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Abstract— Thermoacoustic systems are self-oscillating due to
the fact that a constant input (e.g., fuel rate in gas-turbine
combustors) yields an asymptotically oscillatory response. This
behavior arises from the interaction between combustion and
acoustics, resulting in thermoacoustic oscillations. Under varying
operating conditions, the dynamics of thermoacoustic systems
may change dramatically, which may require that active sup-
pression controllers can be tuned for specific working conditions.
This work provides an experimental investigation of retrospective
cost adaptive control for suppressing thermoacoustic oscilla-
tions under sampled-data control and varying system operat-
ing conditions. This approach is first applied to a Rijke-tube
emulation model for hyperparameter selection and subsequently
to an experimental Rijke-tube setup. Physical experiments are
conducted to investigate the performance and robustness of the
adaptive controller under varying operating conditions.

Index Terms— Active control, adaptive control, Rijke tube, self-
excited systems (SESs), suppression, thermoacoustic oscillations.

I. INTRODUCTION

A SELF-EXCITED system (SES) has the property that,
for all constant inputs, the response is asymptotically

oscillatory. These oscillations arise from a combination of
destabilizing and stabilizing effects. Roughly speaking, desta-
bilization causes the response to grow from the vicinity
of an equilibrium, whereas, far from the equilibrium, the
effective feedback gain decreases, leading to oscillations [1].
A typical control objective for SES is thus suppression of the
oscillations. Although a Lyapunov-stable linear system with
nonzero poles on the imaginary axis or time delays may have
an oscillatory response, such a system is not robustly self-
excited; consequently, a realistic SES model is necessarily
nonlinear.

SESs arise in a vast range of applications, including bio-
chemical systems, aeroelasticity, and combustion [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11]. As in the case of a
wind turbine, whose blades spin in response to the ambient
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wind flow, self-excited dynamics can be extremely useful.
In other cases, however, SES dynamics may be undesirable,
as demonstrated by the destruction of the Tacoma-Narrows
bridge, which was due to trailing vortices rather than resonant
modes [12]. In addition to their practical applications, SES
systems provide motivation for developing new techniques for
modeling and control [13], [14], [15], [16], [17], [18].

A widely studied SES is the Rijke tube, which consists
of a cylinder and a heating element. A Rijke tube is a spa-
tially 1-D thermoacoustic system that is highly susceptible to
thermoacoustic oscillation. Under constant heating, the Rijke
tube undergoes self-excited oscillations due to the interaction
between the heat source and fluid dynamics. The physics of
the Rijke tube has been extensively analyzed, with the original
work by Rijke [19] and subsequent work of Rayleigh [20].
In particular, Rayleigh showed that, under certain conditions
involving heat and geometry, thermoacoustic oscillations arise
from the feedback interaction of the expansion and com-
pression of the air and the heat flux. In thermoacoustic
oscillations, the positive feedback between the acoustic field
of the system and the unsteady rate of heat release from
combustion creates pressure waves whose amplitude increases
until it is limited by nonlinear effects. Self-excited pressure
oscillations can cause structural vibrations within a combustor,
which results in premature component wear and thus reduced
lifespan of the combustor, reduced efficiency, and possible
system failure [21], [22], [23] [24, pp. 3–26].

A Rijke tube provides an ideal venue for developing
and implementing modeling and control techniques for SES.
In particular, a laboratory-scale Rijke tube requires only a suit-
able tube and heating element; for feedback control, a micro-
phone and speaker provide high-authority, high-bandwidth
sensing and actuation. All of these components are inexpensive
and accessible to classroom demonstrations. Most importantly,
control experiments involving a Rijke tube are safe to run
since no damage is incurred when the feedback controller
inadvertently amplifies the thermoacoustic oscillations. The
most expensive component needed for digital feedback control
is the processor for controller implementation. For the adaptive
control experiments reported in the present work, we use a
dSpace Scalexio system; low-power embedded processors are
sufficient, however, for implementing fixed-gain control laws.

Extensive research has been devoted to modeling ther-
moacoustic oscillations [1], [25], [26], [27], [28], [29], [30],
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[31] and suppressing these instabilities using a wide vari-
ety of techniques [13], [32], [33]. Experimental appli-
cations of various control algorithms are reported; in
particular, Heckl [34], Zalluhoglu et al. [35], and de
Andrade [36] implemented phase shift controllers, Kemal and
Bowman [37] implemented a least-mean-squares (LMS)
controller, Annaswamy et al. [38] implemented linear-
quadratic-Gaussian (LQG) and H∞ controllers, Morgans and
Annaswamy [39] implemented self-tuning regulators, Vaudrey
et al. [40] implemented a time-averaged gradient controller,
Illingworth and Morgans [41] implemented an LQG con-
troller and a Nussbaum adaptive controller, Wei et al. [42]
implemented an adaptive controller based on dynamic com-
pensation, Blonbou et al. [43] implemented a neural-network
controller, and de Andrade et al. [44] proposed a backstepping-
based controller. An interesting aspect of these control studies
is the fact that, although a Rijke tube is an SES and thus is
nonlinear, all of the techniques applied to the Rijke tube in
[1], [34], [35], [36], [38], and [41] are based on linear models
and methodologies. These results show that linear controllers
are effective for this nonlinear system. Furthermore, as men-
tioned in [13], while model-based controllers may suffer loss
of performance due to uncertainty or changes in operating
conditions, adaptive controllers can achieve suppression over
a wide range of operating conditions. However, model-based
controllers require detailed modeling information about the
system in order to achieve closed-loop stability and robustness.
To reduce the need for modeling, a data-driven, adaptive con-
troller that requires minimal modeling information is desirable.

The goal of this work is to experimentally investigate
the modeling requirements, performance, and robustness of
retrospective cost adaptive control (RCAC) [45], [46] for sup-
pressing thermoacoustic oscillations in a Rijke tube. The focus
of this work is on the experimental application of data-driven
control. The stability analysis for RCAC is discussed in [47];
however, within the current experimental data-driven context,
no theoretical truth model is available. This present article is a
major expansion of the preliminary results presented in [48].
In particular, this work provides a more complete discussion
of the methodology, as well as substantially more extensive
experimental results.

