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An adaptive force-control augmentation for small celestial body sampling for a variety of surface properties is

developed. The control algorithm consists of a nominal robust controller augmented with an adaptive controller

combined with feedback linearization. When a spacecraft makes contact with the surface, it must maintain a

desired contact force in order to capture a sample. The properties of the surface are unknown or uncertain before

contact with the surface is made. Because the nominal robust controller may have poor performance in some

surface property regimes, the goal is to improve performance using an adaptive controller. The adaptive controller

performs system identification online to create an input–output model of the feedback-linearized system. From

the input–output model, a block-observable canonical form is realized and the control input augmentation is

determined bymodel predictive control. The resulting augmentation is added to the input of the robust controller to

improve the closed-loop performance andmaintain a desired contact force despite the unknown surface properties.

The approach is applied to a variety of surface properties with linear and nonlinear contact models and multiple

surface sampling maneuvers.

Nomenclature

cr = surface coefficient of restitution
cs = surface damping, N ⋅ s∕m
e = contact force error, N
Fc = component of contact force associated with surface

compliance, N
Fd = desired contact force from surface compliance, N
Ff = component of contact force associated with fric-

tion, N

I1, I2 = sampling arm intertias, kg∕m2

K = robust controller gain
ks = surface stiffness, N∕m
L1, L2 = sampling arm length, m
ms = spacecraft sampler mass, kg
msc = spacecraft mass, kg
m1, m2 = sampling arm masses, kg
q = spacecraft state
R1, R2 = center of mass location along sampling arm, m
T = kinetic energy of spacecraft, J
wk = model coefficients identified by predictive cost adap-

tive control
x = horizontal position of sampler relative to surface, m
y = vertical position of sampler relative to surface, m
ζ = feedback linearized state
θ1, θ2 = spacecraft sampling arm angles, rad
λ = desired exponential decay rate for robust controller

λk = variable-rate forgetting factor for predictive cost
adaptive control

μ = surface coefficient of friction
τf;k = discretized feedforward commanded sampler accel-

erations, m∕s2
τ1, τ2 = sampling arm torques, N ⋅m
τ1;f, τ2;f = feedforward commanded sampler accelerations,

m∕s2
χ = subblock of feedback linearized state for robust con-

troller

Subscript

k = time step for discrete controller

I. Introduction

S URFACE sampling of small celestial bodies has received

increasing interest as seen by recent missions such as OSIRIS-

REx,Hayabusa, andHayabusa2. The objective of a samplingmission

is to bring a spacecraft with a sampler in contact with the surface of a

celestial body andmaintain a desired contact force in order to capture

a sample from the surface [1,2]. The resulting samples are used to

further scientific knowledge about the origins of the solar system

and universe.
Despite recent successes, surface sampling remains a challenging

problem. Before contact with the surface, surface properties such as

the compliance are uncertain. Additional challenges arise due to

unknown nonlinear contact dynamics such as hysteretic effects,

and the inability to use the spacecraft thrusters to augment the contact

force. Therefore, the controller must be designed to be robust to a

wide variety of surface properties. If the true surface properties

are outside expectations, mission performance will be adversely

affected. This was evidenced by the Philae lander, which attempted

to land on the comet 67P/Churyumov-Gerasimenko but, due to the

surface being softer than expected, instead bounced off of the surface

and landed in the shadowof the comet, ending a 10-year-longmission

early [3]. Additionally, there is an inherent tradeoff between robust-

ness and control performance, which may limit the possible scope of

the mission. As sampling missions become increasingly complex, as

shown by sampling mission concepts using shape memory alloy and
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harpoon sampling mechanisms, more advanced control algorithms
will be needed [4,5].
The challenges associated with surface sampling missions moti-

vate an alternative adaptive approach to the surface sampling control
problem. The control algorithm proposed in the present paper con-
sists of a feedback linearization controller with a nominal robust
controller that is augmented by an adaptive controller called predic-
tive cost adaptive control (PCAC) to adaptively regulate the contact
force of the sampler when subject to a surface with unknown proper-
ties. The robust controller is developed using a set of linear matrix
inequalities (LMIs) to guarantee stability for a wide range of surface
properties. The robust controller on its own is unable to meet the
performance requirements of the mission, and therefore PCAC is
used to augment the commanded sampling arm torques. The present
paper proposes an extension of the robust control algorithm given in
[6] to the case of an adaptive controller and substantially extends the
preliminary results in [7].
PCAC is an adaptive control algorithm that uses a combination of

