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Abstract— Numerical integration of measured signals is chal-
lenging due to sensor noise, where sensor bias leads to a spu-
rious ramp, and white noise leads to random-walk divergence.
This paper presents a novel approach to numerical integration
of sensor data based on adaptive input estimation. In particular,
retrospective cost input estimation (RCIE) is applied to a
one-step-delayed differentiator model to estimate the unknown
input, which is the desired integral of the output. Numerical
examples show that, for harmonic signals corrupted by white
noise, RCIE integration eliminates the random walk that arises
from standard numerical integration.

I. INTRODUCTION

Integration is among the most fundamental operations
in mathematics [1]. In applications, numerical integration
methods are needed to compute integrals of functions as well
as solutions to differential equations [2]–[4]. The present
paper is concerned with numerical integration of signals
given by sensor data, that is, measurements. Numerical
integration of data is challenging due to the fact that sensor
data are corrupted by noise. Measurement noise typically
includes an unknown bias due to inexact sensor calibration
[5] as well as random noise. Integration of the unknown
bias leads to a ramp, while integration of the random noise
leads to a random walk; both types of noise cause spurious
divergence.

Integration of sensor data is of enormous importance in
practice. In particular, for vehicle guidance and navigation,
inertial navigation using strapdown sensors requires single
integration of rate-gyro data to determine the vehicle attitude,
while inertial navigation using either strapdown sensors or
an inertially stabilized platform requires double integration
of accelerometer data to determine the vehicle position [6]–
[14].

Because of the importance of inertial navigation and re-
lated applications, researchers have developed techniques for
mitigating spurious divergence and enhancing the accuracy
of numerical integration of sensor data. In particular, [15],
[16] developed a calibration technique for reducing the effect
of sensor noise. In [17], the accuracy of trapezoidal and
Romberg integration are compared for computing velocity
in strapdown inertial navigation. In [18], bias removal and
high-pass filtering techniques are used to remove drift. In
[19], various methods are used to reduce drift. Likewise, in
[20], stable variations of trapezoidal and Simpson integration
methods are used to reduce drift. Finally, the accuracy of
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various numerical integration methods for inertial navigation
is assessed in [17]–[20].

The present paper develops a novel approach to numerical
integration of sensor data based on adaptive input estimation.
In input estimation, the input to the system is assumed
to be unknown, and the measured output of the system is
used to estimate the input of the system. Non-adaptive input
estimation is considered in [21]–[33], and adaptive input-
estimation methods are considered in [34]–[39].

Among many potential applications, input estimation has
been used for numerical differentiation. In particular, retro-
spective cost input estimation (RCIE) was used in [39] to
estimate acceleration from position sensor data. To perform
numerical differentiation, RCIE views the measurement as
the integral of the input, and thus the estimated input ap-
proximates the derivative of the measurement. The accuracy
of this technique is compared to alternative methods for
numerical differentiation in [40]. A theoretical analysis of
RCIE is given in [41].

The present paper applies RCIE to numerical integration.
This is done by viewing the measurement as the derivative of
the input so that the estimated input approximates the integral
of the measurement. The differentiation dynamics used for
this purpose are chosen to be a one-step-delayed model of
the inverse of trapezoidal-integrator dynamics. This method
is then applied to harmonic signals corrupted by white noise.
In particular, RCIE is compared to numerical integration of
the sensor data based on direct trapezoidal integration. It is
shown that direct trapezoidal integration exhibits random-
walk divergence, whereas RCIE integration eliminates the
random walk. These effects are demonstrated for harmonic
and dual-harmonic signals at different frequencies over a
range of signal-to-noise ratios.

Section II summarizes the RCIE algorithm. Section III
explains how RCIE is used for numerical integration. Nu-
merical examples are illustrated in Section IV and the per-
formance of RCIE is compared with trapezoidal integration.
Section V concludes the paper.