A crucial aspect of the adaptive controller is the selection
of hyperparameters, which determine the speed of adaptation,
the assumed modeling information, and the controller order.
A hyperparameter selection procedure based on closed-loop
numerical simulation is shown in Fig. 1. First, physical
Rijke-tube experiments are conducted in an open-loop config-
uration (no feedback control) to obtain pressure measurements.
Then, a fit procedure is applied, where the parameters of the
Rijke-tube model are chosen to capture the frequency and
magnitude of the highest peak of the open-loop pressure mea-
surements. This procedure yields an emulation model, which is
used for adaptive closed-loop numerical simulations to select
hyperparameters based on achieved oscillation suppression.
The selected hyperparameters are then used in physical closed-
loop Rijke-tube experiments. For these experiments, the adap-
tive controller is implemented on a dSpace Scalexio system
to suppress thermoacoustic oscillations generated by the coil

Fig. 1. Hyperparameter selection procedure. The objective is to select initial
hyperparameters by applying the adaptive controller to an emulation model
of the experimental Rijke-tube setup.

heat for various coil positions and voltage levels. Note that the
emulation model is used only to select hyperparameters for
adaptation and is otherwise not used or needed for feedback
control.

The main goal of these experiments is to examine the prop-
erties of the controller under various experimental scenarios,
including the effect of modified hyperparameters on the time
it takes for the adaptive controller to suppress oscillations,
the performance and robustness of the frozen-gain adaptive
controller, the ability of the adaptive controller to readapt
under changes in working conditions, the stability of the
adaptive controller under changes in its gain, and the effect of
the relative degree of the closed-loop target model on the level
of suppression. The experimental scenarios are designed to test
the robustness of the adaptive controller under off-nominal
perturbations that reflect real-world conditions. The level of
suppression of the thermoacoustic oscillations, referred to as
oscillation suppression, is used to evaluate the performance of
the controller, which is defined to be the ratio of the steady-
state open-loop maximum time-domain pressure amplitude to
the steady-state closed-loop maximum time-domain pressure
amplitude in dB.

The contents of this article are given as follows. Section II
describes the adaptive control law considered in this article
for adaptive suppression. Section III considers the approach
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under which the discrete-time adaptive controller interacts with
continuous-time systems. Section IV presents the experimental
Rijke-tube setup. Section V presents a Rijke-tube model.
Section VI presents the parameters used in the Rijke-tube
model given in Section V to obtain the Rijke-tube emulation
model. To determine the initial hyperparameters, Section VII
presents numerical examples where the adaptive controller
suppresses the emulation model of the Rijke tube. Section VIII
presents the physical closed-loop Rijke-tube experiments.
Finally, Section IX presents the conclusions.

II. RETROSPECTIVE COST ADAPTIVE CONTROL

Consider the strictly proper, discrete-time, input–output
controller

uk =

lc∑
i=1

Pi,kuk−i +

lc∑
i=1

Qi,k zk−i (1)

where uk ∈ Rlu is the controller output and thus the control
input, zk ∈ Rlz is the measured performance variable, lc is the
controller-window length, and, for all i ∈ {1, . . . , lc}, Pi,k ∈

Rlu×lu and Qi,k ∈ Rlu×lz are the controller coefficient matrices.
The controller (1) can be written as

uk = φkθk (2)

where

φk
△
=
[

uT
k−1 · · · uT

k−lc
zT

k−1 · · · zT
k−lc

]
⊗ Ilu ∈ Rlu×lθ (3)

θk
△
= vec

[
P1,k · · · Plc,k Q1,k · · · Qlc,k

]
∈ Rlθ (4)

lθ
△
= lclu(lu +lz), and θk is the vector of controller coefficients,

which are updated at each time step k. If zk and uk are scalar,
then the single-in, single-out (SISO) transfer function of (1)
from zk to uk is given by

Gc,k(q) =
Q1,kqlc−1

+ · · · + Qlc,k

qlc − P1,kqlc−1 − · · · − Plc,k
(5)

where q is the forward-shift operator.
Next, define the retrospective cost variable

ẑk
(
θ̂
) △

= zk − Gf(q)
(
uk − φk θ̂

)
(6)

where Gf is an lz × lu asymptotically stable, strictly proper
transfer function, and θ̂ ∈ Rlθ is the controller coefficient vec-
tor determined by optimization in the following. The rationale
underlying (6) is to replace the applied past control inputs
with the reoptimized control input φk θ̂ so that the closed-loop
transfer function from uk − φkθk+1 to zk matches Gf [45],
[46]. Consequently, Gf serves as a closed-loop target model
for adaptation.

In this present article, Gf is chosen to be a finite-impulse-
response transfer function of window length lf of the form

Gf(q)
△
=

lf∑
i=1

Ni q−i (7)

where N1, . . . , Nlf ∈ Rlz×lu . We can thus rewrite (6) as

ẑk
(
θ̂
)

= zk−N
(
Ū k − φ̄k θ̂

)
(8)

where

φ̄k
△
=

φk−1
...

φk−lf

 ∈ Rlflu×lθ , Ū k
△
=

uk−1
...

uk−lf

 ∈ Rlflu (9)

N
△
=
[

N1 · · · Nlf

]
∈ Rlz×lflu . (10)

The choice of N includes all required modeling informa-
tion. When the plant is SISO, that is, lz = lu = 1, this
information consists of the sign of the leading numerator
coefficient, the relative degree of the sampled-data system, and
all nonminimum-phase (NMP) zeros [45], [46]. Since zeros
are invariant under feedback, omission of an NMP zero from
Gf may entail unstable pole-zero cancellation. Cancellation
can be prevented, however, by using the control weighting Ru

introduced next, as discussed in [45] and [49]. For SISO and
multi-in multi-out (MIMO) systems, N can be constructed and
updated online using data [46]. For simplicity in controlling
the Rijke tube, which is an SISO system, we fix N and thus
Gf prior to implementation.

Using (6), we define the cumulative cost function

Jk
(
θ̂
) △

=

k∑
i=0

[
ẑT

i

(
θ̂
)
ẑi
(
θ̂
)
+
(
φi θ̂

)T
Ruφi θ̂

]
+
(
θ̂ − θ0

)T
P−1

0

(
θ̂ − θ0

)
(11)

where P0 ∈ Rlθ×lθ is the positive definite and Ru ∈ Rlu×lu

is the positive semidefinite. As can be seen from (2), Ru

serves as a control weighting, which prevents RCAC from
canceling unmodeled NMP zeros, and the matrix P−1

0 defines
the regularization term and initializes the recursion for Pk

defined in the following.
The following result uses recursive least squares (RLS) [50],

[51] to minimize (11), where, at each step k, the minimizer
of (11) is the update θk+1 of the controller coefficient vector.

