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Abstract— It is well known that, for some systems, stabi-
lization can be achieved by open-loop control in the form
of high-frequency vibrations. Vibrational control is attractive
since it requires no sensors. On the other hand, however,
vibrational control requires careful selection of the frequency
and amplitude of the input. The present paper is aimed at
understanding the robustness of vibrational control and the
required control effort by applying nonlinear model predictive
control to the classical Kapitza pendulum. A numerical inves-
tigation shows that closed-loop control using nonlinear model
predictive control is significantly more efficient than open-loop
vibrational control with respect to signal power.

I. INTRODUCTION

Although stabilization is an invaluable benefit of feedback,
it is well known that, for some systems, stabilization can
be achieved by open-loop controller in the form of high-
frequency vibrations. This phenomenon was first analyzed
by A. Stephenson in 1908 within the context of the inverted
pendulum with periodic vertical base acceleration and further
analyzed in 1951 by P. L. Kapitza. Vibrational stabilization
has subsequently been applied to diverse applications, and
it has been observed in natural systems such as the flight
of hummingbirds and fruit flies [1]. A detailed overview of
vibrational stabilization is given in [2]. Vibrational stabiliza-
tion of the Kapitza pendulum (KP) has been widely studied
within the framework of the Mathieu equation [3], [4], [5],
[6], [7], [8]. A summary of various techniques applied to this
problem along with intuitive explanations are given in [9].

As noted in [2], averaging theory analysis of KP [10],
[11] applies to the damped case; the undamped KP is not
open-loop stabilizable. As pointed out in [2], the qualitative
nature of averaging theory provides no analytical guarantees
of stabilization for stability for specific choices of amplitude
and frequency. These are provided, however, by means of
the Ince-Strutt diagram, which shows regions of stability and
instability for the linearized system in terms of nondimen-
sionalized parameters.

The present paper revisits the problem of stabilizing KP
from a feedback control perspective. Although feedback
control is far more demanding than open-loop control in
terms of real-time sensing and computation, there are several
reasons to pursue this approach. First, as already noted, the
convergence of the angle of the undamped KP to zero is
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impossible, and thus low levels of damping are potentially
problematic. Next, it may be difficult in practice to determine
a sinusoidal amplitude and frequency for which stabilization
is guaranteed. Furthermore, vibrational stabilization may be
inefficient in the sense that, near the vertical equilibrium
angle, the amount of control signal power expended may
be excessive. Finally, KP provides a nonlinear benchmark
problem for assessing the effectiveness of nonlinear feedback
control techniques.

In the present paper, we apply model predictive control
to KP. A novel aspect of this study is the fact that double
integration of a periodic base acceleration input may lead to
divergence of the base displacement. For example, double
integration of sin t yields t − sin t, which is unbounded. In
physical experiments, the periodic base displacement is con-
strained by the mechanical system, and thus the correspond-
ing base acceleration has a periodic and thus bounded double
integral. Regardless of whether the vertical acceleration of
the base is given by an open-loop or closed-loop control law,
physical requirements demand that the corresponding base
displacement be bounded. The present paper thus accounts
for a mechanical base-displacement constraint, which is not
considered in the classical analysis.

The need to enforce a base-displacement constraint mo-
tivates the use of model predictive control. Since KP is
nonlinear, we require an implementation of nonlinear model
predictive control. To this end, we use a nonlinear model
predictive control technique based on linearization and dis-
cretization centered about predicted trajectories, and we
use quadratic programming to solve the constrained linear
optimization problem at each step. The main contribution
of the present paper is a numerical investigation of the
feasibility and effectiveness of nonlinear model predictive
control for feedback control of KP, including a comparison
of the effectiveness of closed-loop control as compared to
vibrational open-loop control.

