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Abstract— This paper develops an approach to static output
feedback under the assumption that a stabilizing static-output-
feedback gain is known for an approximate plant model. This
approach is motivated by the fact that system identification
may be used to obtain an approximate plant model, and offline
optimization can be used to obtain a stabilizing static-output-
feedback gain. This gain provides the initial guess for the
adaptive static-output-feedback control law, which iteratively
refines the gain based on the response of the actual system
dynamics.

I. INTRODUCTION

A classical approach to linear state-space-based control is
to employ a controller of the form u = Kx, where the gain
matrix K is determined, for example, by pole placement or
linear-quadratic regulator. When the state x is not measured
and only the output y is available, an observer can be used
to obtain an estimate x̂ of x, which is used in the output-
feedback control law u = Kx̂. The resulting observer-based
compensator is justified by the classical separation principle.

When only the output y is available, it is tempting to
employ static output feedback of the form u = Ky, which
avoids the need for an observer and thus simplifies the
feedback control law. Unfortunately, static output feedback
is known to be a highly challenging problem, and relevant
works include techniques based on quadratic optimization
[1], [2] as well pole placement [3]–[8]. The source of the
difficulty arises from the fact that the set of stabilizing
feedback gains is not necessarily convex [9]. In the single-
input, single-output continuous time case, this can be seen
clearly from properties of the root locus, which may enter
and leave or remain in the open right-half plane.

Despite the challenging nature of the static output feed-
back problem, the simplicity of this control law in practical
implementation motivates the present paper, where the focus
is on adaptive static output feedback. Prior work on adaptive
static output feedback includes [10], where retrospective
cost adaptive control was used to update the static output-
feedback gain. The present paper develops an alternative
approach to static output feedback under the assumption
that a stabilizing static-output-feedback gain is known for
an approximate plant model. This approach is motivated by
the fact that system identification may be used to obtain an
approximate plant model, and offline optimization can be
used to obtain a stabilizing static-output-feedback gain. This
gain provides the initial guess for the adaptive static-output-
feedback control law, which iteratively refines the gain based
on the response of the actual system dynamics.
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II. ADAPTIVE STATIC OUTPUT FEEDBACK

Consider the multi-input multi-output (MIMO) input-
output discrete time plant

yk+1 = −
n∑
i=1

Fiyk−i+1 +

n∑
i=1

Giuk−i+1, (1)

where k ∈ N0 is the time step, n ∈ N is the plant order,
uk ∈ Rm is the control, yk ∈ Rp is the measurement,
Fi ∈ Rp×p and Gi ∈ Rp×m are the plant coefficients,
and y0, . . . , y1−n, u0, . . . , u1−n are the initial conditions. We
assume there exists a static output feedback (SOF) gain
K ∈ Rm×p such that the static output feedback controller

uk = Kyk (2)

stabilizes (1). We say, in short, that K stabilizes (1) if there
exists a state-space realization

xk+1 = Axk +Buk (3)
yk = Cxk (4)

of (1) such that all of the eigenvalues of A + BKC are in
the open unit disc. Conditions under which (1) is stabilizable
are discussed in [9], [11].

Next, we consider a MIMO input-output model of the
plant (1) of the form

ȳk+1 = −
n̄∑
i=1

F̄iȳk−i+1 +

n̄∑
i=1

Ḡiūk−i+1, (5)

where n̄ ∈ N is the model order, F̄i ∈ Rp×p and Ḡi ∈ Rp×m
are the model coefficients, and ȳ0, . . . , ȳ1−n, ū0, . . . , ū1−n
are the model initial conditions. We assume that a matrix
K̄ ∈ Rm×p that stabilizes (5) exists and is known.

The problem we consider is, with knowledge of the model
(5) and stabilizing gain K̄, to design an adaptive static output
feedback gain θk ∈ Rm×p such that the output feedback
controller

uk = θkyk, (6)

stabilizes (1). Our proposed algorithm is given in the follow-
ing section III.