Proposition 1: For all k ≥ 0, the unique global minimizer
θk+1 of (11) is given by

Pk+1 = Pk − Pk

[
N φ̄k
φk

]T

0k

[
N φ̄k
φk

]
Pk (12)

θk+1 = θk − Pk+1

[
N φ̄k
φk

]T

R̄
[

zk−N
(
Ū k − φ̄kθk

)
φkθk

]
(13)

where

0k
△
= R̄ − R̄

[
N φ̄k
φk

](
P−1

k +

[
N φ̄k
φk

]T

R̄
[

N φ̄k
φk

])−1[
N φ̄k
φk

]T

R̄

∈ R(lz+lu)×(lz+lu) (14)

R̄
△
= diag

(
Ilz , Ru

)
∈ R(lz+lu)×(lz+lu). (15)

For all of the numerical simulations and physical exper-
iments in this article, θk is initialized as θ0 = 0lθ×1 to
reflect the absence of additional prior modeling information.
Furthermore, except when specified otherwise, Gf(q) = −1/q,
where the minus sign reflects sign information and the relative
degree is set to 1. Aside from the selection of hyperparameters
discussed next, no other modeling information is used by
RCAC. For convenience, we set P0 = p0 Ilθ , where the scalar
p0 > 0 determines the initial rate of adaptation.
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Fig. 2. Adaptive control of a continuous-time system M. For this work,
r ≡ 0 reflects the desire to suppress oscillations in the measured signal,
N is the normalization function (16), and M represents the Rijke-tube
model introduced in Section V for numerical simulations and the experimental
Rijke-tube setup introduced in Section IV for physical experiments.

III. SAMPLED-DATA IMPLEMENTATION OF THE
ADAPTIVE CONTROL LAW

For the experimental Rijke-tube setup, the adaptive con-
troller is implemented as a sampled-data controller. Fig. 2
shows a block diagram of the sampled-data closed-loop sys-
tem, where y ∈ R is the output of the continuous-time system
M, yk is the sampled output, rk ∈ R is the discrete-time
command, ek

△
= rk − yk is the command-following error, and

Ts > 0 is the sampling period. For all adaptive controller
experiments, Ts = 0.001 s/step. The digital-to-analog (D/A)
and analog-to-digital (A/D) interfaces, which are synchronous,
are zero-order hold (ZOH) and sampler, respectively. For this
work, r ≡ 0 reflects the desire to suppress oscillations in the
measured signal. Finally, M represents a Rijke-tube model
introduced in Section V for numerical simulations and the
experimental Rijke-tube setup introduced in Section IV for
physical experiments.

The measured performance variable zk , which is used for
adaptation, is the normalized error

zk
△
= N (ek)

△
=

ek

1 + ν|ek |
(16)

where ν ∈ [0,∞). We fix ν = 0.2 throughout this article.
The adaptive controller Gc,k operates on zk to produce the
discrete-time control uk ∈ R. Hence, lu = lz = 1. Gc,k and uk

are updated at each sampling time tk
△
= kTs.

In numerical simulations and physical experiments, the
controller and adaptation are enabled and disabled in various
ways. In particular, for the experimental scenarios, we consider
the following modes of operation starting at step k0 ≥ 0.

1) Mode 1: The controller and adaptation are disabled. For
all k ≥ k0, uk = 0, θk+1 = θk, and Pk+1 = Pk .

2) Mode 2: The controller and adaptation are enabled. For
all k ≥ k0, uk, θk+1, and Pk+1 are updated by (2), (12),
and (13), respectively.

3) Mode 3: The controller is enabled, but adaptation is
disabled, yielding a fixed-gain controller. For all k ≥ k0,

uk is updated by (2), θk+1 = θk, and Pk+1 = Pk .

Mode 1 is employed when the user requires that the open-loop
system reach a desired behavior before control is applied, such
as fully developed thermoacoustic oscillations. Mode 2 cor-
responds to the normal operation of the adaptive controller.
Mode 3 is useful for probing the properties of the controller
at a given time step; in effect, at step k, the gains of Gc,k are
frozen, and the controller operates as a fixed-gain controller,
called the frozen-gain adaptive controller.

Implementation of the adaptive controller requires selec-
tion of the closed-loop target model Gf, which captures

Fig. 3. Experimental Rijke-tube setup. The heating element can be raised
or lowered by a dc motor (not shown) to vary the dynamics of the system.

the properties mentioned in Section II [45]. In addition, the
hyperparameters lc, p0, and Ru must be selected depending
on the system and performance requirements. Note that Ru is
scalar since lu = 1. As mentioned in Section I, all of these
quantities are selected for the experimental Rijke-tube setup
after performing closed-loop numerical simulations with an
emulation model.

IV. DESCRIPTION OF THE EXPERIMENTAL
RIJKE-TUBE SETUP

The experimental Rijke-tube setup built is shown in Fig. 3,
where a heating element is placed inside a vertical Pyrex
tube whose length is 1.2 m and inner cross-sectional area
is 4.6 × 10−3 m2, similar to the setup in [1]. The heating
element is a coil made from 22-gauge Kanthal wire with a
resistance of 22 �. The coil is attached by a Kevlar rope to
a dc motor, which is used to reposition the coil. A Variac is
used as a power supply to control the voltage supplied to the
coil. To measure pressure oscillations, a microphone is placed
at the top of the tube and connected to a preamplifier. The
microphone was calibrated using a sound pressure level meter
to convert voltage measurements to pascals (Pa). To provide
the control input, a speaker is placed at the bottom of the tube
and connected to an amplifier. Note that, since the speaker and
microphone are not colocated, the linearized plant dynamics
have NMP zeros, as shown in [1]. Consequently, passivity
arguments cannot be used to guarantee closed-loop stability.

Pressure oscillations are created within the experimental
Rijke-tube setup by supplying voltage to the heating ele-
ment, as noted by Rijke [19] and subsequently elucidated by
Rayleigh [20] and Sarpotdar [52]. As explained in [52], [53],
[54], and [55, pp. 232–234], pressure oscillations are created
and become self-excited if and only if the heating element
is placed in the lower half of the tube and sufficient power
is provided to the heating element to overcome the acoustic
damping. Furthermore, pressure oscillations are more easily
created when the heat source is placed at one quarter of the
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Fig. 4. Pressure measurements from the open-loop experimental Rijke-tube
setup obtained at the coil positions xus ∈ {0.3, 0.35, 0.4} m and the ac voltage
levels Vrms ∈ {70, 80, 90} V, where xus is the distance of the coil from the
bottom of the tube and Vrms is the root-mean-square (rms) voltage provided
by the Variac.

