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Abstract— We consider the robustness of state estimation for
linear, time-invariant systems. Since state estimation is dual
to full-state feedback, it may be expected that stability of the
error dynamics depends continuously on perturbations of the
dynamics matrix. This paper shows, however, that, if the system
dynamics are unstable, then—regardless of how the filter gain
is chosen—there always exist arbitrarily small perturbations
of the system dynamics that give rise to unbounded state-
estimation error. Since this phenomenon cannot occur in full-
state feedback control, this result reveals a surprising break-
down in the duality between estimation and control.

I. INTRODUCTION

In the classical full-state-feedback control problem for
linear, time-invariant plants, the goal is to determine a
feedback gain K such that the closed-loop dynamics A+BK
are asymptotically stable. Since the eigenvalues of a matrix
are continuous functions of its entries, it follows that, if
A+BK is asymptotically stable, then, for every perturbation
∆A of sufficiently small norm, the perturbed dynamics
A + ∆A + BK are also asymptotically stable. In other
words, by virtue of feedback control, A+BK is inherently
robust to plant uncertainty, at least to some extent. For the
dual problem of state estimation, A + BK is replaced by
A − FC, where F is the filter gain. Consequently, one
might expect an analogous result to hold, namely, that, if
A−FC is asymptotically stable, then, for every perturbation
∆A of sufficiently small norm, the perturbed dynamics
A + ∆A − FC are also asymptotically stable. The present
paper shows that this expectation is false.

The reason for this breakdown in duality can be seen
as follows. For full-state-feedback control with an uncertain
dynamics matrix A, the feedback gain is chosen to ensure
that Â+BK is asymptotically stable, where Â is the model
of A, and thus the physical system is asymptotically stable
if and only if A+BK = Â+ ∆A+BK is asymptotically
stable, where ∆A , A−Â. For state estimation with known
A, in which case Â = A, the error dynamics are given by

ė(t) = (A− FC)e(t). (1)

However, in the case where A is uncertain, the error dynam-
ics are not given by

ė(t) = (Â− FC)e(t), (2)

but rather are given by

ė(t) = (Â− FC)e(t) + ∆Ax(t). (3)
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In the case where A is unstable and thus x is unbounded,
the presence of x(t) in (3) can lead to unbounded error. This
observation applies to both estimators and observers.

Robustness of state estimation has been considered ex-
tensively in the literature [1], [2], [3], [4]. The case of
parameter uncertainty is considered in [5], [6], [7], [8],
[9]. In addition, H2/H∞ extensions of the Kalman filter are
considered in [10], [11], [12], [13], [14], [15]. For the case
of uncertain, unstable dynamics, as considered in the present
paper, the lack of robustness of observers was noted and
analyzed in [1]. In particular, Corollary 1.1 of [1] states
that, for systems that are completely unstable, that is, all of
whose eigenvalues lie in the closed right-half plane, the state
error is nonconvergent for “each and every” perturbation of
the system dynamics. The present paper revisits this claim
by considering a larger class of systems, namely, systems
with unstable dynamics, and by characterizing the class
of perturbations under which the state-estimation error is
bounded.

It is important to emphasize that state estimation for
unstable systems is a problem of significant practical interest.
For example, the Kalman filter is routinely used to track
the trajectories of ballistic and maneuvering vehicles, whose
dynamics are modeled by the (unstable) double-integrator.
For systems with asymptotically stable dynamics, however,
in the absence of process noise, all states decay to zero,
and thus every asymptotically stable estimator correctly
predicts the asymptotic states, which are zero. Therefore,
the performance of the Kalman filter is especially important
when the state is not a priori bounded.

The contents of the paper are as follows. Section II
presents the state-estimation problem with uncertain, unsta-
ble dynamics. Section III analyzes the error dynamics and
investigates the robustness in state estimation with uncertain,
unstable dynamics. Finally, Section IV shows that the lack
of robustness in state estimation with uncertain, unstable
dynamics does not apply to LQG, which is based on certainty
equivalence.

