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Abstract— This paper presents a novel approach to model ref-
erence adaptive control inspired by the adaptive pole-placement
technique of Elliot and based on retrospective cost optimization (RC-
MRAC). RC-MRAC is applicable to nonminimum-phase (NMP)
systems assuming that the NMP zeros are known. Under this assump-
tion, the advantage of RC-MRAC is a reduced need for persistency.

I. INTRODUCTION

The objective of model reference adaptive control (MRAC)
is to have the output of an uncertain system follow the response
of a given reference system. The literature on MRAC and its
applications is vast and varied, for example, [1], [2], [3], [4].
MRAC methods can be divided into two categories, namely,
indirect and direct. Indirect MRAC uses system identification
followed by controller adaptation using the identified model,
whereas direct MRAC adapts the controller using limited
modeling information. Both types of methods typically use either
gradient descent or recursive least squares for the adaptation [5],
[6], [7], [8]. MRAC methods have been extensively developed,
including extensions to nonminimum-phase (NMP) and nonlinear
systems [9], [10], [11], [12], [13].

The present paper develops a novel MRAC technique based on
retrospective cost adaptive control (RCAC). RCAC is a direct adap-
tive control method for command following and disturbance rejec-
tion for systems with uncertain dynamics and disturbance spectra
[14]. For SISO discrete-time or sampled-data systems, RCAC
requires knowledge of the sign of the leading numerator coefficient,
relative degree, and NMP zeros. RCAC minimizes a retrospective
performance measure based on the difference between filtered past
control inputs and filtered, re-optimized past control inputs. In or-
der to further reduce the dependence on prior modeling, an indirect
adaptive control extension of RCAC was developed in [15].

Retrospective cost model reference adaptive control (RC-
MRAC) was developed in [16] with stability analysis given
in [17]. A related technique was developed in [18]. As in the
case of RCAC, RC-MRAC is applicable to discrete-time and
sampled-data systems with known NMP zeros; minimum-phase
zeros need not be known.

The version of RC-MRAC developed in the present paper is
inspired by the adaptive pole-placement algorithm developed
by Elliott [9], [10]. The remarkable feature of the approach of
[9], [10] is its applicability to NMP systems with unknown NMP
zeros. The drawback of this technique is the need for sufficient
persistency in order to achieve command following, even for
step commands. Although this requirement was alleviated in [19]
through the use of DREM, the need for persistency is nontrivial.

1Department of Aerospace Engineering, The University of Michigan, Ann
Arbor, MI 48109, USA

The goal and contribution of the present paper is to develop
RC-MRAC and assess its performance from the perspective of
both command following and adaptive pole-placement. Numerical
examples show that, in contrast to [19], RC-MRAC does not
require persistency. The price paid for alleviating the need for
persistency is knowledge of the NMP zeros.

The structure of the paper is as follows. Section II gives an
overview of the MRAC problem. Section III gives the development
of RC-MRAC. Section IV provides examples of RC-MRAC
for a variety of systems, including minimum-phase and NMP,
and an example extending the algorithm to disturbance rejection.
Additionally, a comparison to Elliot’s adaptive pole-placement
controller for a case where persistency is minimal is given.

II. MODEL REFERENCE ADAPTIVE CONTROL

Consider the discrete-time SISO system

yk=
N(q−1)

D(q−1)
uk, (1)

where

N(q−1)
△
=

n∑
i=nr

Niq
−i, (2)

D(q−1)
△
=1+

n∑
i=1

Diq
−i, (3)

are coprime, Nnr
≠0, and nr is the relative degree of N(q−1)

D(q−1) as
a rational function of q. In the model reference adaptive control
(MRAC) problem, the goal is to find a controller Gc(q

−1) such
that the output yk follows the desired reference response ym,k to
a command rk given by

ym,k=
Nm(q

−1)

Dm(q−1)
rk, (4)

where

Nm(q
−1)

△
=

n∑
i=nr

Nm,iq
−i, (5)

Dm(q
−1)

△
=1+

n∑
i=1

Dm,iq
−i. (6)

As shown in Figure 1, the error ek between the actual system
response yk and the reference model response ym,k is used to
update the controller. The direct MRAC problem differs from the
indirect case in that the system is not identified, but knowledge
of the NMP zeros of (1) is typically needed to prevent unstable
pole-zero cancellation.
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Fig. 1. Block diagram of the direct model reference adaptive control problem.