online identification using recursive least squares (RLSs) and model
predictive control (MPC) to control uncertain or unknown systems
[8,9]. The system identification in PCACuses an input–outputmodel
structure with a variable-rate forgetting (VRF) factor to quickly
adjust modeling coefficients when new information is received and
to avoid updating modeling coefficients in the presence of noise. The
identified model is then transformed into a block-observable canoni-
cal form (BOCF)with a known state that can be used byMPCwithout
needing an explicit observer.
The structure of the paper is as follows. Section II describes the

spacecraft and contact dynamics of a two-dimensional sampling
mission. Section III describes the control architecture for the sam-
pling mission consisting of the feedback linearization controller in
Sec. III.A, robust controller in Sec. III.B, and PCAC augmentation in
Sec. III.C. Section IV investigates the performance of the proposed
algorithm under various surface properties for both linear and non-
linear contact models and a double sampling maneuver scenario.

II. Spacecraft Dynamics and Modeling

An overview of the spacecraft equations of motion and contact
dynamics is given in this section. For simplicity, we assume a two-
dimensional model, where all masses are rigid. Consider the space-
craft with a two-link sampling arm as shown in Fig. 1. The relative
joint angles are given by θ1 and θ2; the control torques by τ1 and τ2;
the spacecraft bus mass by msc; the link masses and inertias by m1,

m2, I1, and I2, respectively; the link lengths and distance to the link
center of mass by L1, L2, R1, and R2, respectively; the sampler
position relative to the surface by x and y; and the sampler mass by
ms. The contact and friction forces due to the surface are given by Fc

and Ff. Due to the small gravitational forces in this environment,

gravitational forces are assumed to be negligible relative to the

contact forces and are ignored during the contact phase. The resulting
equations of motion have the form

M�q� �q�D�q; _q� _q � Q (1)

q ≜

θ1

θ2

x

y

; _q ≜

_θ1
_θ2

_x

_y

(2)

whereM�q�,D�q; _q�, andQ are the mass, damping, and generalized
force matrices. Details of the derivation and structure of these matri-
ces without the sampler mass are given in [6]. The equations of
motion for the case where the sampler has mass are derived below.
The position the center of mass of each component of the space-

craft relative to the surface is given by

ps �
x

y
; p1 �

x� R1 cos�θ1�
y� R1 sin�θ1�

(3)

p2 �
x� L1 cos�θ1� � R2 cos�θ1 � θ2�
y� L1 sin�θ1� � R2 sin�θ1 � θ2�

(4)

psc �
x� L1 cos�θ1� � L2 cos�θ1 � θ2�
y� L1 sin�θ1� � L2 sin�θ1 � θ2�

(5)

and velocities by

vs �
_x

_y
; v1 �

_x − R1
_θ1 sin�θ1�

_y� R1
_θ1 cos�θ1�

(6)

v2 �
_x − L1

_θ1 sin�θ1� − R2�_θ1 � _θ2� sin�θ1 � θ2�
_y� L1

_θ1 cos�θ1� � R2�_θ1 � _θ2� cos�θ1 � θ2�
(7)

vsc �
_x − L1

_θ1 sin�θ1� − L2�_θ1 � _θ2� sin�θ1 � θ2�
_y� L1

_θ1 cos�θ1� � L2�_θ1 � _θ2� cos�θ1 � θ2�
(8)

The velocities and angular velocities of each center of mass can then
be written as

vs � A�q� _q ≜ 0 0 1 0

0 0 0 1
_q �9�

v1 � B�q� _q ≜
−R1 sin�θ1� 0 1 0

R1 cos�θ1� 0 0 1
_q (10)

v2�C�q� _q

≜
−L1 sin�θ1�−R2 sin�θ1�θ2� −R2 sin�θ1�θ2� 1 0

L1 cos�θ1��R2 cos�θ1�θ2� R2 cos�θ1�θ2� 0 1
_q (11)

vsc�D�q� _q

≜
−L1 sin�θ1�−L2 sin�θ1�θ2� −L2 sin�θ1�θ2� 1 0

L1 cos�θ1��L2 cos�θ1�θ2� L2 cos�θ1�θ2� 0 1
_q (12)

_θ1 � E�q� _q ≜ 1 0 0 0 _q �13�

_θ1 � _θ2 � F�q� _q ≜ 1 1 0 0 _q �14�
Fig. 1 Spacecraft model for celestial body sampling. Adapted with
permission from [7]. Copyright 2022 American Automatic Control
Council.
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The kinetic energy T of the spacecraft can then be written as

T � 1

2
_qTM�q� _q (15)

where

M�q� ≜ msA
T�q�A�q� �m1B

T�q�B�q� �m2C
T�q�C�q�

�mscD
T�q�D�q� � I1E

T�q�E�q� � I2F
T�q�F�q� (16)

The following property is given for two matrix functions A�q� and
B�q� [10]:

∂
∂q

�A�q�B�q�� ≜ �I ⊗ A�q�� ∂B�q�
∂q

� ∂A�q�
∂q

B�q� (17)

where

∂A�q�
∂q

�

∂A�q�
∂q1
..
.