Fig. 5. Amplitude spectra of the pressure measurements from the open-loop
experiment at each setting considered in Fig. 4.

length of the tube from its bottom and become harder to create
as the heat source is moved from this position [52]. The chosen
experimental Rijke-tube setup exhibits thermoacoustic oscilla-
tions, whose characteristics depend on the vertical position of
the heating element and the voltage provided to the heating
element, as shown in Figs. 4 and 5.

V. PHYSICS-BASED MODEL OF THE RIJKE TUBE

A schematic of the experimental Rijke-tube setup is shown
in Fig. 6. The tube has length L and cross-sectional area
A. The heating element is positioned xds m below the top
of the tube and xus m above the bottom of the tube; note
that L = xds + xus. The microphone is positioned xmic m

Fig. 6. Schematic of the Rijke-tube model.

above the heating element, and the speaker is placed below the
tube. In Fig. 6, f1 and g1 represent the bidirectional acoustic
pressure propagation in the upstream portion of the tube,
and f2 and g2 represent the bidirectional acoustic pressure
propagation in the downstream portion of the tube.

The Rijke-tube model (28)–(31) is based on the
ducted-flame model given in [56] and further developed in [29]
and [35]. A key difference between the models developed
in [56] and the models developed in [29] and [35] is that,
in [56], a nonlinearity is added before the linear flame dynam-
ics. This feature is included in (28)–(31), where the saturation
function used in [56] is replaced by a hyperbolic tangent to
improve numerical stability. Note that these nonlinearities are
distinct from the square-root function used in [1] within the
context of a different model. Let x ∈ [−xus, xds] denote a
position within the tube in m, where x = 0 m is the position
of the heating element in the tube. Let p and v be the airflow
pressure and velocity, respectively, such that

p(t, x)
△
=

{
p̄1 + p̃1(t, x), x ∈ [−xus, 0]
p̄2 + p̃2(t, x), x ∈ (0, xds]

(17)

v(t, x)
△
=

{
v̄1 + ṽ1(t, x), x ∈ [−xus, 0]
v̄2 + ṽ2(t, x), x ∈ (0, xds]

(18)

where p̄1, p̄2 > 0 are the mean airflow pressure in the
upstream and downstream portions, respectively, v̄1, v̄2 > 0
are the mean airflow velocities in the upstream and down-
stream portions, respectively, and, for all i ∈ {1, 2}

p̃i (t, x)
△
= fi

(
t −

x
c̄i

)
+ gi

(
t +

x
c̄i

)
(19)

ṽi (t, x)
△
=

1
ρ̄i c̄i

[
fi
(
t −

x
c̄i

)
− gi

(
t +

x
c̄i

)]
(20)

where c̄1, c̄2 > 0 are the mean wave speeds in the upstream
and downstream portions, respectively, and ρ̄1, ρ̄2 > 0 are the
mean air densities in the upstream and downstream portions,
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respectively. Furthermore, f1 and g2 are given by

f1(t) = Rusg1(t − τus)+ p̃spk
(
t −

τus
2

)
(21)

g2(t) = Rds f2(t − τds) (22)

where Rus, Rds ∈ R are reflection coefficients, τus
△
= (2xus/c̄1)

and τds
△
= (2xds/c̄2), and p̃spk ∈ R is the speaker pressure.

Next, the dynamics of the heat release rate perturbations of
the coil Q̃ are modeled by

b ˙̃Q(t)+ Q̃(t) = aψ
(
ṽ1(t, 0)

)
(23)

where a, b ∈ (0,∞) and ψ : R → R is given by

ψ
(
ṽ1(t, 0)

) △
= δ tanh

(
ηṽ1(t, 0)

)
(24)

where δ, η ∈ (0,∞). Then, define

F
△
= X−1

[
Y

0
1

Ac̄1

]
∈ R2×3

where X, Y ∈ R2×2, and let g1 and f2 be given by[
g1(t)
f2(t)

]
= F

 f1(t)
g2(t)
Q̃(t)

. (25)

Since the Mach numbers are assumed to be low [29], [35],
it follows from the expressions for X and Y given in
[56, Appendix] that

X
△
=

[
−1 1

1
γ̄−1

c̄2
c̄1

1
γ̄−1

]
, Y

△
=

[
1 −1
1

γ̄−1
c̄2
c̄1

1
γ̄−1

]
(26)

where γ̄ is the adiabatic ratio of dry air at room temperature.
Finally, the acoustic pressure p̃mic measured by the micro-
phone is given by

p̃mic(t)
△
= p̃2(t, xmic) = f2

(
t −

xmic
c̄2

)
+ g2

(
t +

xmic
c̄2

)
= f2(t − τmic)+ Rds f2(t − (τds − τmic)) (27)

where τmic
△
= (xmic/c̄2).

The block diagram in Fig. 7 summarizes the dynamics of
the Rijke-tube model, where the control input u = p̃spk is
the speaker pressure, and the measurement y = p̃mic is the
microphone signal. These dynamics can be written as

˙̃Q(t) = −
1
b

Q̃(t)+
a
b
ψ
(
ṽ1(t, 0)

)
(28)

ṽ1(t, 0) =
1
ρ̄1c̄1

[
1 −1 Rus

] p̃spk(t − τus/2)
g1(t)

g1(t − τus)

 (29)

[
g1(t)
f2(t)

]
= F

1 0 0 0
0 1 Rus 0
0 0 0 Rds




Q̃(t)
p̃spk(t − τus/2)

g1(t − τus)

f2(t − τds)

 (30)

p̃mic(t) =
[
1 Rds

][ f2(t − τmic)

f2(t − (τds − τmic))

]
. (31)

Note that (28)–(31) are delay differential equations (DDEs)
with state Q̃, input p̃spk, output p̃mic, and time-varying param-
eters g1 and f2. Furthermore, the placement of the speaker and
the microphone relative to the coil results in input and output
time delays, as shown in (30) and (31) and Fig. 7.

Fig. 7. Block diagram of the Rijke-tube model. The control input u = p̃spk is
the speaker pressure, and the microphone signal y = p̃mic is the measurement.
This block diagram is executed in Simulink.