The following notation will be used throughout the paper.
Let x(i) denote the ith entry of x ∈ Rn. For A ∈ Rn×n,
let spec(A) denote the set of eigenvalues of A including
multiplicity. The ith row of A and the jth column of A are
denoted by rowi(A) and colj(A), respectively. The matrix
exponential is written as either eA or exp(A). The open left-
half plane is denoted by OLHP.
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II. STATE ESTIMATION PROBLEM

Consider the linear time-invariant system

ẋ(t) = Ax(t) +D1w(t), (4)
y(t) = Cx(t) +D2v(t), (5)

where A ∈ Rn×n, x ∈ Rn, D1 ∈ Rn×l, w ∈ Rl is Gaussian
white noise with intensity Il, C ∈ Rp×n, y ∈ Rp, D2 ∈
Rp×r, v ∈ Rp is Gaussian white noise with intensity Il. For
convenience, we assume that w and v are uncorrelated, and
V2 , D2D

T
2 is positive definite. Define V1 , D1D

T
1 , which

is positive semidefinite. Assuming that (A,C) is detectable,
the state estimator has the form

˙̂x(t) = Ax̂(t) + F (y(t)− Cx̂(t)), (6)

where x̂ ∈ Rn and F ∈ Rn×p.
The optimal time-varying filter gain F (t) is given by

F (t) = Q(t)CTV −12 , (7)

where the covariance Q(t) of the error

e , x̂− x (8)

is given by the Riccati differential equation

Q̇ = AQ+QAT −QCTV −12 CQ+ V1 (9)

with the initial data Q(0). The resulting state estimator yields
limt→∞ e(t) = 0. If (A,C) is observable and F is chosen
to be the constant matrix

F = QCTV −12 , (10)

where the steady-state error covariance Q is given by the
positive-semidefinite solution of algebraic Riccati equation

AQ+QAT −QCTV −12 CQ+ V1 = 0, (11)

then A− FC is asymptotically stable.

III. ANALYSIS OF THE ERROR DYNAMICS

Subtracting (4) from (6) and using (8) implies that

ė(t) = (A− FC)e(t)−D1w(t) + FD2v(t), (12)

which is the error dynamics for the case where A is known.
If, on the other hand, A is uncertain but an estimate Â of
A is known, then the state estimator (6) can be rewritten by
replacing A with Â as

˙̂x(t) = Âx̂(t) + F [y(t)− Cx̂(t)]

= Âx̂(t)− FCe(t) + FD2v(t). (13)

Subtracting (4) from (13) and using (8) implies that

ė(t) = (A− FC)e(t) + (Â−A)x̂(t)

−D1w(t) + FD2v(t), (14)

which is the error dynamics for the case where A is uncertain
and Â is an estimate of A. Alternatively, using x̂ = e + x,
(14) implies that

ė(t) = (Â− FC)e(t) + (Â−A)x(t)

−D1w(t) + FD2v(t). (15)

Combining (4) and (15) yields[
ẋ(t)
ė(t)

]
=

[
A 0

Â−A Â− FC

] [
x(t)
e(t)

]
+

[
D1 0
−D1 FD2

] [
w(t)
v(t)

]
. (16)

Henceforth in this paper, and in order to focus on observers,
we assume that w ≡ 0 and v ≡ 0.

Define H : [0,∞)→ Rn×n by

H(t) ,
∫ t

0

eτ(Â−FC)(Â−A)e(t−τ)A dτ. (17)

Since every entry of the integrand of H(t) is continuous, it
follows that, for all t ≥ 0, H(t) exists.

The following result provides boundedness and conver-
gence properties of the state-estimation error with uncertain
dynamics. The statement that a limit exists assumes that the
limit is finite.

Proposition 1. For all t ≥ 0,

e(t) = et(Â−FC)e(0) +H(t)x(0). (18)

If, in addition, Â − FC is asymptotically stable, then the
following statements hold:

i) H is bounded if and only if, for all x(0) ∈ Rn, e is
bounded.

ii) limt→∞H(t) exists if and only if, for all x(0) ∈ Rn,
limt→∞ e(t) exists.

iii) limt→∞H(t) = 0 if and only if, for all x(0) ∈ Rn,
limt→∞ e(t) = 0.