III. ADAPTIVE ALGORITHM

Define θ0
△
= K̄, let the forgetting factor λ ∈ R be positive,

and let P0 ∈ Rmp×mp be (symmetric) positive definite. For
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all k ≥ 0, denote the minimizer of the function

Jk(θ)
△
=

k∑
j=0

λk−j

∥∥∥∥∥∥
( n̄∑
i=1

Giuj−i+1 −
n̄∑
i=1

ḠiK̄yj−i+1

)

−
( n̄∑
i=1

Ḡiuj−i+1 −
n̄∑
i=1

Ḡiθyj−i+1

)∥∥∥∥∥
2

+ (vec θ − vec θ0)
TP−1

0 (vec θ − vec θ0) (7)

by θk+1
△
= argminθ∈Rm×p Jk(θ), where

n̄∑
i=1

Giuk−i+1
△
= yk+1 +

n̄∑
i=1

F̄iyk−i+1, (8)

vec is the column-stacking operator, and ∥·∥ is the Euclidean
norm. In (7), the forgetting factor 0 < λ < 1 provides higher
weighting to more recent data, whereas λ > 1 provides
lower weighting to more recent data. Moreover, the matrix P0

provides regularization by weighting θ relative to the initial
gain θ0 and ensures that Jk has a global minimizer.

To obtain a recursive update for θk, we rewrite (7) as

Jk(θ) =

k∑
j=0

λk−j(Yj − Φjvec θ)
T(Yj − Φjvec θ)

+ (vec θ − vec θ0)
TP−1

0 (vec θ − vec θ0), (9)

where

Φk
△
= −

n̄∑
i=1

Ḡi(y
T
k−i+1 ⊗ Im), (10)

Yk
△
=

n̄∑
i=1

Giuk−i+1 −
n̄∑
i=1

ḠiK̄yk−i+1 −
n̄∑
i=1

Ḡiuk−i+1,

(11)

and ⊗ denotes the Kronecker product. Then, for all k ≥ 0,
it follows from recursive least squares (RLS) [12] that θk+1

is given by

Pk+1 =
1

λ
Pk −

1

λ
PkΦ

T
k (Ip +ΦkPkΦ

T
k )

−1ΦkPk, (12)

vec θk+1 = vec θk + Pk+1Φ
T
k (Yk − Φkvec θk). (13)

It can be seen that, if the coefficients and initial conditions
of plant and model match, that is, for i = 1, . . . , n, F̄i = Fi
and Ḡi = Gi and, for all k ≤ 0, ȳk = yk and ūk = uk, then,
for all k ≥ 0, the cost function (7) simplifies to

Jk(θ) =

k∑
j=0

λk−j

∥∥∥∥∥(
n̄∑
i=1

Ḡiθyj−i+1 −
n̄∑
i=1

ḠiK̄yj−i+1

)∥∥∥∥∥
2

+ (vec θ − vec θ0)
TP−1

0 (vec θ − vec θ0), (14)

and, for all k ≥ 0, θk = θ0.
As data are collected online from the plant (1), it may be

possible to update the model (5) and redesign a stabilizing
SOF controller for the updated model. Designing a stabiliz-
ing SOF controller is NP-hard [13], however, and thus may
not be feasible for online computation.

In contrast, the least squares estimate, θk, is computed
recursively in (12) and (13) and requires only moderate
computations. Furthermore, design of the initial feedback
matrix K̄ can be done offline prior to operation.

IV. APPLICATION TO FIRST-ORDER, SISO PLANTS

Consider the first-order, SISO plant

yk+1 = −ayk + buk, (15)

where a ∈ R, b ∈ R\{0}, and, for all k ≥ 0, yk, uk ∈ R.
Using the controller (2), the plant (15) can be written as

yk+1 = (−a+ bK)yk, (16)

where K ∈ R. Note that K stabilizes (15) if and only if
−a+ bK ∈ (−1, 1). Assume the model of (15) is given by

ȳk+1 = −āȳk + b̄ūk, (17)

where ā ∈ R and b̄ ∈ R\{0}. We choose the gain K̄ = ā/̄b
for model (17), which sets −ā + b̄K̄ = 0. We also select
λ = 1 for no forgetting.