VI. RIJKE-TUBE MODEL PARAMETER FIT

The parameters for the Rijke-tube model introduced in
Section V and shown in Fig. 7 are chosen to emulate the
characteristics of the experimental Rijke-tube setup. In par-
ticular, with the coil placed 0.4 m above the bottom of the
tube and the root-mean-square (rms) Variac voltage set to
Vrms = 70 V, the emulation model captures the amplitude and
frequency of the highest magnitude of the spectrum of the
pressure measurements obtained from open-loop experiments.
The constants ρ̄1 and γ̄ denote the density and adiabatic
ratio of dry air at room temperature, respectively, c̄1 and
c̄2 are chosen as in [35], and xus, xds, and xmic are based
on the configuration used in open-loop experiments. Hence,
L = 1.2 m, xus = 0.4 m, and xds = 1.2 m − 0.4 m = 0.8 m.
Since the microphone is placed approximately 0.1 m below the
top of the tube, xmic = xds − 0.1 m = 0.7 m. Rus and Rds are
fixed to values that induce a self-excited response in the model
output more easily. Then, a b, δ, and η are manually adjusted
to match the pressure measurements obtained from the open-
loop experiments. The chosen parameters for the Rijke-tube
emulation model are shown in Table I.

Numerical simulations of the emulation model are per-
formed in Simulink using fixed-step integration with a step
size 10−4 s/step, that is, Ts/10. Linear interpolation is used to
calculate the delayed values of p̃spk, g1, and f2. For all t ≤ 0,
p̃spk(t) = g1(t) = f2(t) = 0. The value of Q̃(0) is randomly
selected and provides the initial disturbance to generate the
oscillations.

The open-loop (u ≡ 0) response of the emulation model
and the experimental data is shown in Fig. 8. The highest
magnitude peaks of the amplitude spectra of the open-loop
experiment and the emulation model match at 140 Hz,
as shown in Fig. 8. As can be seen, the magnitude peaks
of the amplitude spectrum of the emulation model match
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TABLE I
PARAMETERS OF THE RIJKE-TUBE EMULATION MODEL

Fig. 8. Comparison of the time responses and amplitude spectra of the
open-loop experiment and the emulation model. Note that the amplitude
spectra of the data and emulation model match only at the first peak. The
parameters used for the emulation model are given in Table I.

only the peaks corresponding to the odd harmonics of the
amplitude spectrum of the open-loop experiment. Although
this mismatch is inconsistent with the reflection coefficients
Rus and Rds, which model open–open boundary conditions,
the predictions of a linear acoustic model are not valid for
the emulation model, which is nonlinear. While the emulation
model output only roughly matches the data, Section VIII-A
shows that this emulation model is sufficient for hyperparam-
eter tuning.

VII. NUMERICAL SIMULATION OF THE RIJKE-TUBE
MODEL FOR HYPERPARAMETER SELECTION

In this section, the emulation model is used to select
hyperparameters such that the adaptive controller suppresses
the self-excited response of the Rijke-tube emulation model
in three cases, where the heating element is placed at three
different positions along the tube by changing the positive
values of xds and xus, such that xus ∈ {0.3, 0.35, 0.4} m and
xds = L − xus. Hence, the parameters used for the emulation
model are given in Table I, except for xus, for which three
different values are considered. As mentioned in Section II,
Gf(q) = −1/q, and thus, lf = 1 and N = N1 = −1.
Hence, only lc, p0, and Ru need to be selected. As men-
tioned in Section I, the level of suppression of the ther-
moacoustic oscillations, referred to as oscillation suppression,

Fig. 9. Adaptive control of the simulated Rijke-tube model. The experiment
transitions from Mode 1 to Mode 2 at t = 15 s, as indicated by the red
vertical lines. Each row shows the responses for xus ∈ {0.3, 0.35, 0.4} m,
for t ∈ [0, 40] s. The first, second, and third columns show the pressure
measurements p̃mic, the requested speaker pressure p̃spk, and the adaptive
controller coefficients θ , respectively.

is used to evaluate the performance of the controller, which is
defined to be the ratio of the steady-state open-loop maximum
time-domain pressure amplitude to the steady-state closed-
loop maximum time-domain pressure amplitude in dB.

The controller initially operates in Mode 1, and the exper-
iment transitions to Mode 2 at t = 15 s, which is sufficient
time for the oscillatory response of the open-loop models to
fully develop. Several simulations are performed, in which
the hyperparameters lc, p0, and Ru are manually adjusted
until at least 40 dB of oscillation suppression is obtained
across all scenarios (xus ∈ {0.3, 0.35, 0.4} m). The selected
hyperparameters are given by lc = 5, p0 = 10−5, and Ru = 1.

The results of the numerical simulations using the selected
hyperparameters are shown in Figs. 9–12. Fig. 9 shows that,
in all cases, the adaptive controller suppresses the oscilla-
tions; in particular, for xus ∈ {0.4, 0.35, 0.3} m, the adaptive
controller suppresses the oscillations by 72.74, 59.63, and
54.70 dB, respectively. Fig. 10 shows that, in all cases, the
adaptive controller suppresses the highest magnitude peak of
the amplitude spectra corresponding to the open-loop response
of the emulation model. Fig. 11 shows that the poles of the
adaptive controller evolve in a similar manner in all cases.
In contrast, the zeros evolve differently in different cases,
which shows that the response of the adaptive controller
depends on the operating conditions. Note that none of the
poles lie close to the unit circle, which shows that, in contrast
to the standard approach for harmonic disturbance rejection
in linear systems, the adaptive controller does not exploit
an internal-model strategy for oscillation suppression [57].
Furthermore, Fig. 12 shows that the magnitude of the adaptive
controller indicates high gain near π/4 rad/sample, which is
equivalent to 125 Hz given Ts. The high-gain response of the
adaptive controller thus corresponds to the first harmonic of
the open-loop amplitude spectra, which occurs near 140 Hz,
as shown in Fig. 10. The hyperparameters used in these
examples are initially used in the physical experiments.
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Fig. 10. Amplitude spectra of the simulated Rijke-tube model. The amplitude
spectra of the pressure measurements obtained from the open-loop simulations
and the closed-loop simulations using the adaptive controller are shown for
xus ∈ {0.3, 0.35, 0.4} m.

Fig. 11. Evolution of the poles and zeros of the adaptive controller during the
simulation of the closed-loop system with the Rijke-tube model. Each column
shows the poles and zeros for xus ∈ {0.3, 0.35, 0.4} m and t ∈ [15, 40] s. The
top row displays the poles as crosses, the middle row displays the zeros as
circles, and the bottom row shows zoomed-in versions of the plots in the
middle row.

Fig. 12. Evolution of the frequency response of the adaptive controller during
the simulation of the closed-loop system with the Rijke-tube model. The mag-
nitude responses of the adaptive controller are shown for xus ∈ {0.3, 0.35, 0.4}

m and t ∈ {16, 20, 30} s.