III. RETROSPECTIVE COST
MODEL REFERENCE ADAPTIVE CONTROL (RC-MRAC)

A. RC-MRAC Development

Defining

xk
△
=

1

D(q−1)
uk, (7)

which satisfies
D(q−1)xk=uk, (8)

it follows that (1) can be written as

yk=N(q−1)xk. (9)

Let N(q−1) be factored as

N(q−1)=Nnr
Nu(q

−1)Ns(q
−1)q−nr, (10)

where Nu(q
−1) and Ns(q

−1) as a function of q are monic
polynomials of order nu and ns whose roots have modulus at
least 1 and less than 1, respectively. Next, consider the controller

uk=Nc(q
−1)yk+Dc(q

−1)uk+Rc(q
−1)F(q−1)rk, (11)

where

Nc(q
−1)

△
=

n∑
i=1

Nc,iq
−i, (12)

Dc(q
−1)

△
=

n∑
i=1

Dc,iq
−i, (13)

Rc(q
−1)

△
=Rc,0+

ns∑
i=1

Rc,iq
−i, (14)

F(q−1)
△
=1+

n−ns∑
i=1

Fiq
−i, (15)

and F(q−1) is an arbitrary stable monic polynomial in q of order
n−ns. Combining (8), (9), and (11) yields

D(q−1)xk=Nc(q
−1)N(q−1)xk+Dc(q

−1)D(q−1)xk

+Rc(q
−1)F(q−1)rk, (16)

which implies

xk=
Rc(q

−1)F(q−1)

D̃(q−1)
rk, (17)

where

D̃(q−1)
△
=D(q−1)−Nc(q

−1)N(q−1)−Dc(q
−1)D(q−1).

(18)

Proposition 3.1: Let the desired closed-loop poles be the roots of

Dm(q
−1)=1+

n∑
i=1

Dm,iq
−i, (19)

and assume there exist N∗
c (q

−1) and D∗
c(q

−1) such that

Dm(q
−1)Ns(q

−1)F(q−1)=D̃∗(q−1), (20)

where

D̃∗(q−1)
△
=D(q−1)−N∗

c (q
−1)N(q−1)

−D∗
c(q

−1)D(q−1). (21)

Then, the closed-loop dynamics are given by

yk=
NnrNu(q

−1)Rc(q
−1)q−nr

Dm(q−1)
rk. (22)

Proof: Using (9), (17) with D̃(q−1) = D̃∗(q−1) and (20)
yields

yk=N(q−1)xk=
N(q−1)Rc(q

−1)F(q−1)

D̃∗(q−1)
rk

=
N(q−1)Rc(q

−1)F(q−1)

Dm(q−1)Ns(q−1)F(q−1)
rk

=
Nnr

Nu(q
−1)Rc(q

−1)q−nr

Dm(q−1)
rk. □

For later use, note that multiplying both sides of (21) by xk, and
using (8), (9), and (20) yields

Dm(q
−1)Ns(q

−1)F(q−1)xk

=uk−N∗
c (q

−1)yk−D∗
c(q

−1)uk. (23)

Proposition 3.2: Assume there exists R∗
c(q

−1) such that

Nm(q
−1)=Nnr

Nu(q
−1)R∗

c(q
−1)q−nr, (24)

and define

Ñc(q
−1)

△
=N̂c(q

−1)−N∗
c (q

−1), (25)

D̃c(q
−1)

△
=D̂c(q

−1)−D∗
c(q

−1), (26)

R̃c(q
−1)

△
=R̂c(q

−1)−R∗
c(q

−1). (27)

Then,

Nnr
Nu(q

−1)q−nr[Ñc(q
−1)yk+D̃c(q

−1)uk+R̃c(q
−1)rk]

=Dm(q
−1)F(q−1)(yk−ym,k)

−Nnr
Nu(q

−1)q−nr[uk−N̂c(q
−1)yk

−D̂c(q
−1)uk−R̂c(q

−1)rk]. (28)
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Proof: Multiplying both sides of (23) by Nnr
Nu(q

−1)q−nr

and using (9) yields

Dm(q
−1)F(q−1)yk

=NnrNu(q
−1)q−nr

[
uk−N∗

c (q
−1)yk−D∗

c(q
−1)uk

]
.