II. RETROSPECTIVE COST INPUT ESTIMATION

Retrospective cost input estimation (RCIE) [39], [41]
can be applied to MIMO linear time-varying systems. The
objective in this paper is to use RCIE for integration, and
for the purpose of integration, it is enough to consider SISO
linear-time invariant systems. The RCIE algorithm presented
here is specialized for the purpose of integration.
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Consider the linear discrete-time system

xk+1 = Axk +Bdk, (1)
yk = Cxk + vk, (2)

where k is step, xk ∈ Rlx is the unknown state, dk
△
=

d(kTs) ∈ R is a sample of the unknown input d(t) at
t = kTs, yk

△
= y(kTs) ∈ R is a measurement of the

continuous-time signal y(t) at t = kTs, and vk ∈ R is zero-
mean white Gaussian measurement noise with variance V2.
The matrices A ∈ Rlx×lx , B ∈ Rlx×1, and C ∈ R1×lx are
assumed to be known. The goal is to estimate dk and xk.

RCIE consists of three subsystems, namely, the Kalman
filter forecast subsystem, the input-estimation subsystem, and
the Kalman filter data-assimilation subsystem. First, consider
the Kalman filter forecast steps

xfc,k+1 = Axda,k +Bd̂k, (3)
yfc,k = Cxfc,k, (4)
zk = yfc,k − yk, (5)

where d̂k is the estimate of dk, xda,k ∈ Rlx is the data-
assimilation state, xfc,k ∈ Rlx is the forecast state, zk ∈ R is
the innovations, and xfc,0 = 0. Next, to obtain d̂k, the input-
estimation subsystem of order ne is given by the exactly
proper dynamics

d̂k =

ne∑
i=1

Pi,kd̂k−i +

ne∑
i=0

Qi,kzk−i + Sk, (6)

where Pi,k ∈ R and Qi,k ∈ R are output and input
coefficients, respectively, and Sk ∈ R is a bias input. RCIE
minimizes zk by updating Pi,k, Qi,k, and Sk. The subsystem
(6) can be reformulated as

d̂k = Φkθk, (7)

where the regressor matrix Φk is defined by

Φk
△
=

[
d̂k−1 · · · d̂k−nc zk · · · zk−nc 1

]
∈ R1×lθ ,

(8)

the coefficient vector θk is defined by

θk
△
=

[
P1,k · · · Pnc,k Q0,k · · · Qnc,k Sk

]T ∈ Rlθ ,
(9)

and lθ
△
= 2nc + 2. In terms of the backward-shift operator

q−1, (6) can be written as

d̂k = Gd̂z,k(q
−1)zk + Sk, (10)

where

Gd̂z,k

△
= D−1

d̂z,k
Nd̂z ,k , (11)

Dd̂z,k(q
−1)

△
= Ild − P1,kq

−1 − · · · − Pne,kq
−ne , (12)

Nd̂z,k(q
−1)

△
= Q0,k +Q1,kq

−1 + · · ·+Qne,kq
−ne . (13)

To update the coefficient vector θk, define the filtered signals

Φf,k
△
= Gf,k(q

−1)Φk, d̂f,k
△
= Gf,k(q

−1)d̂k, (14)

where, for all k ≥ 0, Gf,k is a finite impulse response filter
of order nf given by

Gf,k(q−1) =

nf∑
i=1

q−iHi,k, (15)

Hi,k
△
=


CB, k ≥ i = 1,
CAk−1 · · ·Ak−i+1B, k ≥ i ≥ 2,
0, i > k,

(16)

Ak
△
= A(I +Kda,kC), and Kda,k ∈ Rlx is the Kalman filter

gain (given by (22)). Furthermore, define the retrospective
performance variable

zrc,k(θ̂)
△
= zk −

(
d̂f,k − Φf,kθ̂

)
, (17)

where the coefficient vector θ̂ ∈ Rlθ denotes a variable for
optimization, and define the retrospective cost function