Next, the cost function (7) can be written

Jk(θ)=

k∑
j=0

(yj+1+ āyj− b̄K̄yj− b̄uj+ b̄θyj)2+P0(θ−θ0)2,

(18)

where θ0 = ā/̄b and P0 > 0. The adaptive SOF controller is
then given by (6), where, for all k ≥ 0, the recursive update
equations (12) and (13) for the adaptive SOF gain θk ∈ R
can be written as

Pk+1 =
Pk

1 + b̄2y2kPk
, (19)

θk+1 = θk − Pk+1b̄yk(yk+1 + āyk − b̄K̄yk − b̄uk + b̄θkyk)

= θk − Pk+1b̄y
2
k

[
(−a+ bθk)− (−ā+ b̄K̄)

]
= θk − Pk+1b̄y

2
k(−a+ bθk). (20)

Finally, the closed-loop plant dynamics can be written as

yk+1 = (−a+ bθk)yk. (21)

Next, for all k ≥ 0, define

Rk
△
= Pk+1b̄

2y2k, (22)

ψk
△
= −a+ bθk. (23)

Then, for all k ≥ 0, it follows from (19) and (20) that

Rk+1 =
ψ2
kRk

1 + ψ2
kRk

, (24)

ψk+1 = (1− b

b̄
Rk)ψk. (25)

Proposition 1. If y0 ̸= 0, then 0 < R0 < 1 and, for all
k ≥ 1, 0 ≤ Rk < 1.

Proof. Note that R0 = P1b̄
2y20 =

P0b̄
2y20

1+P0b̄2y20
<

1+P0b̄
2y20

1+P0b̄2y20
= 1.

Furthermore, P0 > 0 and y0 ̸= 0 imply that P0b̄
2y20 > 0,

and thus R0 =
P0b̄

2y20
1+P0b̄2y20

> 0. Next, by (24), 0 ≤ Rk < 1

implies that 0 ≤ Rk+1 < 1.
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Lemma 1. Let ψ2
k > 1 and 0 < Rk < 1.

i) If 0 < Rk < 1− 1
ψ2

k
, then Rk < Rk+1 < 1− 1

ψ2
k

.
ii) If Rk = 1− 1

ψ2
k

, then Rk+1 = 1− 1
ψ2

k
.

iii) If 1− 1
ψ2

k
< Rk, then 1− 1

ψ2
k
< Rk+1 < Rk.

Proof. ii) follows from substituting Rk = 1− 1
ψ2

k
into (24). i)

and iii) can be easily verified as properties of the difference
equation (24).

Theorem 2. If y0 ̸= 0 and 0 < b/̄b < 2, then limk→∞(−a+
bθk) exists and

lim
k→∞

(−a+ bθk) ∈ (−1, 1). (26)

Proof. First, we show that |ψk| = |−a+ bθk| is decreasing.
Note that, for all k ≥ 0, since 0 < b/̄b < 2 and 0 ≤ Rk ≤ 1
from Proposition 1, it follows that 0 ≤ b/̄bRk ≤ 2. It then
follows that −1 ≤ 1−b/̄bRk ≤ 1. Applying this inequality to
(25), it follows that |ψk+1| ≤ |ψk|. Since |ψk| is decreasing
and bounded below by 0, it follows that limk→∞ |ψk| exists.

