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Abstract— Lightly damped modes that lie within or outside
the controller bandwidth of an attitude control system are
challenging. As an active control strategy for harmonic dis-
turbances, the present paper applies predictive cost adaptive
control (PCAC) to a system with a rigid-body mode and a
lightly damped mode that is unmodeled and possibly aliased.
PCAC is applied to the specific case of resonance, where the
frequency of the exogenous harmonic disturbance coincides
with the peak-amplification frequency of the system. LQG
control with and without an internal model and with known and
uncertain modal frequency provides a baseline for comparison
with PCAC, which uses online identification and requires no
prior knowledge of the system dynamics or disturbance spec-
trum. The numerical comparison accounts for the intersample
behavior of the lightly damped mode.

I. INTRODUCTION

Lightly damped modes that lie within or outside the
controller bandwidth of an attitude control system are chal-
lenging. These modes may be excited by either the command
or the disturbance, especially when the disturbance is a
harmonic signal whose frequency coincides with a peak-
amplification frequency of the system; this is the case of
resonance. In practice, input shaping [1] and loop shaping
(gain and phase stabilization) [2] can be used to avoid
excitation of these modes by the attitude control system,
and passive, semi-active, or active control techniques can
be used to improve settling time [3]–[5]. If the disturbance
is measured, then feedforward techniques can be used [6];
however, the present paper focuses on feedback control.

When active control methods are used, a system and
disturbance model may be needed. The standard approach to
this problem is to apply LQG control with frequency shaping
of the cost in order to account for the lightly damped mode
and disturbance [7], [8]. A related approach is to embed an
internal model in the loop as part of the controller, thereby
cancelling the effect of the disturbance [9], [10]; integral
control for step-command following and step-disturbance
rejection is a special case of this technique.

The present paper focuses on active control of systems
with lightly damped modes that are either poorly modeled
or unmodeled. The lack of an accurate model may be due
to the inability to perform system identification, or it may
arise from unmodelable or nonrepeatable effects due to the
environment. In this case, frequency shaping and internal
model control may result in a detuned controller with poor
performance.
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In order to account for model uncertainty, robust control
methods such as gain and phase stabilization can be used.
Alternatively, adaptive controllers that can learn and adjust
their gains to the actual system dynamics and disturbance
are of interest. Within the context of direct adaptive control,
however, unmodeled lightly damped modes may lead to
divergence [11].

The present paper addresses the problem of suppressing
the vibrations of a lightly damped mode by applying predic-
tive cost adaptive control (PCAC) [12]. PCAC is a variation
of model predictive control (MPC), which has been exten-
sively developed [13], [14] and applied to vibration control
[15]. In particular, PCAC uses online system identification to
obtain a model of the system, and takes advantage of a sys-
tem realization that facilitates output (partial-state) feedback.
Since MPC is based on optimization over a future horizon
and since vibration suppression entails disturbance rejection,
a critical issue concerns the ability of PCAC to correctly
predict the response to the future, unknown disturbance. This
issue was addressed in [16], where it was shown that system
identification in the presence of harmonic disturbances is
able to build a model that correctly forecasts not only the
frequency of the future response but also its amplitude and
phase. This property is essential to the application of PCAC
to systems that are subjected to harmonic disturbances.

PCAC was applied to vibration suppression in [17], [18].
The present paper goes beyond these works in two ways.
First, we consider the case where the system dynamics
include a rigid body mode, which is often the case in
practice. This problem is an extension of the benchmark
problem in [19], where, in the present paper, the setting is
sampled-data control, the dynamics of the lightly damped
mode are uncertain, and the disturbance is harmonic at the
peak-amplification frequency. Second, we consider the case
where the unmodeled lightly damped mode may lie either
within or outside the controller bandwidth. In the latter case,
aliasing may occur, and one of the goals of this paper is to
determine how severe undersampling (or, equivalently, high-
frequency unmodeled dynamics) affects the performance of
PCAC. As a baseline comparison, we apply LQG to the same
problem assuming that the peak-amplification frequency of
the lightly damped mode is uncertain.