VIII. PHYSICAL ADAPTIVE CONTROL EXPERIMENTS

The closed-loop experimental Rijke-tube setup shown in
Fig. 13 is used in the following to perform physical adap-
tive control experiments. The hyperparameters determined
in Section VII are initially used for the adaptive con-
troller. In particular, Section VIII-A shows experiments in
which the Rijke-tube setup parameters are kept constant,

Fig. 13. Experimental closed-loop Rijke-tube setup.

Section VIII-B shows the effects of hyperparameter perturba-
tion on the RCAC rate of adaptation and suppression perfor-
mance, Section VIII-C evaluates the suppression performance
of the frozen-gain adaptive controller resulting from an initial
implementation of RCAC, Section VIII-D shows experiments
in which the parameters of the Rijke-tube setup are modified
during closed-loop operation, and Sections VIII-E and VIII-F
provide experiment-based stability analyses of RCAC.

A. Rijke-Tube Fixed-Parameter Experiments

We now consider experimental scenarios where the coil
position and supplied voltage are kept constant. In total, nine
combinations are considered such that xus ∈ {0.3, 0.35, 0.4}

m and VRMS ∈ {70, 80, 90} V, which are the cases shown in
Figs. 4 and 5. Through testing, it is determined that the oscilla-
tions are more difficult to suppress as xus moves closer to 0.3 m
(a quarter of the tube length from its bottom, as mentioned in
Section IV) and VRMS increases. The experiment begins in
Mode 1 and transitions to Mode 2 after the oscillations are
formed.

Since it is mentioned in [1] and [35] that a constant-gain
proportional controller can be used to suppress the oscillations,
the constant-gain proportional controller in Fig. 14 is also
implemented for comparison, where K is the constant pro-
portional gain and the sampling rate is Ts/20 s/step. A small
sampling rate is chosen to allow the digital computer to better
approximate the continuous-time implementations considered
in [1] and [35]. For all k ≥ 0, uk = 0 in the case where the
constant-gain proportional controller is disabled and uk = K ek

in the case where the constant-gain proportional controller
is enabled. The constant-gain proportional controller is used
in the four corner cases of the nine cases considered, using
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Fig. 14. Constant-gain proportional control of the continuous-time sys-
tem M. For this work, r ≡ 0 reflects the desire to suppress oscillations
in the measured signal. M represents the experimental Rijke-tube setup.

Fig. 15. Rijke-tube fixed-parameter experiments. Pressure measurements
p̃mic from the closed-loop experiments using the constant-gain proportional
controller in Fig. 14 are shown for xus ∈ {0.3, 0.4} m, Vrms ∈ {70, 90} V,
and K ∈ {0.025, 0.05, 0.075, 0.01}. The constant-gain proportional controller
is initially disabled and is enabled at the time indicated by the red vertical
lines. In order to render the details discernible, different time windows are
used in each plot.

four different values of K . The results of the suppression
experiments with the constant-gain proportional controller in
Fig. 14 for xus ∈ {0.3, 0.4} m, Vrms ∈ {70, 90} V, and
K ∈ {0.025, 0.05, 0.075, 0.01} are shown in Fig. 15. In all
of these experiments, the oscillation suppression is at most
45.73 dB, and no suppression is achieved in nine cases.

For the adaptive controller implementation, the hyperparam-
eters are the same as the ones determined from the numerical
simulations using the emulation model, that is, lc = 5, p0 =

10−5, Ru = 1, and Gf(q) = −1/q. The results of the adaptive
suppression experiments for xus ∈ {0.3, 0.35, 0.4} m and
Vrms ∈ {70, 80, 90} V are shown in Figs. 16–20. In all of these
experiments, the oscillation suppression is at least 45.85 dB.
Hence, as in Section VII, oscillation suppression greater than
45 dB is achieved using the same hyperparameters in all tests.
Furthermore, Fig. 20 shows that the magnitude of the adaptive
controller indicates high gain near π/4 rad/sample, which is
equivalent to 125 Hz given Ts. The high-gain response of the
adaptive controller thus corresponds to the first harmonic of
the open-loop amplitude spectra, which occurs near 140 Hz,
as shown in Fig. 17 and similar to Section VII.

B. Hyperparameter Perturbation Experiments

We now consider experimental scenarios where the hyper-
parameters p0 and Ru are modified, starting from the values

Fig. 16. Rijke-tube fixed-parameter experiments. Pressure measurements p̃mic
from the closed-loop experiments using the adaptive controller are shown
for xus ∈ {0.3, 0.35, 0.4} m and Vrms ∈ {70, 80, 90} V. Each experiment
transitions from Mode 1 to Mode 2 at the time indicated by the red vertical
line. The same hyperparameters are used in all tests.

Fig. 17. Rijke-tube fixed-parameter experiments. Amplitude spectra of
the experimental Rijke-tube setup. The amplitude spectra of the pressure
measurements obtained from the open-loop experiments and the closed-loop
experiments using the adaptive controller are shown for xus ∈ {0.3, 0.35, 0.4}

m and Vrms ∈ {70, 80, 90} V. The same hyperparameters are used in all
closed-loop tests.

determined in Section VII. In particular, the adaptive controller
is implemented in the case where xus = 0.3 m and Vrms =

90 V for p0 ∈ {10−5, 10−4, 10−3
} and Ru ∈ {0.5, 0.75, 1}.

As in Section VIII-A, lc = 5 and Gf(q) = −1/q. The
experiment begins in Mode 1 and transitions to Mode 2 after
the oscillations are established.

The results for all hyperparameter combinations are shown
in Figs. 21–24. In all of these experiments, the oscillation
suppression is at least 31.13 dB. Furthermore, Fig. 24 shows
that, for all hyperparameter combinations, the magnitude of
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Fig. 18. Rijke-tube fixed-parameter experiments. The requested speaker
voltage p̃spk from the closed-loop experiments using the adaptive controller is
shown for xus ∈ {0.3, 0.35, 0.4} m and Vrms ∈ {70, 80, 90} V. Each experiment
transitions from Mode 1 to Mode 2 at the time indicated by the red vertical
line. The same hyperparameters are used in all tests.

Fig. 19. Rijke-tube fixed-parameter experiments. The controller coefficients
θ from the closed-loop experiments using the adaptive controller are shown
for xus ∈ {0.3, 0.35, 0.4} m and Vrms ∈ {70, 80, 90} V. Each experiment
transitions from Mode 1 to Mode 2 at the time indicated by the red vertical
line. The same hyperparameters are used in all tests.

the adaptive controller indicates a gain higher than 0 dB
near π/4 rad/sample. Note that increasing p0 and decreasing
Ru results in faster suppression, as shown in Fig. 21, which
requires larger speaker signal amplitudes, as shown in Fig. 22.