Next, suppose, for contradiction, that limk→∞ |ψk| > 1.
Then there exists N ∈ N such that, for all k ≥ N ,
ψk ̸= 0. Hence, it follows from (25) that, for all k ≥ N ,
|ψk+1|
|ψk| =

∣∣1− b
b̄
Rk

∣∣. Then, taking the limit as k → ∞, we
have limk→∞

∣∣1− b
b̄
Rk

∣∣ = 1. Thus, for all ε > 0, there
exists M ∈ N such that, for all k > M , either |b/̄bRk| < ε
or |b/̄bRk − 2| < ε.

However, since 0 < b/̄b < 2 by assumption, there exists
α > 0 such that 0 < b/̄b < 2− α. Then, since for all k ≥ 0,
0 < Rk < 1 by Proposition 1, it follows that, for all k ≥ 0,
0 ≤ b

b̄
Rk ≤ 2− α, which implies that

∣∣ b
b̄
Rk − 2

∣∣ ≥ α.
Hence, if ε < α, then there is no M ∈ N such that,

for all k ≥ M , |b/̄bRk − 2| < ε. Therefore, for all ε such
that 0 < ε < α, there exists M such that, for all k > M ,
|b/̄bRk| < ε. This implies that limk→∞Rk = 0.

Next, since |ψk| is decreasing and limk→∞ |ψk| > 1 is
assumed for contradiction, it follows that, for all k ≥ 0,
|ψk| > 1+δ for some δ > 0. This implies that, for all k ≥ 0,
1− 1

ψ2
k
> 0. Moreover, since R0 > 0 from Proposition 1 and

since, for all k ≥ 0, |ψk| > 1, it follows from (24) that, for
all k ≥ 0, Rk > 0. Hence, limk→∞Rk = 0 implies that, for
all ε > 0, there exists N ∈ N such that 0 < Rk < ε.

However, it follows from Lemma 1 that if 0 < Rk <
1− 1

ψ2
k

, Rk+1 > Rk. and if Rk ≥ 1− 1
ψ2

k
, Rk+1 ≥ 1− 1

ψ2
k

.
Since, for all k ≥ 0, |ψk| > 1 + δ for some δ > 0, it
follows that Lemma 1 contradicts limk→∞Rk = 0. Hence,
we conclude that limk→∞ |ψk| ≤ 1.

Next, suppose, for contradiction, that limk→∞ |ψk| = 1.
Since |ψk| is decreasing, it follows for Lemma 1 that, for
all k ≥ 0, min{R0, 1 − 1

ψ2
k
} ≤ Rk ≤ max{R0, 1 − 1

ψ2
0
}.

Moreover, it follows by assumption that limk→∞ 1− 1
ψ2

k
=

0. Hence, for sufficiently large N , |1 − b
b̄
RN | < 1 − (1 −

1
ψ2

N
) = 1

ψ2
N

. Applying this inequality to (25), it follows that
|ψN+1| = |1− b

b̄
RN ||ψN | < | 1

ψ2
N
||ψN | = 1

|ψN | . Since, for all
k ≥ 0, |ψk| is decreasing and limk→∞ |ψk| = 1 is assumed,

it follows that, for all k ≥ 0, |ψk| > 1. Hence, |ψN | > 1
which implies |ψN+1| < 1, a contradiction.

Hence, we conclude limk→∞ |ψk| < 1. It follows that
there exists N ∈ N such that, for all k ≥ N , 0 ≤ ψ2

k < 1.
It then follows from Proposition 1 that 0 ≤ RNψ

2
N < 1.

Furthermore, since f(x) = x
1+x is increasing for x ≥ 0 and

f(1) = 1
2 , it follows that 0 ≤ RN+1 =

ψ2
NRN

1+ψ2
NRN

< 1
2 .

Finally, for all k ≥ N + 1, since 1 + ψ2
kRk ≥ 1 and

0 ≤ ψ2
k < 1, it follows that Rk+1 =

ψ2
kRk

1+ψ2
kRk

≤ ψ2
kRk <

Rk. Hence, for all k ≥ N + 1, 0 ≤ Rk <
1
2 . Next, since

0 < b
b̄
< 2, it follows that, for all k ≥ N+1, 0 ≤ 1− b

b̄
Rk <

1. Applying this inequality to (25), it follows that, for all
k ≥ N + 1, the sign of ψk is the same. This property and
limk→∞ |ψk| < 1 imply that limk→∞ ψk exists and satisfies
limk→∞ ψk ∈ (−1, 1).