Proof. To show (18), note that (16) implies that, for all
t ≥ 0,[

x(t)
e(t)

]
= exp

(
t

[
A 0

Â−A Â− FC

])[
x(0)
e(0)

]
,

which, using [16, Theorem 1], implies that, for all t ≥ 0,[
x(t)
e(t)

]
=

[
etA 0

H(t) et(Â−FC)

] [
x(0)
e(0)

]
,

which confirms (18).
To show i)–iii), note that, since Â−FC is asymptotically

stable, it follows that et(Â−FC) → 0 as t → ∞. Thus, (18)
implies i). Moreover, (18) implies that e(t) ∼ H(t)x(0) as
t→∞, which confirms ii) and iii).

Next, for all integers i ≥ 1, define Gi ∈ Rn×n by

Gi ,
i∑

j=1

(Â− FC)−j(Â−A)Aj−1. (19)

Proposition 2. The following statements hold:
i) For all t ≥ 0,

H(t) =

∞∑
i=1

ti

i!
(Â− FC)iGi. (20)
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ii) Assume that (Â−A)A = 0. Then, for all t ≥ 0,

H(t) = [et(Â−FC) − In]G1. (21)

If, in addition, Â − FC is asymptotically stable, then
H is bounded and

lim
t→∞

H(t) = −G1. (22)

iii) Assume that A is nilpotent with index k. Then, for all
t ≥ 0,

H(t) = [et(Â−FC) − In]Gk

−
k−1∑
i=1

ti

i!
(Â− FC)i(Gk −Gi). (23)

If, in addition, Â − FC is asymptotically stable, then,
as t→∞,

H(t) ∼ −Gk −
k−1∑
i=1

ti

i!
(Â− FC)i(Gk −Gi). (24)

iv) Assume that A is nilpotent with index k = 2. Then, for
all t ≥ 0,

H(t) = [et(Â−FC) − In]G2 − tG1A. (25)

Assume, in addition, that Â − FC is asymptotically
stable. Then, H is bounded if and only if (Â−A)A = 0.

Proof. To show i), using the definition of matrix exponen-
tial, it follows from (17) that, for all t ≥ 0,

H(t) =

∫ t

0

[In + τ(Â− FC) + 1
2τ

2(Â− FC)2 + · · · ]

· (Â−A)[In + (t− τ)A+ 1
2 (t− τ)2A2 + · · · ] dτ

=

∫ t

0

[Â−A+ (t− τ)(Â−A)A

+ τ(Â− FC)(Â−A) + 1
2 (t− τ)2(Â−A)A2

+ τ(t− τ)(Â− FC)(Â−A)A

+ 1
2τ

2(Â− FC)2(Â−A) + · · · ] dτ

= t(Â−A) + 1
2 t

2[(Â− FC)(Â−A)

+ (Â−A)A] + · · ·

=

∞∑
i=1

ti

i!
(Â− FC)iGi.

To show ii), note that (Â−A)A = 0 implies that, for all
i ≥ 2, Gi = 0. It thus follows from i) that, for all t ≥ 0,

H(t) =

∞∑
i=1

ti

i!
(Â− FC)iG1,

which, using the definition of the matrix exponential, con-
firms ii).

To show iii), note that since, for all j ≥ k, Aj = 0, it
follows from i) that, for all t ≥ 0,

H(t) =

∞∑
i=1

ti

i!
(Â− FC)iGmin{i,k}

=

k−1∑
i=1

ti

i!
(Â− FC)iGi +

∞∑
i=k

ti

i!
(Â− FC)iGk

=

k−1∑
i=1

ti

i!
(Â− FC)iGi

+ [et(Â−FC) − In −
k−1∑
i=1

ti

i!
(Â− FC)i]Gk,

which confirms iii).
To show iv), first, note that (25) follows from iii) with

k = 2. Next, to show sufficiency, note that (Â − A)A = 0
implies G1 = G2 and G1A = 0. Since, in addition,
Â − FC is asymptotically stable, it follows from (25) that
limt→∞H(t) = −G1, which, since H is continuous, implies
that H is bounded. To show necessity, note that since Â−FC
is asymptotically stable, it follows from (25) that G1A =
(Â−FC)−1(Â−A)A = 0. Since, in addition, (Â−FC)−1

is nonsingular, it follows that (Â−A)A = 0.