Jk(θ̂)
△
=

k∑
i=0

zTrc,i(θ̂)Rzzrc,i(θ̂) + (θ̂ − θ0)
TRθ(θ̂ − θ0),

(18)

where Rz ∈ R is positive and Rθ ∈ Rlθ×lθ is positive defi-
nite. Define P0

△
= R−1

θ . Then, for all k ≥ 0, the cumulative
cost function Jk(θ̂) has the unique global minimizer θk+1

obtained by the recursive least squares update

Pk+1 = Pk − PkΦ
T
f,kΓkΦf,kPk, (19)

θk+1 = θk − PkΦ
T
f,kΓk(z̃k +Φf,kθk), (20)

where

Γk
△
= (R−1

z +Φf,kPkΦ
T
f,k)

−1, z̃k
△
= zk − d̂f,k. (21)

Using the updated coefficient vector θk+1, the estimated
input at step k + 1 is calculated by replacing k by k + 1
in (7). We choose θ0 = 0, and thus d̂0 = 0.

In order to estimate the state xk, xfc,k is used to obtain
the estimate xda,k of xk given by the Kalman filter data-
assimilation steps

Kda,k = −Pf,kC
T(CPf,kC

T + V2)
−1, (22)

Pda,k = (I +Kda,kC)Pf,k, (23)
xda,k = xfc,k +Kda,kzk, (24)

Pf,k+1 = APda,kA
T + V1,k, (25)

where Pf,k ∈ Rlx×lx is the forecast error covariance, Pda,k ∈
Rlx×lx is the data-assimilation error covariance,

V1,k
△
=B var (dk − d̂k)B

T (26)

+A cov (xk − xda,k, dk − d̂k)B
T (27)

+B cov (xk − xda,k, dk − d̂k)A
T, (28)

and Pf,0 = 0. In this paper, we treat V1,k as a constant design
parameter V1.
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III. NUMERICAL INTEGRATION BASED ON RCIE

In this section, we develop a numerical integration tech-
nique based on RCIE. In order to use RCIE as an integrator,
the system (1), (2) is chosen to represent the discrete-time
equivalent of a differentiator. The measured continuous-time
output y(t) is thus the derivative of the unknown input d(t),
which implies that the unknown input d(t) is the integral
of the measured output y(t). Hence, by applying RCIE, d̂k
provides an estimate of the integral of the output y(t). The
differentiator dynamics used in RCIE are chosen to be the
delayed inverse dynamics of a trapezoidal integrator. The
trapezoidal integrator has the form

Gsi(z)
△
=

Ts

2

z + 1

z− 1
, (29)

and thus the one-step-delayed differentiator is

Gsd(z)
△
=

2

Ts

z− 1

z2 + z
. (30)

The delay ensures that the differentiator is strictly proper. By
applying RCIE with the state space realization of (30) given
by

A =

[
0 1
0 −1

]
, B =

[
0

2/Ts

]
, C =

[
−1 1

]
, (31)

we can obtain an estimate of the integral of y.

IV. NUMERICAL EXAMPLES

In this section, numerical examples are presented to eval-
uate the accuracy of RCIE integration for sampled harmonic
signals corrupted by noise. The performance of RCIE is
compared with trapezoidal integration. The exact integral
given by calculus is used as a baseline for comparison. The
integral estimated by RCIE has a bias error on the order
of 10−4 to 10−3. Since the main purpose of this paper is
to show that RCIE is able to eliminate random walk in
integration, we correct the bias in the estimated integral
so that the effectiveness of the method against trapezoidal
integration is clear in the plots.

Example 4.1: Integrating a single harmonic signal. Let
y(t) = sin(ωt) be the signal to be integrated, so that the
exact integral is Y (t) = 1/ω − 1/ω cos(ωt). Let Ts = 10−3

sec/step. Then the measured output is yk = sin(10−3ωk) +
vk. Let ne = 2, nf = 1, Rθ = 10−6I6, Rz = 1, and V1 =
10−2I2. The value of V2 is chosen to set the desired signal-
to-noise ratio (SNR).