C. Performance Evaluation of the Frozen-Gain Adaptive
Controller

We now consider experimental scenarios where the adaptive
controller coefficients are saved and used to implement a
frozen-gain adaptive controller in subsequent experiments.
This experiment is conducted for xus = 0.3 m and Vrms = 90 V.

Fig. 20. Rijke-tube fixed-parameter experiments. The magnitude responses
of the adaptive controller from the closed-loop experiments are shown for
xus ∈ {0.3, 0.35, 0.4} m, Vrms ∈ {70, 80, 90} V, and the times indicated in
each legend. The same hyperparameters are used in all tests.

Fig. 21. Hyperparameter perturbation experiments. Pressure measurements
p̃mic from the closed-loop experiments using the adaptive controller are
shown for xus = 0.3 m, Vrms = 90 V, p0 ∈ {10−5, 10−4, 10−3

}, and
Ru ∈ {0.5, 0.75, 1}. Each experiment transitions from Mode 1 to Mode 2 at
the time indicated by the red vertical line.

The following procedure consisting of five phases is given as
follows.

1) Phase 1: The experiment begins in Mode 1.
2) Phase 2: The experiment transitions to Mode 2 after the

oscillations are formed.
3) Phase 3: After no further oscillation suppression is

achieved, the experiment transitions to Mode 3.
4) Phase 4: After some time, the experiment transitions to

Mode 1, which allows the oscillations to recover their
open-loop amplitude.
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Fig. 22. Hyperparameter perturbation experiments. Requested speaker
voltage p̃spk from the closed-loop experiments using the adaptive controller
is shown for xus = 0.3 m, Vrms = 90 V, p0 ∈ {10−5, 10−4, 10−3

}, and
Ru ∈ {0.5, 0.75, 1}. Each experiment transitions from Mode 1 to Mode 2 at
the time indicated by the red vertical line.

Fig. 23. Hyperparameter perturbation experiments. The controller coefficients
θ from the closed-loop experiments using the adaptive controller are shown for
xus = 0.3 m, Vrms = 90 V, p0 ∈ {10−5, 10−4, 10−3

}, and Ru ∈ {0.5, 0.75, 1}.

Each experiment transitions from Mode 1 to Mode 2 at the time indicated by
the red vertical line.

5) Phase 5: After the oscillations recover their open-loop
amplitude, the experiment transitions to Mode 3.

For this test, lc = 5, p0 = 10−4, Ru = 0.75, and Gf(q) =

−1/q are used. Note that the values of p0 and Ru are changed
from those determined in Section VII since the results of
Section VIII-B showed that these hyperparameters yield faster
suppression.

The experimental results are shown in Fig. 25. At the end
of Phase 2, the adaptive controller suppresses oscillations by

Fig. 24. Hyperparameter perturbation experiments. The magnitude responses
of the adaptive controller from the closed-loop experiments are shown for
xus = 0.3 m, Vrms = 90 V, p0 ∈ {10−5, 10−4, 10−3

}, Ru ∈ {0.5, 0.75, 1}, and
the times indicated in the legends.

Fig. 25. Performance evaluation of the frozen-gain adaptive controller.
Results from the closed-loop experiment using the frozen-gain adaptive
controller. The pressure measurements p̃mic, requested speaker voltage p̃spk,
and controller coefficients θ are shown. The white, yellow, and green shading
corresponds to Modes 1–3, respectively.

43.75 dB. At the end of Phase 5, the frozen-gain adaptive
controller suppresses the oscillations by 45.31 dB.

D. Rijke-Tube Time-Varying Parameter Experiments

We now consider experimental scenarios where the experi-
mental Rijke-tube setup is modified during closed-loop oper-
ation. In particular, the coil position and Variac voltage are
changed during the experiments. The following procedure
consists of seven phases as follows.

1) Phase 1: The experiment begins in Mode 1.
2) Phase 2: The experiment transitions to Mode 2 after the

oscillations are formed.
3) Phase 3: After no further oscillation suppression is

achieved, the experiment transitions to Mode 3.
4) Phase 4: Either the coil position is decreased or the

Variac voltage is increased.
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Fig. 26. Rijke-tube time-varying parameter experiments. Pressure measure-
ments p̃mic from a closed-loop experiment using the constant-gain propor-
tional controller in Fig. 14 are shown for K = 0.05. In this experiment,
the coil voltage transitions from Vrms = 70 V to Vrms = 90 V with the coil
position maintained at xus = 0.3 m. The constant-gain proportional controller
is initially disabled and is enabled at the time indicated by the red vertical
line. The red shading denotes the time interval during which the coil voltage
transitions from Vrms = 70 V to Vrms = 90 V.

5) Phase 5: After some time, the experiment transitions to
Mode 1, which allows oscillations to recover their open-
loop amplitude.

6) Phase 6: The experiment transitions to Mode 3 (frozen-
gain adaptive controller is implemented) after the oscil-
lations recover their open-loop amplitude.

7) Phase 7: After approximately 30 s, the experiment
transitions to Mode 2.

For the experiment where the coil voltage is changed, the
voltage is changed from Vrms = 70 V to Vrms = 90 V
with the coil position maintained at xus = 0.3 m. For the
experiment where the coil position is changed, the position
is changed from xus = 0.4 m to xus = 0.3 m with the coil
voltage maintained at Vrms = 90 V. Fig. 5 shows that the
magnitudes of the peaks of the amplitude spectra increase after
each transition.

For comparison, the constant-gain proportional controller
introduced in Section VIII-A and shown in Fig. 14 with
K = 0.05 is implemented in the same experimental sce-
narios. The results are shown in Figs. 26 and 27. In both
experimental scenarios, the oscillation suppression achieved by
the constant-gain proportional controller before either the coil
position or the Variac voltage is changed is at least 38.69 dB.
After either the coil position or the Variac voltage is changed,
the oscillations recover their open-loop amplitude, and the
constant-gain proportional controller yields no suppression.