II. MODELING OF THE KAPITZA PENDULUM

A. Equations of Motion

KP is an inverted pendulum that can be stabilized by
vertical excitation of the base. In this paper, KP is assumed
to consist of a massless rod with tip mass m. The dynamics
of KP are given by

m(lθ̈ + av sin θ) = mg sin θ − b(lθ̇ − vv sin θ), (1)

where m is the mass of the bob, g = 9.81 m/s2 is the
acceleration due to gravity, l is the length of the rod, b is
the coefficient of rotational viscous damping at the pin joint
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at the base P, vv and av are the speed and acceleration of P
in the z direction, respectively, and θ is the angle between
the positive vertical axis and the rod. Defining x1

4
= θ, x2

4
=

θ̇, x3
4
= z, x4

4
= ż, u

4
= av, so that vv = ż, we can express

(1) as

ẋ1 = x2, (2)

ẋ2 =
g

l
sinx1 −

b

m
x2 +

bx4

ml
sinx1 −

1

l
(sinx1)u, (3)

ẋ3 = x4, ẋ4 = u. (4)

x

z

l

θ

⇀
g

P

Fig. 1: The Kapitza pendulum.

In the absence of damping, it can be shown that setting
u(t) = av(t) ≡ g and x2(0) = θ̇(0) = 0 in (2)–(4) yields
equilibria for all values of x1(0) = θ(0). This corresponds
to the pendulum in free fall and thus unbounded vertical
displacement z. In order to preclude the free-fall-stabilization
solution, we consider constraints on the vertical displacement
z of P.

III. OPEN-LOOP CONTROL OF THE KAPITZA PENDULUM

A. Stability Analysis for Open-loop Control

It is shown in [12] that KP under vibrational stabilization
(VS) has an asymptotically stable periodic orbit, while [11]
shows that KP exhibits an exponentially stable 2π-periodic
solution. Assume that the base acceleration is Aω2 cosωt,
where A is the vibration displacement and ω is the vibration
frequency. Defining

ε
4
= A

l , ω0
4
=
√

g
l , Ω , ω

ω0
, Q , ω0ml2

b , (5)

we can express (1) as

d2θ
dτ2 + 1

ΩQ
dθ
dτ + (−1

Ω2 + A
l cos τ) sin θ = 0. (6)

Next, defining

µ
4
= 1

ΩQ , δ
4
= −1

Ω2 , (7)

and using the small-angle approximation for θ in (6) yields

d2θ
dτ2 + µ dθ

dτ + (δ + ε cos τ)θ = 0, (8)

which is a Mathieu equation. As shown in [7], the Mathieu
equation (8) can be used to construct the Ince-Strutt stability
diagram shown in Figure 2, which determines stabilizing
values of (ε, δ).

-1 -0.5 0
0

1

2

Fig. 2: Ince-Strutt stability diagram, which shows the stabil-
ity boundary of one region (ε ≤ 2) of KP without damping
[13] for which the response does not diverge.
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Fig. 3: Sampled-data feedback control architecture.

IV. CONTROL ARCHITECTURE AND OBJECTIVES

In Figure 3, let a representation of KP be given by

ẋ(t) = f [x(t), u(t), w(t)], (9)
y(t) = g[x(t), u(t), w(t)], (10)

where x(t) ∈ Rn is the state given by (2)–(4), u(t) ∈ Rm is
the control, w(t) ∈ Rlw is the disturbance, and y(t) ∈ Rp is
the output. For simplicity, the disturbance w(t) is assumed to
be piecewise constant within each interval kTs to (k+ 1)Ts,
at the value wk, where Ts > 0. We consider disturbance
torques, and thus w(t)

ml2 is added to (3). The measurement
y(t) of KP is corrupted by sensor noise v(t). The sample
operation yields yk

4
= y(kTs)+vk, where vk

4
= v(kTs) ∈ Rp

is the sampled sensor noise and Ts is the sampling time.
In order to facilitate state estimation we assume that yk
is available at 10 time instants within each sample period.
For all k ≥ 0 and i = 0, . . . , 9, these measurements are
denoted by yk,i

4
= y[(k− 1)Ts + iTs

10 ] + vk. The performance

objective is to require that yt,k
4
= Ctyk ∈ Rpt follow the

commanded trajectory rk ∈ Rpt , where Ct ∈ Rpt×p. The
inequality constraint objective is to satisfy the constraint
Cyc,k + D ≤ 0nc×1, where yc,k