Theorem 2 shows that, for a first-order single-input single-
output (SISO) plant, knowledge of the DC gain within −6
dB and ∞ dB, that is, 0 < b/̄b < 2, is sufficient for global
convergence to a stabilizing SOF gain.

V. NUMERICAL EXAMPLES

Next, we study the ability of the proposed adaptive SOF
algorithm to stabilize higher order linear SISO and MIMO
plants through three numerical examples.

A. Example 1: Second Order SISO

Consider a 2nd order discrete-time SISO plant

yk+1 = 2yk + 0.25yk−1 + 2.25uk + 1.25uk−1 + wk, (27)

where, for all k ≥ 0, yk ∈ R, uk ∈ R, and wk ∼ N (0, 1).
In the case without noise wk, (27) has the transfer function

H(z) =
2.25 z + 1.25

z2 − 2 z − 0.25
. (28)

To obtain a model for (27), we first simulate a step
response of the (27) with the initial conditions y0 = y−1 = 0
and u0 = u−1 = 1 and, for all k > 0, uk = 1. The
step response is simulated for 0 ≤ k ≤ 20 and MATLAB’s
tfest is used to fit a 2nd order model from the resulting
data, {uk}20k=0 and {yk}20k=0. The model is given by the
discrete-time transfer function

H̄(z) =
3.901 z − 4.977

z2 − 1.277 z + 0.2773
. (29)

The combination of H(z) being open-loop unstable, mea-
surement noise, and short simulation time result in a very
poor model H̄(z) of plant H(z). To highlight the differences
between the poles and zeros of the plant and model, we can
rewrite (28) and (29), respectively, as

H(z) =
2.25(z + 0.5556)

(z − 2.118)(z + 0.118)
, (30)

H̄(z) =
3.901(z + 1.276)

(z − 0.9996)(z − 0.2774)
. (31)

The root loci of H(z) and H̄(z) are shown in Figure 1
where the closed-loop poles are, respectively, the roots of
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Fig. 1: Root loci of H(z) given by (27) and H̄(z) given by (29).

1 − KH(z) = 0 and 1 − KH̄(z) = 0 to match the sign
convention of (2). Plant H(z) is closed-loop stable with SOF
gain K ∈ (−1,−0.3571) and model H̄(z) is closed-loop
stable with SOF gain K ∈ (−0.0003, 0.1452). Note that
there is no overlap in the sets of stabilizing SOF gains for
H(z) and H̄(z).

Stabilizing model SOF gain K̄ is chosen to minimize the
closed-loop model’s largest absolute value of its poles. Using
MATLAB’s fminunc, this is calculated to be K̄ = 0.0575.
We use tuning parameters P0 = 0.1 and λ = 1 and recall
that θ0

△
= K̄. We simulate the plant (27) with plant initial

conditions y0 = y−1 = 1 and u0 = θ0y0, u−1 = θ0y−1,
model initial conditions ȳ0 = ȳ−1 = 0 and u0 = u−1 = 0,
and, for all k ≥ 0, wk ∼ N (0, 1).

The simulation results are shown in Figure 2. These results
show quick adaptation to a stabilizing SOF gain despite
measurement noise and significant differences between plant
and model.

Fig. 2: Example 1 simulation results: Plots show measurement yk , control
uk , adaptive SOF gain θk , and covariance Pk of θk . In the bottom left plot,
blue dashed indicates the boundary between stabilizing and non-stabilizing
SOF gains, red star indicates θk is not stabilizing, and green star indicates
θk is stabilizing.