∂A�q�
∂qn

(18)

The equations of motion are then given by Lagrange’s equations

d

dt

∂T
∂ _q

−
∂T
∂q

� Q (19)

M�q� �q� _M�q� _q −
∂T
∂q

� Q (20)

where

_M�q� � ∂M�q�
∂q

T

� _q ⊗ I4� (21)

and using Eq. (17)

∂T
∂q

� ∂
∂q

1

2
_qTM�q� _q � 1

2
I4 ⊗ _qT

∂M�q�
∂q

_q (22)

which leads to

M�q� �q� ∂M�q�
∂q

T

� _q ⊗ I4� −
1

2
�I4 ⊗ _qT � ∂M�q�

∂q
_q � Q

(23)

where

∂M�q�
∂q

T

� _q ⊗ I4� −
1

2
I4 ⊗ _qT

∂M�q�
∂q

≜ D�q; _q� (24)

During contact, the generalized force is given by

Qi � τ1
∂_θ1
∂ _qi

� τ2
∂�_θ1 � _θ2�

∂ _qi
� Ff

∂ _x
∂ _qi

� Fc

∂ _y
∂ _qi

for i � 1; 2; 3; 4

(25)

Q �

1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

τ1

τ2

Ff

Fc

(26)

For the contact force, two models commonly used for small
celestial body sampling are used. The first is the linear Kelvin–Voigt
model [11] given by

Fc � −ksy − cs _y (27)

where ks and cs are the stiffness and damping of the surface material.
The second is a nonlinear Hunt–Crossley model [11–13] given by

Fc � ks�−y�3∕2 1� 3�1 − cr�
2

_y

_y0
(28)

with coefficient of restitution cr, surface stiffness ks, and initial
contact velocity _y0.
Because the contact event occurs with friction, for the friction

model, an approximation of the Coulomb force using a regularized
friction coefficient is given by

Ff ≜
−μ

k _xk
10−4

Fcsgn� _x�; 0 ≤
k _xk
10−4

≤ 1;

−μFcsgn� _x�; 1 <
k _xk
10−4

(29)

where μ is the coefficient of friction [14].

III. Control Architecture

The control architecture for the contact phase is shown in Fig. 2.
The controller consists of three components: a feedback linearization
controller, a nominal robust controller, and an adaptive controller
augmentation using predictive cost adaptive control. The ascent and

Fig. 2 Adaptive force control architecture for small celestial body sampling.
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descent control follows the method given in Ref. [6]. A summary of
the control algorithm for the contact phase is given in Algorithm 2.

A. Feedback Linearization Controller

The mass and damping matrices can be decomposed into the
following 2 × 2 partitions:

M�q� � M1�θ� M2�θ�
MT

2 �θ� m0I2
;

D�q; _q� � D1�θ; _q� D2�θ; _q�
DT

2 �θ; _q� 02
; θ ≜

θ1

θ2
(30)

wherem0 ≜ msc �m1 �m2 �ms. Since θ1, θ2, _θ1, _θ2, _x, _y, and Fc

are assumed to be measured, the following feedback linearization
controller can be used:

τ1

τ2
� L−1 �D1�θ; _q� −M1�θ�M−T

2 �θ�DT
2 �θ; _q��

_θ1
_θ2

�D2�θ; _q�
_x

_y
�M1�θ�M−T

2

0

1
Fc

� �M2�θ� −M1�θ�M−T
2 �θ�m0I2�

τ1;f

τ2;f
(31)

where τ1;f and τ2;f are the feedforward portion of the feedback

linearization controller to be given by a combination of the robust
controller (see Sec. III.B) and PCAC (see Sec. III.C), and

L ≜
1 1

0 1
.