Note that parts iii) and iv) of Proposition 1 consider
nilpotent dynamics A. A special case of nilpotent dynamics
is given by the chain of integrators dynamics, for which

A =

[
0(n−1)×1 In−1

0 01×(n−1)

]
. (26)

The following result provides convergence properties of
H for the case where n = 1. In particular, this result shows
that estimation for an unstable scalar system has a total lack
of robustness.

Proposition 3. Let n = 1, and assume that Â−FC < 0.
Then,

lim
t→∞

H(t) =


0, A < 0 or Â = A,

− Â

Â− FC
, A = 0,

[sign(Â−A)]∞, Â 6= A > 0.

(27)

Now, assume that A > 0 and x(0) ∈ R is nonzero. Then,
the following statements are equivalent:

i) Â = A.
ii) H is bounded.

iii) limt→∞H(t) = 0.
iv) e is bounded.
v) limt→∞ e(t) = 0.

Proof. It follows from (17) that

H(t) = (Â−A)etA
∫ t

0

eτ(Â−FC−A) dτ

=
Â−A

Â− FC −A
(et(Â−FC) − etA). (28)
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Fig. 1: Example 2. State-estimation error with uncertain, unstable scalar
dynamics, where A = 1. With Â = A, e converges to 0 exponentially.
With Â 6= A, however, e diverges exponentially. As implied by Proposition
3, all perturbations of the system dynamics give rise to unbounded state-
estimation error.

Since Â− FC < 0, (28) implies that, as t→∞,

H(t) ∼ − Â−A
Â− FC −A

etA,

which confirms (27).
The equivalence of i)–v) follows from (18) and (27).

The following example considers scalar dynamics and
uses Proposition 3 to show that the state-estimation error
converges for all values of Â assuming that F is chosen
such that Â− FC < 0. This example shows that Corollary
1.1 of [1] is incorrect.

Example 1. Uncertain Integrator Dynamics. Consider the
integrator dynamics A = 0 (i.e., (26) with n = 1), and
let C = 1, x(0) = 3, x̂(0) = 2, Â = −1, and F = 2.
Since, Â − FC < 0, it follows from Proposition 3 that
limt→∞H(t) = −Â/(Â − FC) = −1/3. It thus follows
from Proposition 1 that limt→∞ e(t) = −x(0)/3 = −1.
Note that this conclusion contradicts Corollary 1.1 of [1],
which implies that the error does not converge. 4

Note that Proposition 3 implies that, if n = 1 and A > 0,
then Â = A is a necessary condition for boundedness and
convergence of the state-estimation error. Therefore, in the
case of uncertain, unstable scalar dynamics, all perturbations
of the system dynamics yield unbounded state-estimation
error. The following example illustrates this property.

Example 2. Uncertain, Unstable Scalar Dynamics. Let
A = 1, C = 1, x(0) = 3, x̂(0) = 2, and F = 2. We consider
three cases, namely, Â = 1.00001, Â = A = 1, and Â =
0.99999. Note that, for all cases, Â− FC is asymptotically
stable. For both Â = 1.00001 and Â = 0.99999, Proposition
3 implies that, for all nonzero x(0) ∈ R, e is unbounded.
In these two cases, e diverges exponentially, as illustrated in
Figure 1. With Â = A, Proposition 3 implies that, for all
x(0) ∈ R, e→ 0 as t→∞, as illustrated in Figure 1. 4
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Fig. 2: Example 3. State-estimation error with uncertain double-integrator
dynamics, where Â is chosen such that (Â − A)A = 0. In this case, in
contrast to the case of scalar dynamics in Example 2, e converges, as implied
by Proposition 4.

For n ≥ 2, the following result provides sufficient condi-
tions for convergence of the state-estimation error.

Proposition 4. Assume that (Â−A)A = 0 and Â− FC
is asymptotically stable. Then,

lim
t→∞

e(t) = −G1x(0). (29)

Proof. Since Â− FC is asymptotically stable, it follows
that et(Â−FC) → 0 as t → 0. Thus, (18) and part ii) of
Proposition 2 confirm (29).

Note that condition (Â − A)A = 0 of Proposition 4 is
satisfied if and only if each row of Â−A is in the left null
space of A. This condition can be used to characterize a set
of perturbed dynamics Â that yields bounded state-estimation
error (e.g., See Proposition 6 in this paper).

