing resetting to a user-
selected positive-definite matrix R∞ but is more comp. com-
plex than EF-RLS. The second, CR-RLS, maintains the same
comp. complexity as EF-RLS when n ≫ p, while provid-
ing similar resetting properties as ER-RLS. Computational
complexities, guaranteed information matrix bounds, and
resetting properties for the three algorithms are summarized
in Table I. A numerical example shows how both ER-RLS

and CR-RLS prevent covariance windup experienced by EF-
RLS for both fixed and time-varying parameter estimation.
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APPENDIX

Lemma A.1. Let A ∈ Rn×n, U ∈ Rn×p, C ∈ Rp×p, V ∈
Rp×n. Assume A, C, and A+UCV are nonsingular. Then,
(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

Lemma A.2. Let A,B ∈ Rn×n be symmetric. Then, for all
i = 1, . . . , n, λi(A) + λmin(B) ≤ λi(A + B) ≤ λi(A) +
λmax(B).
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