(29)

Subtracting F(q−1)Nm(q
−1)rk from both sides of (29) and using

(4) yields

Dm(q
−1)F(q−1)(yk−ym,k)

=Nnr
Nu(q

−1)q−nr
[
uk−N∗

c (q
−1)yk−D∗

c(q
−1)uk

]
−F(q−1)Nm(q

−1)rk. (30)

Then combining (24) with (30) yields

Dm(q
−1)F(q−1)(yk−ym,k)

−NnrNu(q
−1)q−nr[uk−N∗

c (q
−1)yk−D∗

c(q
−1)uk

−R∗
c(q

−1)F(q−1)rk]=0. (31)

Finally, substituting (25)-(27) into (31) yields (28). □

B. RC-MRAC Algorithm

Note that all the terms on the right-hand side of (28) are known,
and thus the sum of terms on the left-hand side is known despite
the fact that Ñc(q

−1), D̃c(q
−1), and R̃c(q

−1) are individually
unknown. Furthermore, if (25)-(27) are all zero, then both sides
of (28) are zero. We thus define the performance variable

zk
△
=Dm(q

−1)F(q−1)(yk−ym,k)

−NnrNu(q
−1)q−nr[uk−N̂c(q

−1)yk−D̂c(q
−1)uk

−R̂c(q
−1)F(q−1)rk] (32)

=Nnr
Nu(q

−1)q−nr[Ñc(q
−1)yk+D̃c(q

−1)uk

+R̃c(q
−1)F(q−1)rk]. (33)

Note that, if Ñc(q
−1), D̃c(q

−1), and R̃c(q
−1) are all zero, then

zk is zero. We thus seek estimates N̂c(q
−1), D̂c(q

−1), and
R̂c(q

−1) of N∗
c (q

−1), D∗
c(q

−1), and R∗
c(q

−1), respectively, that
minimize the magnitude of zk.

Proposition 3.3: Define

θ
△
=[N∗

c,1 ··· N∗
c,n D∗

c,1 ··· D∗
c,n

R∗
c,0 ··· R∗

c,ns
]T, (34)

then

zf,k−uf,k+Φf,kθ=0, (35)

where

rf,k
△
=F(q−1)rk (36)

Φk
△
=[yk−1 ··· yk−n uk−1 ··· uk−n

rf,k ··· rf,k−ns], (37)

Φf,k
△
=Nnr

Nu(q
−1)q−nrΦk, (38)

uf,k
△
=Nnr

Nu(q
−1)q−nruk. (39)

zf,k
△
=Dm(q

−1)F(q−1)(yk−ym,k). (40)

Since N∗
c (q

−1), D∗
c(q

−1), and R∗
c(q

−1) are unknown, the
goal is to solve the regression (35) at each step k to obtain the
estimate θ̂k. The estimation error is thus given by

ẑk(θ̂k)
△
=zf,k−uf,k+Φf,kθ̂k. (41)

For regression at each step, recursive least squares (RLS) is used
to minimize the cost function

Jk(θ̂k)
△
=

k∑
i=1

λk−i[ẑi(θ̂i)
Tẑi(θ̂i)]

+λk
(
θ̂k−θ̂0

)T

Rθ

(
θ̂k−θ̂0

)
, (42)

where λ∈(0,1] is the forgetting factor. Using the computed RLS
solution and (11), the control input at step k+1 is given by

uk+1=Φk+1θ̂k+1. (43)

Note that, it is assumed Nnr , Nu(q
−1), nr, and n are known a

priori.