The contents of the paper are as follows. Section II
formulates the sampled-data control problem; Section III
reviews discrete-time LQG control with an internal model;
Section IV reviews PCAC; and Section V compares LQG
with PCAC.
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II. HARMONIC DISTURBANCE REJECTION UNDER
SAMPLED-DATA CONTROL

We consider the sampled-data control architecture shown
in Figure 1. The continuous-time system G is represented
as a state-space model, which is discretized according to
sample-and-hold operations. In particular, G is represented
by

ẋ(t) = ACTx(t) +BCTu(t) +D1,CTw(t), (1)
y(t) = CCTx(t) +D2,CTv(t), (2)

where x(t) ∈ Rn is the state, w(t) ∈ Rlw is the disturbance,
y(t) ∈ Rp is the measurement, v(t) ∈ Rlv is the sensor
noise, ACT ∈ Rn×n, BCT ∈ Rn×m, CCT ∈ Rp×n,
D1,CT ∈ Rn×lw , and D2,CT ∈ Rp×lv . The disturbance
w(t) is matched if there exists U ∈ Rm×m such that
D1 = BU ; otherwise, the disturbance is unmatched. Note
that, if B = D1, then the disturbance is matched and U = I .
The control input u(t) is piecewise constant within each
interval [kTs, (k + 1)Ts), at the value uk, where Ts > 0 is
the sample interval whose units are sec/step and k = 1, 2, . . .
denotes the step. The output y(t) of G is corrupted by sensor
noise v(t). The sampling operation yields yk

△
= y(kTs)+vk,

where vk
△
= v(kTs) ∈ Rp is the sampled sensor noise.

Gc(q) ZOH
G(s)

v(t)w(t)

uk u(t)

Tsy(t) yk

Fig. 1: Disturbance rejection under sampled-data control. The objective is to
reject the disturbance w(t). The sample interval, whose units are sec/step,
is denoted by Ts, and ZOH denotes zero-order hold. All sample-and-hold
operations are synchronous.

The continuous-time system (1), (2) with sample-and-hold
operations is discretized as

xk+1 = Axk +Buk +D1wk, (3)
yk = Cxk +D2vk, (4)

where xk
△
= x(kTs), yk

△
= y(kTs), and A,B,D1, C, and D2

are the discretized versions of ACT, BCT, D1,CT, CCT, and
D2,CT, respectively. Define the discrete-time disturbance and
sensor-noise covariances V1

△
= D1D

T
1 and V2

△
= D2D

T
2 .

In later sections, the controller Gc(q) will be either a
discrete-time LQG controller, with or without an internal
model, or an adaptive control based on MPC. The perfor-
mance of all controllers will be evaluated in terms of the root-
mean-square (RMS) value of y(t). This measure includes the
intersample behavior of y(t), that is, the values of y(t) within
each sample interval as determined by numerical integration
using an integration step size that is much smaller than the
sample interval Ts.

III. SAMPLED-DATA LQG CONTROL

Consider the discrete-time dynamical system (3), (4)
where wk and vk are uncorrelated standard Gaussian white-

noise processes. The goal is to find a controller that mini-
mizes the cost

J(Ac, Bc, Cc)
△
= lim

k→∞
E(xT

kR1xk + uT
kR2uk), (5)

where E denotes expected value. The optimal controller is
given by [20]

x̂k+1 = (A−BK − LC)x̂k + Lyk, (6)
uk = −Kx̂k, (7)

where L is the Kalman gain

L
△
= AQCT(CQCT + V2)

−1, (8)
Q is the solution of the observer Riccati equation
Q = AQAT −AQCT(CQCT + V2)

−1CQAT + V1, (9)
K is the feedback gain

K
△
= (BTPB +R2)

−1BTPA, (10)
and P is the solution of the regulator Riccati equation

P = ATPA−ATPB(BTPB +R2)
−1BTPA+R1.

(11)

Although LQG is based on the assumption that wk is white
noise, this paper focuses on the case where wk is harmonic.
In this case, LQG can be used to obtain a stabilizing
controller that includes a suitable internal model [9], [10].
This can be done by cascading an internal model of the
disturbance with the plant dynamics and then synthesizing an
LQG controller for the augmented dynamics. For an internal
model with order nim, this procedure, which is shown in
Figure 2, leads to a controller of order n+ 2nim.

GGimGc

Controller, n+ 2nim

LQG Controller
n+ nim

Internal Model
nim

Discretized Plant
n

ukuLQG,k

Fig. 2: Block diagram of the LQG internal model control approach. The
internal model Gim is embedded in the loop, and an LQG controller of
order n + nim is synthesized for the cascaded system. The implemented
controller, which consists of the LQG controller and the internal model,
thus has order n+ 2nim.