B. Example 2: Second to Fifth Order SISO
In this example, we test our adaptive SOF algorithm

on a large collection of SISO plants between 2nd and 5th

order, systematically varying the difference between plant
and model.

Consider an nth order SISO plant of the form

yk+1 = −
n∑
i=1

ai
a0
yk−i+1 +

n∑
i=1

bi
a0
uk−i+1 + wk, (32)

where a0 ∈ (−1, 1)\{0}, for all 1 ≤ i ≤ n, ai, bi ∈ (−1, 1),
for all k ≥ 0, yk, uk ∈ R, and noise wk ∼ N (0, 1). In the
absence of noise wk, the plant (32) can be represented by
the discrete-time transfer function

H(z) =
b1z

−1 + · · ·+ bn−1z
−(n−1) + bnz

−n

a0 + a1z−1 + · · ·+ an−1z−(n−1) + anz−n
. (33)

The transfer function (33) can be rewritten as

H(z) = k
(z − z1) · · · (z − zn−1)

(z − p1) · · · (z − pn−1)(z − pn)
, (34)

where z1, · · · , zn−1 ∈ C are the n − 1 zeros of the plant,
p1, · · · , pn ∈ C are the n poles of the plant, and k ∈ R is
the leading coefficient of the plant.

We consider a model with the transfer function

H̄κ(z) = κk
(z − z1) · · · (z − zn−1)

(z − p1) · · · (z − pn−1)(z − pn)
, (35)

for κ ∈ R. If (35) is SOF stabilizable, the stabilizing gain
K̄ for model (35) is selected to minimize the closed-loop
model’s largest absolute value of its poles. Note that for a
SISO plant, the set of stabilizing SOF gains is the union of
finitely many open intervals and K̄ was computed by using
MATLAB’s fminunc to minimize the closed-loop model’s
largest absolute value of its poles in each open interval.

To generate a collection of plants, for all 1 < i < n, we
sample ai, bi from the uniform distribution on (−1, 1) and
also sample a0 from the uniform distribution on (−1, 1).
Note that there is probability 0 that a0 = 0. We select the
first 100 cases in which all of the following:
i) plant (32) is SOF stabilizable,
ii) model (35) is SOF stabilizable,
iii) gain K̄ stabilizes plant (32).

Next, we also select the first 100 cases in which i), ii), and
gain K̄ does not stabilize plant (32). We perform this process
for plant order n = 2, 3, 4, 5.

In each simulation, the plant initial conditions are yi = 1
and ui = K̄yi for i = 0,−1, . . . , 1−n, and the model initial
conditions are yi = 0 and ui = 0 for i = 0,−1, . . . , 1 − n.
We select tuning parameters P0 = 0.1 and λ = 1 and recall
that θ0

△
= K̄.

We simulate each adaptive controller for N = 1000 steps.
We say that a plant is ”stabilized” if for all 900 ≤ k ≤
1000, θk stabilizes plant (32) under SOF. The results of these
simulations are summarized in Table I for κ = 0.5 and in
Table II for κ = 2.
TABLE I: Percentage of plants stabilized using model (35) with κ = 0.5

2nd Order 3rd Order 4th Order 5th Order

θ0 stabilizing 100% 100% 97% 97%
θ0 not stabilizing 99% 100% 99% 97%

TABLE II: Percentage of plants stabilized using model (35) with κ = 2.0

2nd Order 3rd Order 4th Order 5th Order

θ0 stabilizing 100% 100% 100% 99%
θ0 not stabilizing 100% 100% 99% 100%
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Next, the same process is repeated with the model

H̄α(z) = k
(z − z1) · · · (z − zn−1)

(z − αp1) · · · (z − αpn−1)(z − αpn)
, (36)

obtained by scaling the plant poles by α ∈ R. The result are
summarized in Table III for α = 0.8 and in Table IV for
α = 1.2.
TABLE III: Percentage of plants stabilized using model (36) with α = 0.8