For the feedback linearization controller, we assume that the contact
force is of the linear form given by Eq. (27). Let the desired contact
force be Fd and define the contact force error by

e ≜ Fc − Fd � −ksy − cs _y − Fd (32)

Substituting Eq. (31) into Eq. (1) and taking the derivative of
Eq. (32) leads to the following dynamics in state-space form:

_ζ � A�θ; _q�ζ � B�θ�τf � E�θ�Ff (33)

ζ ≜

_θ1
_θ2

_x

_y

e

; τf ≜
τ1;f

τ2;f
(34)

A�θ; _q� ≜

−M−T
2 �θ�DT

2 �θ; _q�

0 0

0 0

0 0

0

0

0

0

0

0

0

0

0

−ks

M−T
2 �θ�

0

1

0

0

0

(35)

B�θ� ≜

M−T
2 �θ�m0I2

1 0

0 1

0 −cs

(36)

E�θ� ≜

M−T
2 �θ�

1

0

ξ�θ�
1

0

−cs� 0 1 �ξ�θ�
1

0

(37)

ξ�θ� ≜ �M2�θ� −M1�θ�M−T
2 �θ�m0I2�−1M1�θ�M−T

2 �θ� (38)

B. Robust Controller

We seek to regulate the sampler velocity and error states of
Eqs. (35) and (36). It can be seen that the states _x, _y, and e are

decoupled from the sampling arm angular rates _θ1 and _θ2. Therefore,
we focus on the block entries of Eqs. (35) and (36) containing the

states χ � � _x _y e �T , where

A ≜

0 0 0

0 0 0

0 −ks 0

; B ≜

1 0

0 1

0 −cs

(39)

The goal is to find a discrete-time controller of the form τf;k � Kχk
that is robust for values of ks in the range �k1; k2� and values of cs in
the range �c1; c2�. Let Ad;i and Bd;j be Eq. (39) discretized using a

zero-order hold at the sample rate Ts, and stiffness and damping
coefficients ki and cj. The control gainK that exponentially stabilizes

the system for the range of stiffness and damping coefficients must
satisfy the following set of Lyapunov equations:

�Ad;i � Bd;jK�Q�Ad;i � Bd;jK�T − e−2λTsQ ≤ 0

for i � 1; 2 and j � 1; 2; Q > 0 (40)

where Q is a positive-definite matrix, and λ is a tuning parameter
representing the slowest desired exponential decay rate of the closed-
loop system for all combinations of stiffness and damping parameters
in the range �k1; k2� and �c1; c2� [15]. Using the Schur complement,

defining Y ≜ KQ, and incorporating a slack variable s, Eq. (40) can
be rewritten as a set of LMI constraints in the following optimization
problem:

min
Q;Y

s

s:t:
e−2λTsQ �Ad;iQ� Bd;jY�

�Ad;iQ� Bd;jY�T Q
≥

sI3 03

03 03

for i � 1; 2 and j � 1; 2;

Q ≥ sI3

s ≥ 0 (41)

which can be solved using CVX [16,17]. The resulting robust con-

troller is then given by K � YQ−1.

C. Predictive Cost Adaptive Control

PCAC combines online identification using RLSs with a forget-
ting factor, and a model predictive controller in two separate steps
[8]. For the purposes of augmenting the nominal robust controller
for surface sampling, the identification portion attempts to identify
the feedback-linearized system without the robust controller. The
identified model is then augmented with the robust controller and
sent to the MPC portion of PCAC. The MPC controller outputs a
torque augmentation that is added to the torque command produced
by the robust controller.
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1. Online Identification

Consider the multi–input multi–output input–output model

ŷk � −
n̂

i�1

F̂iyk−i �
n̂

i�1

Ĝiτf;k−i (42)

where k ≥ 0 is the time step, n̂ ≥ 1 is the identification data window,

F̂i ∈ Rp×p and Ĝi ∈ Rp×m are the estimated model coefficients, and

τf;k ∈ Rm×1, yk ∈ Rp×1, and ŷk ∈ Rp×1 are the inputs, outputs, and

predicted outputs at step k, respectively.
To estimate the coefficients F̂i and Ĝi online, we use RLSs with

VRF [18]. RLSs minimize the cumulative cost

Jk�ŵ� �
k

i�0

ρi
ρk

zTi �ŵ�zi�ŵ� �
1

ρk
�ŵ −w0�TP−1

0 �ŵ − w0� (43)

where ρk ≜ k
j�0 λ

−1
j ∈ R, λk ∈ �0; 1� is the forgetting factor,

P0 ∈ R�n̂p�m�p��×�n̂p�m�p�� is positive definite, and w0 ∈ R�n̂p�m�p��×1
is the initial estimate of the coefficient vector. The performance

variable zi�ŵ� ∈ Rp×1 is defined as

zk�ŵ� ≜ yk �
n̂

i�1

F̂iyk−i −
n̂

i�1

Ĝiτf;k−i (44)

where the vector ŵ ∈ R�n̂p�m�p��×1 of coefficients to be estimated is

defined by

ŵ ≜ vec F̂1 · · · F̂n̂ Ĝ1 · · · Ĝn̂ (45)