4
= Ccyk ∈ Rpc×p and

C ∈ Rnc×pc and D ∈ Rnc .
To reflect physical control constraints we require that

umin ≤ uk ≤ umax, where umin ∈ Rm, umax ∈ Rm are
vectors of the minimum and maximum control magnitudes,
respectively, and ∆umin ≤ uk − uk−1 ≤ ∆umax, where
∆umin ∈ Rm,∆umax ∈ Rm are vectors of minimum
and maximum control move sizes, respectively. For KP the
vertical displacement z has constraints of the form −zlim ≤
zk ≤ zlim, where zk

4
= x3(kTs) = z(kTs). Thus, we assume

that measurements of x3 are available. As shown in Figure
3, the inputs to nonlinear model predictive control (NMPC)
controller are the command rk, the tracking output yt,k, and
the constrained output yc,k, which are used by NMPC to
produce uk ∈ Rm at each step k.
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V. OUTPUT-FEEDBACK NONLINEAR MODEL PREDICTIVE
CONTROL

A. Nonuniform Prediction Horizon

At step k, the prediction horizon is defined by
ts,1, . . . , ts,`, which divide the prediction horizon over `
possibly unequal steps. In particular, for all i = 1, . . . , `, the
predicted control sequence is given by u1|k, . . . , u`|k ∈ Rm.

We define the applied control at the next step as uk+1
4
= u1|k.

B. Linearization and Discretization

We linearize the nonlinear dynamics (9) and (10) centered
at (x̄1|k, ū1|k), . . . , (x̄`|k, ū`|k), where ū1|k, . . . , ū`|k is given
by the solution of the previous iteration of the optimization,
which is used to drive the nonlinear dynamics (9) initial-
ized at the estimated state x̂k through Two-Step Unscented
Kalman Filter [14, Sec. III] based on the measurement yk to
produce x̄1|k, . . . , x̄`|k. First, the continuous-time nonlinear
dynamics are linearized with a zero disturbance assumption
by defining

Ac,j|k
4
=
[
∆fx(x̄j|k, ūj|k, p1) · · · ∆fx(x̄j|k, ūj|k, pn)

]
, (11)

Bc,j|k
4
=
[
∆fu(x̄j|k, ūj|k, p1) · · · ∆fu(x̄j|k, ūj|k, pm)

]
, (12)

Cj|k
4
=
[
∆gx(x̄j|k, ūj|k, p1) · · · ∆gx(x̄j|k, ūj|k, pn)

]
, (13)

Dj|k
4
=
[
∆gu(x̄j|k, ūj|k, p1) · · · ∆gu(x̄j|k, ūj|k, pm)

]
, (14)

where Ac,j|k ∈ Rn×n, Bc,j|k ∈ Rn×m, Cj|k ∈ Rp×n,
Dj|k ∈ Rp×m, and for all i = 1, . . . , n,

∆fx(x̄j|k, ūj|k, pi)
4
=

[f(x̄j|k+piei,ūj|k,0)−f(xj|k,uj|k,0)]

pi
, (15)

∆gx(x̄j|k, ūj|k, pi)
4
=

[g(x̄j|k+piei,ūj|k,0)−g(xj|k,uj|k,0)]

pi
, (16)

pi ∈ R and ei ∈ Rn are the perturbation magnitude and the
standard basis vectors, respectively, and for all i = 1, . . . ,m,

∆fu(x̄j|k, ūj|k, j, pi)
4
=

[f(x̄j|k,ūj|k+piei,0)−f(xj|k,uj|k,0)]

pi
, (17)

∆gu(x̄j|k, ūj|k, j, pi)
4
=

[g(x̄j|k,ūj|k+piei,0)−g(xj|k,uj|k,0)]

pi
, (18)

ei ∈ Rm are the perturbation magnitude and the stan-
dard basis vectors, respectively, ∆fx(·),∆fu(·) ∈ Rn, and
∆gx(·),∆gu(·) ∈ Rp. We choose pi = 1e−8 for all i. Next,
define

M
4
=

[
Ac,j|k Bc,j|k
0m×n 0m×m

]
∈ R(n+m)×(n+m), E

4
= eMts,j ,

(19)

then the discretized counterparts of the matrices
Ac,j|k, Bc,j|k, are given by Aj|k

4
= EA, Bj|k

4
= EB ,

where EA is the submatrix formed by the first n rows and
first n columns of E, and EB is the submatrix formed by
the first n rows and the last m columns of E.