For the adaptive suppression experiments, lc = 5, p0 =

10−4, Ru = 0.75, and Gf(q) = −1/q are used, as in
Section VIII-C. The adaptive controller suppression results
are shown in Figs. 28–31. At the end of Phase 2, the oscil-
lation suppression achieved by the adaptive controller is at
least 43.83 dB in both experimental scenarios. Throughout
Phases 3 and 4, the frozen-gain adaptive controller maintains
the oscillation suppression obtained at the end of the previous
phase. At the end of Phase 6, the oscillation suppression
achieved by the frozen-gain adaptive controller is at least
1.73 dB. At the end of Phase 7, the oscillation suppression
achieved by the adaptive controller is at least 51.91 dB. Hence,
after Phase 6, further adaptation suppresses the oscillations.
Furthermore, Figs. 29 and 31 show that, in both scenarios, the

Fig. 27. Rijke-tube time-varying parameter experiments. Pressure measure-
ments p̃mic from a closed-loop experiment using the constant-gain propor-
tional controller in Fig. 14 are shown for K = 0.05. In this experiment,
the coil position transitions from xus = 0.4 m to xus = 0.3 m with the coil
voltage maintained at Vrms = 90 V. The constant-gain proportional controller
is initially disabled and is enabled at the time indicated by the red vertical
line. The red shading denotes the time interval during which the coil location
transitions from xus = 0.4 m to xus = 0.3 m.

Fig. 28. Rijke-tube time-varying parameter experiments. Results from the
closed-loop experiment using the adaptive controller where the coil voltage
transitions from Vrms = 70 V to Vrms = 90 V with the coil position maintained
at xus = 0.3 m. The pressure measurements p̃mic, requested speaker voltage
p̃spk, and controller coefficients θ are shown. The white, yellow, and green
shading corresponds to Modes 1–3, respectively. The red shading denotes the
time interval during which the coil voltage transitions from Vrms = 70 V to
Vrms = 90 V.

Fig. 29. Rijke-tube time-varying parameter experiments. The magnitude
response of the adaptive controller for the closed-loop experiment where the
coil voltage transitions from Vrms = 70 V to Vrms = 90 V with the coil
position maintained at xus = 0.3 m is shown for t ∈ {0.6, 5, 100} s.

peak of the magnitude response of the adaptive controller near
π/4 rad/sample at the end of Phase 3 subsequently increases
in magnitude during Phase 7.

E. Gain-Margin Experiments

We now consider experimental scenarios where the gain
of the adaptive controller is modified. These scenarios are
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Fig. 30. Rijke-tube time-varying parameter experiments. Results from the
closed-loop experiment using the adaptive controller where the coil position
transitions from xus = 0.4 m to xus = 0.3 m with the coil voltage maintained
at Vrms = 90 V. The pressure measurements p̃mic, requested speaker voltage
p̃spk, and controller coefficients θ are shown. The white, yellow, and green
shading corresponds to Modes 1–3, respectively. The red shading denotes the
time interval during which the coil location transitions from xus = 0.4 m to
xus = 0.3 m.

Fig. 31. Rijke-tube time-varying parameter experiments. The magnitude
response of the adaptive controller for the closed-loop experiment where the
coil position transitions from xus = 0.4 m to xus = 0.3 m with the coil voltage
maintained at Vrms = 90 V is shown for t ∈ {0.6, 25, 140} s.

conducted for xus = 0.3 m and Vrms = 90 V. The controller
output is multiplied by α, as shown in Fig. 32, which is
initially set to α = 1. Each scenario begins in Mode 1 and
transitions to Mode 2 after the oscillations are formed. After no
further oscillation suppression is achieved, two experimental
scenarios are considered.

1) Scenario 1: The experiment continues to operate in
Mode 2.

2) Scenario 2: The experiment transitions to Mode 3.

After this, in each scenario, the value of α is changed when no
further suppression is achieved. For these experiments, lc = 5,
p0 = 10−4, Ru = 0.75, and Gf(q) = −1/q are used, as shown
in Section VIII-C.

Experimental results are shown in Fig. 33. In Scenario 1,
increases in α yield a slight decrease in oscillation suppression,
while decreases in α yield oscillation suppression similar to
the case where α = 1. In Scenario 2, increases in α yield a
slight decrease in oscillation suppression, while decreases in α
yield a noticeable decrease in oscillation suppression. Hence,
the adaptive controller maintains oscillation suppression under
changes in its gain.

Fig. 32. Adaptive control of M with controller gain α.

Fig. 33. Gain-margin tests. Oscillation suppression using the controller
architecture in Fig. 32 is shown for varying values of α. After no further
oscillation suppression is achieved in the case where α = 1, two experimental
scenarios are considered. In Scenario 1, the experiment continues to operate
in Mode 2. In Scenario 2, the experiment transitions to Mode 3. After this,
in each scenario, the value of α is changed when no further suppression is
achieved.

Fig. 34. Adaptive control of M with controller delay of d steps.

Fig. 35. Gf relative-degree experiments. Gf relative-degree experimental
results using the controller architecture in Fig. 34 are shown for various values
of the input delay d and the relative degree dzu of Gf.

F. Gf Relative-Degree Experiments

We now consider experimental scenarios involving input
delay and changes in the relative degree of Gf. These exper-
iments are conducted for xus = 0.3 m and Vrms = 90 V.
For these experiments, an input delay of d steps is added
to the control architecture, as shown in Fig. 34. The exper-
iment begins in Mode 1 and transitions to Mode 2 after the
oscillations are formed. Afterward, the experiment continues
to operate in Mode 2. For this test, the hyperparameters
are given by lc = 5, p0 = 10−4, and Ru = 0.75, as in
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Section VIII-C. Furthermore, Gf(q) = −q−dzu , where dzu
determines the relative degree of Gf. Note that dzu = 1 in
Sections VIII-A–VIII-E.

The experimental results are shown in Fig. 35. For all
d ∈ {0, 1, 2, 3, 4}, the values of dzu that yield the greatest
oscillation suppression lie within {d − 1, d, d + 1}.

IX. CONCLUSION

This article described an experimental Rijke-tube setup and
its open-loop response under various system parameters. For
adaptive control, a hyperparameter selection procedure was
proposed. This procedure consists of tuning a Rijke-tube
model to emulate the first modal peak of the open-loop
response of the experimental Rijke-tube setup under a single
choice of system parameters, applying the adaptive controller
to the emulation model, and running numerical simulations
to determine hyperparameters that suppress the model oscil-
lations. The selected hyperparameters were then used by
the adaptive controller to suppress the oscillatory response
of the experimental Rijke-tube setup under various system
parameters. Further experiments showed the effect of modified
hyperparameters on the time it takes for the adaptive controller
to suppress oscillations, the performance and robustness of
the frozen-gain adaptive controller, the ability of the adaptive
controller to readapt under changes in working conditions, the
stability of the adaptive controller under changes in its gain,
and the effect of the relative degree of the closed-loop target
model on the level of suppression.
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