The following example illustrates Proposition 4 for an
uncertain double-integrator.

Example 3. Uncertain Double-Integrator. Consider the
double-integrator dynamics (i.e., (26) with n = 2), and let

Â =

[
0 1
0 0.01

]
, C = [1 0]. (30)

Let x(0) = [3 − 1]T, x̂(0) = [2 1]T, and F = [0.3 0.02]T.
It follows that Â − FC is asymptotically stable. Note that,
since (Â−A)A = 0, it follows from Proposition 4 that

lim
t→∞

e(t) = −G1x(0) =

[
0 0.5
0 0.16

] [
3
−1

]
= −

[
0.5
0.16

]
.

(31)
In this case, in contrast to the case of unstable scalar dynam-
ics, e converges, as illustrated in Figure 2. Nevertheless, this
example does not imply that there do not exist arbitrarily
small perturbations of the double-integrator dynamics that
give rise to unbounded state-estimation error. In fact, Corol-
lary 1 and Example 5 show that, for the double-integrator
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Fig. 3: Example 4. State-estimation error with uncertain, 4th-order chain of
integrators dynamics, where Â is chosen such that (Â−A)A = 0. In this
case, in contrast to the case of scalar dynamics in Example 2, e converges,
as implied by Proposition 4.

dynamics, there exist arbitrarily small perturbations that yield
unbounded state-estimation error. 4

The following example illustrates Proposition 4 for an
uncertain chain of integrators.

Example 4. Uncertain Chain of Integrators. Consider the
chain of integrators dynamics (26) with n = 4, and let

Â =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0.01

 , C =
[
1 0 0 0

]
. (32)

Let x(0) = [3 3 3 3]T, x̂(0) = [2 2 2 2]T, and F =
[1.5 0.8 0.18 0.01]T. It follows that Â−FC is asymptotically
stable. Note that, since (Â − A)A = 0, it follows from
Proposition 4 that limt→∞ e(t) = [2.38 3.57 1.90 0.43]T. In
this case, in contrast to the case of unstable scalar dynamics
in Example 2, e converges, as illustrated in Figure 3. 4

The next result, which relies on Proposition 1, provides
a necessary and sufficient condition for the boundedness of
the state-estimation error for the case where A is nilpotent
with index 2 (e.g., double-integrator dynamics).

Proposition 5. Assume that A is nilpotent with index 2
and Â − FC is asymptotically stable. Then, for all x(0) ∈
Rn, e is bounded if and only if (Â−A)A = 0.

Proof. Since Â− FC is asymptotically stable, it follows
from part iv) of Proposition 2 that H is bounded if and only if
(Â−A)A = 0. Thus, part i) of Proposition 1 implies that, for
all x(0) ∈ Rn, e is bounded if and only if (Â−A)A = 0.

The following result provides the set of all perturbations
in the chain of integrator dynamics (26) that yield bounded
state-estimation error.

Proposition 6. Let A be a chain of integrators dynamics
given by (26). Then, (Â − A)A = 0 if and only if, for all
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Fig. 4: Example 5. State-estimation error with an uncertain double-integrator
dynamics, where Â is chosen such that col1(Â) 6= 0. In contrast to the
cases of Examples 3 and 4 where col1(A) = 0, in this case, e diverges, as
implied by Corollary 1.

i ∈ {1, . . . , n− 1},

coli(Â) = coli(A). (33)

Proof. To show sufficiency, note that

Â−A =
[
0n×(n−1) coln(Â)− coln(A)

]
,

which implies that

(Â−A)A = [coln(Â)− coln(A)]⊗ rown(A) = 0.

To show necessity, note that

0 = (Â−A)A

=
[
0n×1 col1(Â−A) · · · coln−1(Â−A)

]
=
[
0n×1 col1(Â) · · · coln−1(Â)

]
−
[
0n×1 col1(A) · · · coln−1(A)

]
,

which confirms (33).

The following result, which follows from Propositions 4–
6, provides a necessary and sufficient condition for bounded-
ness and convergence of state-estimation error with uncertain
double-integrator dynamics.