Thus, for all j = 1, . . . , `, the discretized and
approximately linearized dynamics about the trajectory

(x̄1|k, ū1|k), . . . , (x̄`|k, ū`|k), are given by

xj|k − x̄j|k = Aj−1|k(xj−1|k − x̄j−1|k)

+Bj−1|k(uj−1|k − ūj−1|k), (20)
yj|k − ȳj|k = Cj|k(xj|k − x̄j|k) +Dj|k(uj|k − ūj|k), (21)

where x̄0|k
4
= xk and ū0|k

4
= uk.

C. Quadratic Programming

In order to track the reference by penalizing the input
move size and the given constraint violation with relaxation
through the horizon, at each step k, the predicted control
u1|k is obtained by solving the QP minimization

min
X1|k,ε

(Yt,1|k −R1|k)TQt(Yt,1|k −R1|k)

+ ∆UT
1|kRt∆U1|k + εTSε, (22)

subject to
−F1|kX1|k = X0, (23)
C`Yc,1|k +D` ≤ ε, (24)

Umin ≤ U1|k ≤ Umax, (25)
∆Umin ≤ ∆U1|k ≤ ∆Umax, (26)

where

X1|k
4
=
[
xT

1|k uT
1|k · · · x

T
`|k uT

`|k

]T
∈ R`(m+n), (27)

where for all j = 1, . . . , `, yt,j|k
4
= Ctyj|k ∈ Rpt , Qj ∈

Rpt×pt are the tracking-output weights, Rj ∈ Rm×m are the
control move size weights,

Yt,1|k
4
=

yt,1|k
...

yt,`|k

 ∈ R`pt , R1|k
4
=

r1|k
...
r`|k

 ∈ R`pt , (28)

Qt
4
=


(
ts,1
ts,1

)2Q1 · · · 0
...

. . .
...

0 · · · (
ts,`
ts,1

)2Q`

 ∈ R`pt×`pt , (29)

Rt
4
=


(
ts,1
ts,1

)2R1 · · · 0
...

. . .
...

0 · · · (
ts,`
ts,1

)2R`

 ∈ R`m×`m, (30)

C`
4
= I` ⊗ (CCc) ∈ R`nc×`p,D`

4
= 1`×1 ⊗D ∈ R`nc , (31)

U1|k
4
=
[
uT

1|k · · · uT
`|k

]T
∈ R`m, (32)

Umin
4
=1`×1⊗umin∈R`m, Umax

4
=1`×1⊗umax∈R`m, (33)

∆Umin
4
= 1`×1 ⊗∆umin ∈ R`m, (34)

∆Umax
4
= 1`×1 ⊗∆umax ∈ R`m, (35)

∆U1|k
4
=


u1|k − uk
u2|k − u1|k

...
u`|k − u`−1|k

 ∈ R`m, S = µsI`nc , (36)
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µs ∈ R is the slack weight. Note that (23) is an equality
constraint that is satisfied if xi+1|k = Ai|kxi|k +Bi|k for all
i = 1, . . . , `− 1, and is expressed in terms of

F1|k
4
=


Ix 0n · · · 0n 0n
N1|k Ix · · · 0n 0n

...
...

. . .
...