2nd Order 3rd Order 4th Order 5th Order

θ0 stabilizing 100% 100% 99% 100%
θ0 not stabilizing 96% 90% 84% 86%

TABLE IV: Percentage of plants stabilized using model (36) with α = 1.2

2nd Order 3rd Order 4th Order 5th Order

θ0 stabilizing 100% 100% 100% 100%
θ0 not stabilizing 94% 96% 87% 92%

Lastly, the process is repeated with the model

H̄β(z) = k
(z − βz1) · · · (z − βzn−1)

(z − p1) · · · (z − pn−1)(z − pn)
, (37)

obtained by scaling the plant zeros by β ∈ R. The result
are summarized in Table V for β = 0.8 and in Table VI for
β = 1.2.
TABLE V: Percentage of plants stabilized using model (37) with β = 0.8

2nd Order 3rd Order 4th Order 5th Order

θ0 stabilizing 100% 100% 99% 99%
θ0 not stabilizing 97% 98% 88% 85%

TABLE VI: Percentage of plants stabilized using model (37) with β = 1.2

2nd Order 3rd Order 4th Order 5th Order

θ0 stabilizing 100% 100% 97% 97%
θ0 not stabilizing 94% 92% 89% 86%

These results show that with a model generated from DC
gain mismatch, pole scaling, and zero scaling, the adaptive
SOF algorithm is able to stabilize nearly all test cases with
θ0 stabilizing and a majority of cases with θ0 not stabilizing.

1) Considerations of Noise and λ ̸= 1: In some simu-
lations, additive white noise wk ∼ N (0, 1) had the effect
of θk slowly drifting after settling. An potential solution
to drifting is to select λ > 1. Selecting λ = 1.001 and
extending the simulation time to N = 5000 results in 100%
of plants summarized in Tables I and II having stabilizing
θk for 4000 ≤ k ≤ 5000 in the presence of additive white
noise wk ∼ N (0, 1).

On the other hand, selecting λ ≥ 1 implies that for all
k ≥ 0, Pk+1 ⪯ Pk [14]. This results in slowing or halting of
adaptation which is not desirable if, for example, the plant
dynamics are changing. In such situations, either λ < 1 or
variable-rate forgetting [15] can be used to allow Pk+1 ⪰ Pk,
and therefore, continued adaptation.

C. Example 3: Third Order MIMO
We consider a MIMO plant from [16] and use the static

output feedback H∞ controller designed in [16] for the

model warm-start in our adaptive controller. We then study
the robustness of the SOF H∞ controller versus our adaptive
controller to differences between model and plant.

Consider the MIMO state-space plant

xk+1 = A(α)xk +Buuk +Bwwk,

yk = Cxk,
(38)

where

A(α)
△
=

 α 0.3 2
1 0 1
0.3 0.6 −0.6

 , Bu △
=

1 0
0 1
1 0

 , Bw △
=

01
0

 ,
C

△
=

[
1 1 0

]
,

α ∈ R, and, for all k ≥ 0, xk ∈ R3, yk ∈ R, uk ∈ R2, and
wk ∼ N (0, σ2).

Next, the model we will be using is

xk+1 = Ā(ᾱ)xk +Buuk +Bwwk,

yk = Cxk, (39)

where

Ā(ᾱ)
△
=

 ᾱ 0.3 2
1 0 1
0.3 0.6 −0.6

 , (40)

and ᾱ ∈ R. The model (39) can be rewritten in input-output
form as

ȳk+1 = −
3∑
i=1

F̄iȳk−i+1 +

3∑
i=1

Ḡiūk−i+1, (41)

where for i = 1, 2, 3, F̄i ∈ R and Ḡi ∈ R1×2 are found from

C(zI − Ā(ᾱ))−1Bu =
Ḡ1z

−1 + Ḡ2z
−2 + Ḡ3z

−3

1 + F̄1z−1 + F̄2z−2 + F̄3z−3
.