IV. EXAMPLES

This section applies RC-MRAC to a variety of systems and
commands rk. Example 4 provides an example of how RC-MRAC
can be modified to handle external disturbances. Each simulation
is ran for 200 steps, where the following performance metric using
the model-following error ek=yk−ym,k is used

∥e∥△
=

√√√√ 200∑
i=101

e2i . (44)

For the command, a square-wave signal with a period of 50 steps
is used.

A. Example 1: Minimum-Phase System

Consider the system

N(q−1)

D(q−1)
=

q−1−0.5q−2

(1−ρeȷνq−1)(1−ρe−ȷνq−1)
, (45)

and reference model

Nm(q
−1)

Dm(q−1)
=

q−1−0.2q−2

(1−0.5eȷ
π
2 q−1)(1−0.5e−ȷπ

2 q−1)
. (46)

We now demonstrate the model-following performance of RC-
MRAC for various values of ρ and ν for square-wave commands.
F(q−1) is chosen as

F(q−1)=(1+0.5q−1), (47)

and RLS is initialized with θ̂0=06×1, Rθ=10−5I6 and λ=1.
The model-following error versus the pole locations of the

system is shown in Figure 2 for various values of ρ and ν. Note that
the model-following performance degrades when the system poles
are closer to the system zero. The response of the system for ρ=0.5
and ν= π

4 is given in Figure 3, and the resulting closed-loop system
after 200 steps is compared to the reference model (46) in Figure 4.
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Fig. 2. Example 1. The log of the model-following error metric is shown versus
the pole locations of the system.
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Fig. 3. Example 1. The response of the system for ρ = 0.5 and ν = π
4

is
shown. Clockwise from top left shows model-following error ek, control input
uk, controller coefficients θ̂ associated with rk, and controller coefficients θ̂
associated with yk and uk.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4. Example 1. At step 200, the desired closed-loop poles and zeros are shown
along with the actual closed-loop poles and zeros. Note that the actual closed-loop
system matches the reference model.

B. Example 2: NMP System
Consider the system

N(q−1)

D(q−1)
=

q−1−1.5q−2

(1−ρeȷνq−1)(1−ρe−ȷνq−1)
, (48)

and reference model

Nm(q
−1)

Dm(q−1)
=

q−1−1.5q−2

(1−0.5eȷ
π
2 q−1)(1−0.5e−ȷπ

2 q−1)
. (49)

We now demonstrate the model-following performance of
RC-MRAC on a NMP system for various values of ρ and ν for

square-wave commands. F(q−1) is chosen as

F(q−1)=
(
1−0.25q−2

)
, (50)

and RLS is initialized with θ̂0=05×1, Rθ=10−5I5 and λ=1.
The model-following error versus the pole locations of the

system is shown in Figure 5 for various values of ρ and ν. The
response of the system for ρ=0.5 and ν = π

4 is given in Figure
6, and the resulting closed-loop system after 200 steps is compared
to the reference model (49) in Figure 7. Note that the controller
convergence rate is much slower than in the minimum-phase case
leading to higher model-following error after 200 steps.

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

-4

-3

-2

-1

0

Fig. 5. Example 2. The log of the model-following error metric is shown versus
the pole locations of the system.
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Fig. 6. Example 2. Response of the system is shown for ρ= 0.5 and ν = π
4

.
Clockwise from top left shows model-following error ek, control input uk,
controller coefficients θ̂ associated with rk, and controller coefficients θ̂ associated
with yk and uk.

C. Example 3: Uncertain NMP System
Consider the system in Example 2, but now the NMP zero is

uncertain with true location z=1.5 and assumed location z=1.4.
The reference model then becomes

Nm(q
−1)

Dm(q−1)
=

q−1−1.4q−2

(1−0.5eȷ
π
2 q−1)(1−0.5e−ȷπ

2 q−1)
. (51)

We now demonstrate the model-following performance of
RC-MRAC on the uncertain NMP system for various values of ρ
and ν for square-wave commands. F(q−1) and RLS are initialized
as in Example 2.