Corollary 1. Let A be double-integrator dynamics given
by (26) with n = 2. Assume that Â− FC is asymptotically
stable. Then, the following statements hold:

i) e is bounded if and only if col1(Â) = 0.
ii) Assume that col1(Â) = 0. Then, limt→∞ e(t) =
−G1x(0).

The following example illustrates Corollary 1.

Example 5. We reconsider Example 3 but with

Â =

[
0 1

0.01 0.01

]
, F =

[
15
50

]
. (34)

Note that, in contrast to Example 3, col1(Â) 6= 0. It thus
follows from Corollary 1 that e is unbounded. In this case,
e diverges, as illustrated in Figure 4.
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IV. STATE ESTIMATION WITH FEEDBACK

In this section, we show how the lack of robustness in
estimation with uncertain, unstable dynamics disappears in
the presence of feedback. In particular, we reconsider the
linear time-invariant system (4) and (5) with control input
u ∈ Rm, that is,

ẋ(t) = Ax(t) +Bu(t) +D1w(t), (35)
y(t) = Cx(t) +Du(t) +D2v(t), (36)

where B ∈ Rn×m and D ∈ Rp×m. Assuming that (A,C)
is detectable and (A,B) is stabilizable, the state estimation
with feedback has the form

˙̂x(t) = Ax̂(t) +Bu(t) + F [y(t)− Cx̂(t)−Du(t)], (37)
u(t) = Kx̂(t), (38)

where K ∈ Rm×n is feedback gain. Subtracting (35) from
(37) implies that

ė(t) = (A− FC)e(t)−D1w(t) + FD2v(t), (39)

which is the error dynamics for the case where A is known.
If, on the other hand, A is uncertain but an estimate Â of A
is known, then the state estimator (37) can be rewritten by
replacing A with Â as

˙̂x(t) = Âx̂(t) +Bu(t) + F [y(t)− Cx̂(t)−Du(t)]

= Âx̂(t) +Bu(t)− FCe(t) + FD2v(t). (40)

Subtracting (35) from (40) and using (8) implies that

ė(t) = (A− FC)e(t) + (Â−A)x̂(t)

−D1w(t) + FD2v(t), (41)

which is the error dynamics for the case where A is unknown
but an estimate Â of A is known. Alternatively, using x̂ =
e+ x, (41) implies

ė(t) = (Â− FC)e(t) + (Â−A)x(t)

−D1w(t) + FD2v(t). (42)

Combining (35), (38), and (42) yields[
ẋ(t)
ė(t)

]
=

[
A+BK BK

Â−A Â− FC

] [
x(t)
e(t)

]
+

[
D1 0
−D1 FD2

] [
w(t)
v(t)

]
. (43)

The following result shows that, in contrast to the case of
state estimation without feedback in Section III, the case of
state estimation with feedback is robust to sufficiently small
perturbations of Â from A.

Proposition 7. Consider (43), and assume that A + BK
is asymptotically stable. There exists ε > 0 such that, if
‖Â − A‖ < ε, then, for all x(0) ∈ Rn, limt→∞ e(t) = 0 if
and only if Â− FC is asymptotically stable.

Proof. Since A+BK is asymptotically stable, it follows
that

spec

([
A+BK BK

0 Â− FC

])
⊂ OLHP, (44)

if and only if Â − FC is asymptotically stable. Since
eigenvalues of a matrix are continuously dependent on its
entries, it follows from (44) that there exists ε > 0 such that
‖Â−A‖ < ε implies that

spec

([
A+BK BK

Â−A Â− FC

])
⊂ OLHP,

if and only if Â − FC is asymptotically stable. Thus, (43)
confirms the result.

V. CONCLUSIONS

This paper showed that, for systems with unstable dy-
namics, modeling errors of arbitrarily small magnitude can
result in observers that possess unbounded estimation errors.
This severe lack of robustness, which was pointed out in
[1], suggests that observers and estimators for real-world
systems with unstable dynamics must be implemented and
analyzed with extreme caution. Future research will focus
on unstable, nonlinear systems, for which we expect that
nonlinear observers and estimators suffer from the same
severe lack of robustness. The real-world implications of this
phenomenon deserve careful attention.
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