To illustrate this procedure for the case of a single har-
monic, the dynamics of the internal model are given by
xim,k+1 = Aimxim,k +BimuLQG,k, uk = Cimxim,k, (12)

Aim
△
=

ï
cos(ωdisTs)

1
ωdis

sin(ωdisTs)

−ωdis sin(ωdisTs) cos(ωdisTs)

ò
, (13)

Bim
△
=

ñ −1
ω2

dis
(cos(ωdisTs)− 1)
1

ωdis
sin(ωdisTs)

ô
(14)

Cim
△
=

[
1 0

]
, (15)

where the eigenvalues of Aim correspond to the spectrum
of the harmonic disturbance at the disturbance frequency
ωdis. The augmented dynamics that LQG uses to create the
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controller are thus given by

x̂aug,k
△
=

ï
x̂k

x̂im,k

ò
, Aaug

△
=

ï
A BCim

0 Aim

ò
, (16)

Baug
△
=

ï
0

Bim

ò
, Caug

△
=

[
C 0

]
, (17)

where x̂im,k is the estimated state of the internal model. The
resulting observer and controller gains and the associated
Riccati equations are given by
L = AaugQCT

aug(CaugQCT
aug + V2)

−1, (18)

Q = AaugQAT
aug

−AaugQCT(CaugQCT
aug + V2)

−1CaugQAT
aug + V1,

(19)

K = (BT
augPBaug +R2)

−1BT
augPAaug, (20)

P = AT
augPAaug

−AT
augPBaug(B

T
augPBaug +R2)

−1BT
augPAaug +R1.

(21)
The resulting controller of order n+ 2nim has the formï

x̂aug,k+1

xim,k+1

ò
=

ï
Aaug −BaugK − LCaug 0

−BimK Aim

ò ï
x̂aug,k

xim,k

ò
+

ï
L
0

ò
yk, (22)

uk =
[
0 Cim

] ïx̂aug,k

xim,k

ò
. (23)

The procedure for using LQG to construct a stabilizing
controller with an internal model of the harmonic disturbance
assumes that the frequency ωdist is known. In this case,
the resulting controller has high gain at ωdist, and thus
the closed-loop transfer function from w to y has a notch,
thereby rejecting the disturbance.

IV. PREDICTIVE COST ADAPTIVE CONTROL

PCAC combines online identification with output-
feedback MPC.

A. Online Identification

Consider the MIMO input-output model

ŷk = −
n̂∑

i=1

F̂iyk−i +

n̂∑
i=1

Ĝiuk−i, (24)

where k ≥ 0 is the step, n̂ ≥ 1 is the identification data
window, F̂k ∈ Rp×p and Ĝk ∈ Rp×m are the estimated
model coefficients, and uk ∈ Rm, yk ∈ Rp, and ŷk ∈ Rp are
the inputs, outputs and predicted outputs.

To estimate the coefficients F̂k and Ĝk online, we use
recursive least squares (RLS) with variable-rate forgetting
[21], which minimizes the cumulative cost

Jk(θ̂) =

k∑
i=0

ρi
ρk

zTi (θ̂)zi(θ̂) +
1

ρk
(θ̂ − θ0)

TP−1
0 (θ̂ − θ0),

(25)

where ρk
△
=

∏k
j=0 λ

−1
j ∈ R, λk ∈ (0, 1] is the forgetting

factor, P0 ∈ R[n̂p(m+p)]×[n̂p(m+p)] is positive definite, θ0 ∈
R[n̂p(m+p)] is the initial estimate of the coefficient vector,

and the performance variable zi(θ̂) ∈ Rp is defined as

zk(θ̂)
△
= yk +

n̂∑
i=1

F̂iyk−i −
n̂∑

i=1

Ĝiuk−i, (26)

where the vector θ̂ ∈ R[n̂p(m+p)] of coefficients to be
estimated is defined by

θ̂
△
= vec

î
F̂1 · · · F̂n̂ Ĝ1 · · · Ĝn̂

ó
. (27)

Defining the regressor matrix ϕk ∈ Rp×[n̂p(m+p)] by

ϕk
△
=

[
−yTk−1 · · · −yTk−n̂ uT

k−1 · · · uT
k−n̂

]
⊗ Ip,

(28)
the performance variable can then be written as

zk(θ̂) = yk − ϕkθ̂. (29)

The global minimizer θk+1
△
= argminθ̂ Jk(θ̂) is computed

by RLS as
Lk = λ−1

k Pk (30)

Pk+1 = Lk − Lkϕ
T
k (Ip + ϕkLkϕ

T
k )

−1ϕkLk (31)

θk+1 = θk + Pk+1ϕ
T
k (yk − ϕkθk), (32)

where
θk+1 = vec

î
F̂1,k+1 · · · F̂n̂,k+1 Ĝ1,k+1 · · · Ĝn̂,k+1

ó
.