...
0n 0n · · · Ix 0n
0n 0n · · · N`−1|k Ix

∈ R`n×`(m+n), (37)

X0
4
=

[
A0|kxk +B0|kuk

0`(n−1)×1

]
∈ R`n, (38)

0n
4
= 0n×(m+n), Ix

4
=
[
−In 0n×m

]
∈ Rn×(m+n), (39)

where for all i = 1, . . . , `− 1,

Ni|k
4
=
[
Ai|k Bi|k −In 0n×m

]
∈ Rn×2(m+n). (40)

VI. NUMERICAL SIMULATIONS

This section investigates the effects of model mismatch
and disturbance on open-loop vibrational stabilization (VS)
and closed-loop NMPC using numerical simulations. We also
investigate the control effort required by each method by
comparing input signal power. We assume that we have
sampled and noisy measurements of θ and z and thus,[
yt,k yc,k

]T 4
=
[
θ(kTs) z(kTs)

]T
+ vk. The control uk

is the vertical base acceleration in m/s2. We set rk ≡ 0
for stabilization. For all of the examples we apply NMPC
with the parameters listed in Table I. For all of the examples

TABLE I: NMPC Parameters, descriptions, and values.

Parameter Description Value
Ts Sample time 0.005 s/step
` Prediction horizon 10

ts,1, . . . , ts,`, Horizon breakup linspace(Ts, 2`Ts, `)
pi Linearization perturbation 10−8

(umin, umax) Control magnitude limits (−1500, 1500) m/s2

(∆umin,∆umax) Control move size limits 3·(−105, 105)m/s3

zlim Base displacement limit 0.5 m
Qi Tracking-output weights 104

Ri Control move size weights 10−4

S Slack weight 109I`

QF
Process Covariance

Matrix (UKF) 3.4907 × 10−5 In

RF
Measurement Covariance

Matrix (UKF)

[
2.6180 × 10−5

10−3

]
pF

Initial Covariance
Amplitude (UKF) 1

α
Sample Weighting
Parameter (UKF) 1.2

we consider the KP model (2)–(4) where g = 9.81 m/s2,
l = 0.2485 m, m = 1 kg, and b = 0.0628 kg/s, unless
stated otherwise. It can be shown that with these choice of
parameters, the linearized KP dynamics have a 1 Hz natural
frequency and the damping ratio 0.01. Note that the base
displacement limit zlim is selected to reflect the maximum
amplitude of base displacement required by VS for KP
with the given parameters. Note that unstable responses are
clipped in plots. A nonuniform horizon with increasing step
sizes is selected in order to capture a longer interval of time

without increasing the optimization complexity. Smaller step
sizes closer to the present time step facilitate more accurate
computations of uk+1.

Example 1. Vibrational and closed-loop stabilization
of KP. For VS, we consider (ε, δ) = (1.5,−0.7) on the Ince-
Strutt diagram in Figure 2. The value of (ε, δ) correspond to
an amplitude and frequency of base acceleration given by (5)
and (7), respectively. In order to facilitate comparison, the
values of (ε, δ) are selected so that the resulting amplitude
of the base acceleration is similar to the output constraint on
z in NMPC.

Figure 4 shows VS for a pair of (ε, δ) and closed-
loop stabilization using NMPC. Figure 4 also shows that
the asymptotic angle error with closed-loop stabilization
is smaller than that with VS. Moreover, the NMPC base
displacement is asymptotically smaller in magnitude than the
vibrational control signal. Furthermore, NMPC reduces the
command-following error faster than VS.

�
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Fig. 4: Example 1: Stabilization of KP using NMPC with
the parameters in Table I and using VS for given (ε, δ)
pairs. (a) shows the angle of the pendulum; (b) shows the
base displacement; (c) shows the angular velocity of the
pendulum; (d) shows the base acceleration; (e) shows the
absolute angle error; and (f) shows the base jerk. (d) and (f)
have their magnified sections on the right hand side.