For ω = 10, Figures 1(a) and 2(a) compare RCIE inte-
gration and trapezoidal integration with exact integration for
SNRs of 80 dB and 20 dB, respectively. For ω = 10, Figures
1(b) and 2(b) compare the error in RCIE integration with the
error in trapezoidal integration for SNRs of 80 dB and 20 dB,
respectively. These figures show that trapezoidal integration
exhibits a diverging random walk, whereas RCIE integration
is free from random walk. To provide a quantitative com-
parison, the logarithm of the normalized root-mean-square
errors (RMSE) in estimating the integral for SNRs ranging
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Fig. 1. Integration of y(t) = sin(10t) in the presence of 80 dB
noise. (a) compares RCIE integration and trapezoidal integration with exact
integration. (b) compares the error in RCIE integration with the error in
trapezoidal integration. Note that trapezoidal integration exhibits a diverging
random walk, whereas RCIE integration is free from random walk.

Fig. 2. Integrating y(t) = sin(10t) in the presence of 20 dB noise.
(a) compares RCIE integration and trapezoidal integration with exact
integration. (b) compares the error in RCIE integration with the error in
trapezoidal integration. Note that trapezoidal integration exhibits a diverging
random walk, whereas RCIE integration is free from random walk.

from 20 dB to 60 dB are plotted in Figures 3, 4, and 5 for
ω = 1, ω = 10, and ω = 100 respectively.

Example 4.2: Integrating the sum of two harmonic sig-
nals. Let y(t) = sin(ω1t) + sin(ω2t) be the signal to be
integrated, so that the exact integral is Y (t) = 1/ω1 −
1/ω1 cos(ωt) + 1/ω2 − 1/ω2 cos(ωt). Let Ts = 10−3

sec/step. Then the measured output is yk = sin(10−3ω1k)+
sin(10−3ω2k)+vk. Let ne = 3, nf = 1, Rθ = 10−6I6, Rz =
1, V1 = 10−2I2. The value of V2 is chosen to set the desired
signal-to-noise ratio (SNR).

For ω1 = 10 and ω2 = 20, Figure 6(a) compares RCIE
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Fig. 3. Logarithm of the normalized RMSE in estimating the integral
of y(t) = sin(t) after 5000 sec versus SNR. RCIE performs better than
trapezoidal integration at all SNRs.
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Fig. 4. Logarithm of the normalized RMSE in estimating the integral of
y(t) = sin(10t) after 5000 sec versus SNR. RCIE performs better than
trapezoidal integration at all SNRs.

integration and trapezoidal integration with exact integration
for an SNR of 20 dB, and Figure 6(b) compares the error in
RCIE integration with the error in trapezoidal integration.
These figures show that trapezoidal integration exhibits a
diverging random walk, whereas RCIE integration is free
from random walk. To provide a quantitative comparison,
the normalized RMSEs in estimating the integral for SNRs
ranging from 20 dB to 60 dB are plotted in Figure 7.

V. CONCLUSIONS

This paper introduced a novel technique for eliminating
random walk in the numerical integration of sensor data.
This technique is based on the application of retrospective
cost input estimation (RCIE), which is an adaptive method
for input estimation, to a one-step delayed differentiator.
Numerical examples were presented to show the effective-
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Fig. 5. Logarithm of the normalized RMSE in estimating the integral of
y(t) = sin(100t) after 5000 sec versus SNR. RCIE performs better than
trapezoidal integration at all SNRs.
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Fig. 6. Integrating y(t) = sin(10t) + sin(20t) in the presence of 20
dB noise. (a) compares RCIE integration and trapezoidal integration with
exact integration. (b) compares the error in RCIE integration with the error in
trapezoidal integration. Note that trapezoidal integration exhibits a diverging
random walk, whereas RCIE integration is free from random walk.

ness of the proposed method. Future research will focus
on more complex signals, experimental data, and improving
the performance at lower frequencies. Future research will
also focus on the ability of RCIE to accurately double-
integrate signals. This ability would enable the development
of inertial navigation algorithms that are free of random-
walk divergence and thus provide significantly improved
performance.
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