(33)

The variable-rate forgetting (VRF) factor λk is developed
in [22] and given by

λk =
1

1 + ηg(zk−τd , . . . , zk)1[g(zk−τd , . . . , zk)]
(34)

where 1 : R → {0, 1} is the unit step function, and

g(zk−τd , . . . , zk)
△
= 

τn
τd

(Στn(zk−τn , . . . , zk)Στd(zk−τd , . . . , zk)
−1)

c

−
√
f, (35)

where η > 0 and p ≤ τn < τd represent numerator and
denominator window lengths, respectively. In (35), Στn and
Στd ∈ Rp×p are the sample variances of the respective
window lengths, c is a constant given by

a
△
=

(τn + τd − p− 1)(τd − 1)

(τd − p− 3)(τd − p)
, b

△
= 4 +

(pτn + 2)

(a− 1)
,

c
△
=

pτn(b− 2)

b(τd − p− 1)
, (36)

f
△
= F−1

pτn, b
(1 − α) is a thresholding constant, where

F−1
pτn, b

(x) is the inverse cumulative distribution function of
the F -distribution with degrees of freedom pτn and b, and
α is the significance level [23]. By choosing τd >> τn,
Στd approximates the long-term variance of zk while Στn

approximates the short-term variance of zk. Therefore, when
g(zk−τd , . . . , zk) > 0, the short-term variance is statistically
larger than the long-term variance. In particular, (34) sus-
pends forgetting when the short-term variance is statistically
smaller than the long-term variance, preventing forgetting in
RLS due to sensor noise, and enabling forgetting when the
magnitude of the identification error increases.

For receding-horizon control, the input-output model (24)
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is written as the block observable canonical form state-space
realization

x1|k
△
= Âkx̂k + B̂kuk, (37)

yk = Ĉx̂k, (38)

where x1|k ∈ Rn̂p is the one-step predicted state, x̂k
△
=[

x̂T
1,k · · · x̂T

n̂,k

]T ∈ Rn̂p is the state estimate, and

x̂1,k
△
= yk, (39)

x̂i,k
△
= −

n̂−i+1∑
j=1

F̂i+j−1,k+1yk−j

+

n̂−i+1∑
j=1

Ĝi+j−1,k+1uk−j , i = 2, . . . , n̂ (40)

Âk
△
=



−F̂1,k+1 Ip · · · · · · 0p×p

... 0p×p
. . .

...
...

...
. . .

. . . 0p×p

...
...

. . . Ip
−F̂n̂,k+1 0p×p · · · · · · 0p×p


, B̂k

△
=


Ĝ1,k+1

Ĝ2,k+1

...

Ĝn̂,k+1

 ,

(41)

Ĉ
△
=

[
Ip 0p×p · · · 0p×p

]
, (42)

B. Model Predictive Control

The ℓ-step predicted output of (38) for a sequence of ℓ
future controls is given by

Y1|k,l = Γ̂k,ℓx1|k + T̂k,ℓU1|k,ℓ, (43)
where

Y1|k,ℓ
△
=

y1|k...
yℓ|k

 ∈ Rℓp, U1|k,ℓ
△
=

u1|k
...

uℓ|k

 ∈ Rℓm, (44)

and Γ̂k,ℓ ∈ Rℓp×n̂p and T̂k,ℓ ∈ Rℓp×ℓm are

Γ̂k,ℓ
△
=


Ĉ

ĈÂk

...

ĈÂℓ−1
k

 , (45)

T̂k,ℓ
△
=



0p×m · · · · · · · · · · · · · · · 0p×m

Ĥk,1 0p×m · · · · · · · · · · · · 0p×m

Ĥk,2 Ĥk,1 0p×m · · · · · · · · · 0p×m

Ĥk,3 Ĥk,2 Ĥk,1 0p×m · · · · · · 0p×m

Ĥk,4 Ĥk,3 Ĥk,2
. . .

. . .
...

...
...

...
. . .

. . .
. . . 0p×m

Ĥk,ℓ−1 Ĥk,ℓ−2 Ĥk,ℓ−3 · · · Ĥk,2 Ĥk,1 0p×m


,

(46)

where Ĥk,i ∈ Rp×m is defined by Ĥk,i
△
= ĈÂi−1

k B̂k.