Example 2. Effect of Initial Conditions This example
investigates the domain of attraction of VS and NMPC
relative to the initial angle θ(0). Figure 6 shows that for
θ0 = 0.57◦ VS stabilizes KP for all values of (ε, δ) within
the theoretical boundary, however, for θ0 = 10◦ VS stabilizes
KP for significantly fewer values of (ε, δ). Figure 6(b) shows
the largest values of θ(0) versus ε for two values of δ for
which VS asymptotically stabilizes KP. Figure 7 shows that
NMPC stabilizes KP with θ(0) = ±74◦, whereas it is unable
to stabilize KP for with θ(0) = ±80◦. Thus, NMPC has a
larger domain of attraction than VS with respect to the initial
angle θ(0) of KP. �

Example 3. Effect of model mismatch. This example
investigates the effect of model mismatch on VS and NMPC.
In particular, we simulate KP with 10% and 50%, of the
pendulum length relative to the model used in NMPC and
used to determine the (ε, δ) for VS. Figures 8(a) and (b) show
that NMPC with erroneous models stabilizes KP, whereas VS
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Fig. 5: Example 5: Output versus input signal power for VS and NMPC.
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Fig. 6: Example 2: (a) blue and red dots denote values
of (ε, δ) for which the numerically simulated KP (2)–(4)
is stable under VS for θ(0) = 0.57◦ and θ(0) = 10◦,
respectively; (b) shows the largest values of θ(0) for which
VS is stabilizing versus ε for δ = −0.01 and δ = −0.05.
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Fig. 7: Example 2: For NMPC, (a) show the pendulum angle
θ, (b) shows base position z, (c) shows the largest possible
stabilizing and destabilizing initial angles θ(0).

fails to stabilize KP for some combiations of model mismatch
and (ε, δ). �
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Fig. 8: Example 3: Stabilization of KP with VS and NMPC
with model pendulum length mismatch of (a) +10%; (b)
+50%. The plots are clipped and thus do not show demon-
strate diverging signals.

Example 4. Effect of noise and disturbance. This
example investigates the effect of zero-mean white Gaussian

sensor noise and torque disturbance on VS and NMPC. We
simulate four cases
i) vk ∼ N

(
0,diag(

[
0.00012 0.022

]
)
)

and wk ≡ 0,
ii) vk ≡ 0 and wk ≡ −0.005,
iii) vk ≡ 0 and wk = 0.01 sin 0.0157k,
iv) vk ≡ 0 and wk ≡ N (0, 0.0012).

Figure 9 shows that NMPC stabilizes KP for all four cases.
The signal to noise ratio for angle and base position is < 20
dB for case 1 shown in Figure 9(a). Note that VS does not
use sensors and is not affected by sensor noise in case 1.
Figures 9(b) and (d) show that VS fails to stabilizes KP for
cases 2 and 4, respectively. �

-16

-8

0

8

-0.4

0

0.4

0 5 10

-10

0

10

0 5 10

-9

0

9

Fig. 9: Example 4: Stabilization of KP with VS and NMPC
with (a) sensor noise, (b) fixed torque disturbance, (c)
sinusoidal torque disturbances, and (d) zero-mean white
Gaussian.

Example 5. Signal Power Efficiency of NMPC. This
example investigates the relation between the input signal
power and the output signal power of the VS and NMPC. We

define Pin
4
=

N

Σ
i=1

|ż(iTs)|2
N and Pout

4
=

N

Σ
i=1

|θ̇(iTs)|2
N , where N is

the number of data points in each simulation. Figure 5 shows
log10 |Pout| versus log10 |Pin| for simulations with no model
mismatch or disturbance, model mismatch, and disturbance.
Note that in general simulations corresponding to NMPC
has smaller values of log10 |Pout| than simulations with VS.
Furthermore, several simulations corresponding to NMPC
have smaller values of log10 |Pin| than simulations with VS.
This demonstrates that in general NMPC requires less control
power and wastes less power vibrating the pendulum than
VS. �
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VII. CONCLUSIONS

In this paper, we explored the feasibility of applying
an output-feedback nonlinear model predictive controller
(NMPC) to the Kapitza pendulum (KP) stabilization prob-
lem. We demonstrated that NMPC stabilizes KP with less
control effort than open-loop vibrational stabilization (VS) in
several cases. Furthermore, we demonstrated that NMPC is
more robust to initial conditions, disturbances and modeling
errors than VS. This suggests that NMPC is a practically
viable alternative to VS.
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