The model-following error versus the pole locations of the system
is shown in Figure 8 for various values of ρ and ν. Note that
the system remains stable for all tested system values despite the
uncertain NMP zero. The large error is due to the inability of
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Fig. 7. Example 2. At step 200, the desired closed-loop poles and zeros are shown
along with the actual closed-loop poles and zeros. Note that the actual closed-loop
system is very close to the reference model.

feedback control to move the NMP zero from its location z=1.5 to
the desired location z=1.4. The response of the system for ρ=0.5
and ν= π

4 is given in Figure 9, and the resulting closed-loop system
after 200 steps is compared to the reference model (51) in Figure 10.
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Fig. 8. Example 3. The log of the model-following error metric is shown versus
the pole locations of the system.
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Fig. 9. Example 3. Response of the system is shown for ρ= 0.5 and ν = π
4

.
Clockwise from top left shows model-following error ek, control input uk,
controller coefficients θ̂ associated with rk, and controller coefficients θ̂ associated
with yk and uk.

D. Example 4: Harmonic Disturbance
Consider the same system, reference model, and F(q−1) as in

Example 1. We now place an unknown single harmonic disturbance
at a frequency of 0.35 radians per step at the input of the system. To
accomplish harmonic disturbance rejection and model-following,
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Fig. 10. Example 3. At step 200, the desired closed-loop poles and zeros are shown
along with the actual closed-loop poles and zeros. Note the discrepancy between
the actual unmodeled zero at z=1.5 and the reference model zero at z=1.4.

we increase the order used in the controller to n=4, and set ns=3
to match the desired closed-loop relative degree. RLS is initialized
with θ̂0=012×1, Rθ=10−5I12 and λ=1

The model-following error versus the pole locations of the system
is shown in Figure 11 for various values of ρ and ν. Note that the
model-following performance degrades when the system poles are
closer to the system zero. The response of the system for ρ=0.5 and
ν= π

4 is given in Figure 12, and the resulting closed-loop system
after 200 steps is compared to the reference model (46) in Figure 13.
In Figure 13 notice that the closed-loop system from the disturbance
w to the measurement y has zeros at the disturbance frequency.
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Fig. 11. Example 4. The log of the model-following error metric is shown versus
the pole locations of the system.

E. Example 5: Comparison with Elliot’s Adaptive Pole-Placement
Controller

Consider the same system, reference model, and F(q−1) as in
Example 2. To demonstrate the reduced persistency requirements
of RC-MRAC, we compare the command following performance
between Elliot’s adaptive pole-placement controller (APPC) to
RC-MRAC for a step command of height 0.01. The arbitrary
polynomial q(q−1) in [9] is chosen to be equal to F(q−1). Both
algorithms attempt to place the closed-loop poles at Dm(q

−1).
The model-following error versus the pole locations of the system
is shown in Figure 14 for various values of ρ and ν. RC-MRAC
has a more consistent response and lower error compared to APPC
for a wide range of plant values.

V. CONCLUSION

Retrospective cost model reference adaptive control (RC-
MRAC) was developed and investigated. This controller places the
closed-loop poles of the system to match the desired closed-loop
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Fig. 12. Example 4. Response of the system is shown for ρ=0.5 and ν= π
4

.
Clockwise from top left shows model-following error ek, control input uk,
controller coefficients θ̂ associated with rk, and controller coefficients θ̂ associated
with yk and uk.
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Fig. 13. Example 4. Left shows the desired closed-loop poles and zeros versus
the actual closed-loop poles and zeros at step 200. Note that the actual closed-loop
system is very close to the reference model. Right shows the closed-loop response
between the disturbance and the measurement. Note that the controller places
zeros at the disturbance frequencies

poles given by a reference model provided that the leading
numerator coefficient, relative degree, system order, and NMP
zeros are known. RC-MRAC was shown to handle uncertainty
in the NMP zero knowledge and was stable over a wide range of
systems. Additionally, it was shown that, with a slight modification,
RC-MRAC can reject harmonic disturbances. For situations with
little persistency, RC-MRAC outperforms Elliot’s APPC at the
price of knowledge of the NMP zeros.

Future work will extend RC-MRAC to the MIMO case following
a similar development for RCAC given in [14]. A key challenge is
the development of stability results for RC-MRAC. Given the devel-
opment of stability results for similar algorithms [8], [9], a stability
result for RC-MRAC will closely follow established arguments.
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