(42)

We consider ᾱ = 1.9, 2.7, 2.8, or 2.9 and use the SOF
H∞ controller designed in [16] for K̄, as shown in the first
two columns of Table VII. Note that if there is no noise,
i.e. σ2 = 0, K̄ stabilizes (38) whenever the eigenvalues of
A(α)+BuKC are all in the open unit disc. The set of α such
that, without noise, K̄ stabilizes (38) is found numerically
and presented in column 3 of Table VII.
TABLE VII: K̄ is the SOF H∞ controller for model (39), as designed in
[16]. Column 3 gives the set of α such that K̄ stabilizes plant (38).

ᾱ K̄ α interval s.t. K̄ stabilizing

1.9
[
−0.6637 −0.4965

]T
(0.6512, 2.1980)

2.7
[
−0.9353 −0.4686

]T
(2.0861, 2.8138)

2.8
[
−0.9654 −0.4402

]T
(2.2412, 2.8939)

2.9
[
−0.9932 −0.4089

]T
(2.3881, 2.9727)

Additionally, let ρ(·) denote the spectral radius of a square
matrix. Figure 3 shows, shaded in blue, ρ(A(α) + BuKC)
for all α such that ρ(A(α) +BuK̄C) < 1.

To compare the robustness to difference between ᾱ and
α of the fixed gain SOF controller uk = K̄yk versus our
adaptive SOF controller uk = θkyk, we test the adaptive
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controller on plant (38) for −3 ≤ α ≤ 6 in increments of
0.02 with σ2 = 0. We select tuning parameters P0 = 1,
λ = 1, plant initial condition x0 = [1 1 1]T, and model
initial conditions ȳi = 0, ūi = [0 0]T for i = 0,−1,−2.

For each α, we simulate for 0 ≤ k ≤ 5000 and consider
the plant (38) stabilized if, for all 4000 ≤ k ≤ 5000, θk
stabilizes the plant. If ρ(A(α) + BuθkC) has diverged, we
plot a red line downward in Figure 3. Otherwise, we plot an
upward line with height ρ(A(α)+Buθ5000C) in green if the
plant is stabilized and in red if not. Figure 3 shows, for each
ᾱ chosen, we greatly increase the set of α over which the
plant (38) is stabilized.

Fig. 3: Numerical stability analysis of non-adaptive and adaptive SOF
controllers on the plant (38) with different values of ᾱ and α. We plot
ρ(A(α) + BuK̄C) in blue solid. Next, for −3 ≤ α ≤ 5 in increments
of 0.02, if ρ(A(α) +BuθkC) has diverged, we plot a red line downward.
Otherwise, we plot a line upward with height ρ(A(α) + Buθ5000C) in
green or red, where green indicates that, for all 4000 ≤ k ≤ 5000,
ρ(A(α) +BuθkC) < 1 and red indicates otherwise.

To better illustrate the adaptive controller, consider the
case α = 2.5, ᾱ = 1.9, and K̄ = [−0.6637 −0.4965]T, with
noise wk ∼ N (0, 1). The matrix A(α)+BuK̄C has spectral
radius 1.4016 and thus K̄ does not stabilize the plant (38).
Next, we simulate (38) with the adaptive SOF controller with
the same parameters and initial conditions as used previously.
Figure 4 shows the response for 0 ≤ k ≤ 100. The matrix
A(α) + Buθ100C has spectral radius 0.9374 and thus θ100
stabilizes the plant (38).

VI. CONCLUSIONS AND FUTURE WORK

Motivated by the longstanding problem of stabilizing lin-
ear time-invariant plants by means of static output feedback,
this paper developed a warm-start adaptive static-output-
feedback control algorithm. Convergence of this algorithm
was proved for SISO first-order plants and demonstrated
numerically for higher order SISO and MIMO plants. Future
research will focus on extending convergence proofs to
higher order SISO plants and to MIMO plants.
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