Let Rk,ℓ
△
=

[
rTk+1 · · · rTk+ℓ

]T ∈ Rℓpt be the vector of

ℓ future commands, let Yt,1|k,ℓ
△
= Ct,ℓY1|k,ℓ be the ℓ-step

predicted tracking output, where Ct,ℓ
△
= Iℓ ⊗ Ct ∈ Rℓpt×ℓp

and Ctyi|k computes the tracking outputs from yi|k. Defining

∆U1|k,ℓ
△
=


u1|k − uk
u2|k − u1|k

...
uℓ|k − uℓ−1|k

 ∈ Rℓm, (47)

the receding horizon optimization problem is then given by

min
U1|k,ℓ

(
Yt,1|k,ℓ −Rk,ℓ

)T
Q
(
Yt,1|k,ℓ −Rk,ℓ

)
+∆UT

1|k,ℓR∆U1|k,ℓ, (48)
subject to

Umin ≤ U1|k,ℓ ≤ Umax (49)
∆Umin ≤ ∆U1|k,ℓ ≤ ∆Umax, (50)

where Q ∈ Rℓpt×ℓpt is the positive definite tracking weight,
R ∈ Rℓm×ℓm is the positive definite control move-size
weight, Umin

△
= 1ℓ⊗umin ∈ Rℓm, Umax

△
= 1ℓ⊗umax ∈ Rℓm,

∆Umin
△
= 1ℓ⊗∆umin ∈ Rℓm, and ∆Umax

△
= 1ℓ⊗∆umax ∈

Rℓm.
In summary, at each time step, online identification is per-

formed to find input-output model coefficients θk+1, which
are then used to create a state space realization

Ä
Âk, B̂k, Ĉ

ä
.

The state-space realization is then used in a receding horizon
optimization problem to solve for the ℓ-step controls U1|k,ℓ.
The control input for the next step is then given by u1|k, and
the rest of U1|k,ℓ is discarded.

V. EXAMPLE

Consider the 4th-order system

G(s) =
ω2
n

s2(s2 + 2ζωns+ ω2
n)

, (51)

which includes a rigid-body mode and a lightly damped
mode, where ωn = 2π rad/sec and ζ = 0.01. To capture
resonance, the system is subject to a harmonic disturbance
at the peak-amplification frequency ωp = ωn

√
1− 2ζ2, that

is, ωdis = ωp. Note that ωp is close to, but slightly different
from, the damped natural frequency ωd = ωn

√
1− ζ2 [24].

Define the state space realization of (51)

ACT
△
=


0 1 0 0
0 0 1 0
0 0 0 1
0 0 −ω2

n −2ζωn

 , BCT = D1,CT
△
=


0
0
0
ω2
n

 ,

(52)

CCT
△
=

[
1 0 0 0

]
, D2,CT

△
= 0. (53)

In the following subsections we compute the resulting
steady-state root-mean-square (RMS) value of the position
output obtained from LQG with and without an internal
model of the disturbance as well as from PCAC with an
uninformative initial model. As shown in Figure 1, the
dynamics (52), (53) are discretized with sample interval Ts.

A. LQG-based disturbance rejection

Two LQG controllers are considered. In the first case,
LQG is applied directly to the 4th-order dynamics. In the
second case, the system dynamics are augmented by a 2nd-
order internal model, and the LQG controller is synthesized
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for the augmented 6th-order plant. The final controller con-
sists of the 6th-order LQG controller and the internal model,
and thus is 8th order.

In Figure 3(a) and (b), LQG is applied to (51), with and
without an internal model, using sampled-data control with
two values of Ts, namely, Ts = 0.05 sec/step and Ts = 0.25
sec/step. All simulations are run for 400 sec and the RMS for
the last 100 sec is computed. For these values, each period
of the uncontrolled mode corresponds to approximately 20
samples and 4 samples, respectively. In both cases, the
sample interval is less than the largest sample interval that
avoids aliasing of the uncontrolled lightly damped mode,
namely, Ts = 0.5 sec/step, which corresponds to approx-
imately 2 samples during each period of the uncontrolled
mode. Using LQG with an internal model, the disturbance
rejection performance is improved relative to LQG without
an internal model. This improvement is more pronounced
when the estimate of the peak-amplification frequency is
close to the true peak-amplification frequency.

On the other hand, in Figure 3(c), LQG is applied to
(51), with and without an internal model, using sampled-
data control with Ts = 5 sec/step. In this case, the lightly
damped mode is undersampled, with 1 sample for approx-
imately 5 cycles of the uncontrolled mode. Consequently,
poor disturbance rejection performance is observed.

0.7 0.8 0.9 1 1.1 1.2 1.3
10

-10

10
0

10
10

0.7 0.8 0.9 1 1.1 1.2 1.3

10
0

10
20

0.7 0.8 0.9 1 1.1 1.2 1.3

10
0

Fig. 3: RMS position of the lightly damped mode as a function of model
uncertainty with and without an internal model (im) of the harmonic
disturbance with sample interval (a) Ts = 0.05 sec/step, (b) Ts = 0.25
sec/step, and (c) Ts = 5 sec/step. The parameter α denotes the estimate αωp

of the peak-amplification frequency ωp of the system used for constructing
the internal model and for LQG synthesis. For α = 1, the internal model
captures the true harmonic disturbance frequency, and the model used by
LQG is exact; all other values of α correspond to modeling error in the
construction of the internal model as well as in the plant model used for
LQG synthesis. For 600 values of α and for both types of controllers, the
plot shows the RMS values of the position under a harmonic disturbance
at the resonance frequency, that is, ωdist = ωp. Note that the sample
intervals Ts = 0.05 sec/step and Ts = 0.25 sec/step are 10% of and
50%, respectively, of the largest sample interval that avoids aliasing of the
uncontrolled lightly damped mode, whereas the sample interval Ts = 5.0
sec/step is 10 times the largest sample interval that avoids aliasing of the
uncontrolled lightly damped mode, in which case the lightly damped mode
is severely undersampled.

B. PCAC-based disturbance rejection

PCAC is applied with ℓ = 50, n̂ = 20, Q = 1000I50,
R = 0.0001, η = 0.1, τn = 40, τd = 200, ∆Umax =
−∆Umin = 5, Umax = −Umin = 10, P0 = I40×40, and the
uninformative model θ0 = 1e−10 140×1. The resulting RMS
position is shown in Figure 4 for values of Ts between 0.01
and 5 sec/step. In all cases, PCAC has no prior knowledge
of the system dynamics. Plots of the position versus time
for sample intervals 0.05, 0.25, and 5 sec/step are shown
in Figure 5. The model identified by PCAC for Ts = 0.25
sec/step is shown in Figure 6. The disturbance frequency
corresponds to a pole on the unit circle at π/2. The zero at
π/2 and the nearby pole in the imaginary axis approximately
capture the disturbance. This feature allows PCAC to use
the identified model to predict the frequency, amplitude, and
phase of the harmonic response for use in receding horizon
optimization. For details, see [16].
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Fig. 4: RMS position versus sample rate of the PCAC controller for the
lightly damped system with a rigid body mode. The vertical line corresponds
to the largest sample interval that avoids aliasing of the uncontrolled lightly
damped mode. The black and red stars correspond to the responses of PCAC
and LQG with and internal model, respectively, for the sample intervals 0.05,
0.25, and 5 sec/step.

VI. CONCLUSIONS

Lightly damped modes that lie either inside or outside
the bandwidth of an attitude control system present a long-
standing challenge. This paper considered the case where
the lightly damped mode is unmodeled, possibly severely
undersampled, and excited at the modal frequency by a
harmonic disturbance, that is, resonance. Sampled-data LQG
control, which requires a model of the system dynamics, was
applied to this problem to provide a performance baseline.
To address the situation where the lightly damped mode is
unmodeled, predictive cost adaptive control (PCAC), an in-
direct adaptive control extension of model predictive control,
was applied. With no prior modeling information, PCAC
performs concurrent online system identification to construct
a model that captures the unknown system dynamics in-
cluding a model of the harmonic disturbance that predicts
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Fig. 5: Position versus time for sample intervals of 0.05. 0.25, and 5 sec/step,
which were considered for LQG in Figure 3. PCAC stabilizes the response
in all cases.
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Fig. 6: Model identified by PCAC for Ts = 0.25 sec/step. The disturbance
frequency corresponds to a pole on the unit circle at π/2. The zero at
π/2 and the nearby pole on the imaginary axis approximately capture the
disturbance for predicting the future response of the system.

the frequency, amplitude, and phase of the future response.
Numerical results show that PCAC is effective in suppressing
the lightly damped mode for sample intervals that are both
smaller and larger than the largest sample interval that avoids
aliasing.
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