Defining the regressor matrix ϕk ∈ Rp×�n̂p�m�p�� by

ϕk ≜ −yTk−1 · · · −yTk−n̂ τTf;k−1 · · · τTf;k−n̂ ⊗ Ip (46)

the performance variable can be written as

zk�ŵ� � yk − ϕkŵ (47)

The global minimizer wk�1 ≜ argminŵJk�ŵ� is computed by

RLSs as

Pk�1 � λ−1k Pk − λ−1k Pkϕ
T
k �λkIp � ϕkPkϕ

T
k �−1ϕkPk (48)

wk�1 � wk � Pk�1ϕ
T
k �yk − ϕkŵ� (49)

where wk�1 � vec� F̂1;k�1 · · · F̂n̂;k�1 Ĝ1;k�1 · · · Ĝn̂;k�1 �.
The VRF factor λk is developed in [19] and given by

λk �
1

1� ηg�zk−τd ; : : : ; zk�1�g�zk−τd ; : : : ; zk��
(50)

where 1∶R → f0; 1g is the unit step function, and

g�zk−τd ; : : : ; zk�

≜
τn
τd

tr�Στn�zk−τn ; : : : ; zk�Στd�zk−τd ; : : : ; zk�−1�
c

− f (51)

where η > 0 and p ≤ τn < τd represent numerator and denominator

window lengths, respectively. In Eq. (51), Στn and Στd ∈ Rp×p are

the sample variances of the respective window lengths, c is a

constant given by

a ≜
�τn � τd − p − 1��τd − 1�

�τd − p − 3��τd − p� ; b ≜ 4� �pτn � 2�
�a − 1� ;

c ≜
pτn�b − 2�

b�τd − p − 1� (52)

f ≜ F−1
pτn;b

�1 − α� is a thresholding constant, where F−1
pτn;b

�x� is

the inverse cumulative distribution function of the F-distribution
with degrees of freedom pτn and b, and α is the significance

level [20].
For MPC, the input–output model (42) is written as the BOCF

state-space realization augmented by the robust controller

x1jk ≜ Âkx̂k � B̂kuaug;k;

yk � Ĉx̂k (53)

where x1jk ∈ Rn̂p is the one-step predicted state, x̂k ≜
x̂T1;k · · · x̂Tn̂;k

T ∈ Rn̂p is the state estimate, and

x̂1;k ≜ yk (54)

x̂i;k ≜ −
n̂−i�1

j�1

F̂i�j−1;k�1yk−j �
n̂−i�1

j�1

Ĝi�j−1;k�1τf;k−j; i� 2;: : : ; n̂

(55)

Âk ≜

−F̂1;k�1 Ip · · · · · · 0p×p

..

.
0p×p

. .
. ..

.

..

. ..
. . .

. . .
.

0p×p

..

. ..
. . .

.
Ip

−F̂n̂;k�1 0p×p · · · · · · 0p×p

�

Ĝ1;k�1

Ĝ2;k�1

..

.

Ĝn̂;k�1

K (56)

B̂k ≜

Ĝ1;k�1

Ĝ2;k�1

..

.

Ĝn̂;k�1

; Ĉ ≜ Ip 0p×p · · · 0p×p (57)

2. Model Predictive Control

The l-step predicted output of Eq. (53) for a sequence of l future

controls is given by

Y1jk;l � Γ̂k;lx1jk � T̂k;lU1jk;l (58)

where

Y1jk;l ≜

y1jk

..

.

yljk

∈ Rlp; U1jk;l ≜

u1jk

..

.

uljk

∈ Rlm (59)

and Γ̂k;l ∈ Rlp×n̂p and T̂k;l ∈ Rlp×lm are
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Γ̂k;l ≜

Ĉ

ĈÂk

..

.

ĈÂl−1
k

; T̂k;l ≜

0p×m · · · · · · · · · 0p×m

Ĥk;1 0p×m · · · · · · 0p×m

Ĥk;2 Ĥk;1
. .
.

· · · 0p×m

..

. ..
. . .

. . .
. ..

.

Ĥk;l−1 Ĥk;l−2 · · · Ĥk;1 0p×m

where Ĥk;i ∈ Rp×m is defined by Ĥk;i ≜ ĈÂi−1
k B̂k.

Let Rk;l ≜ � rTk�1 · · · rTk�l �T ∈ Rlpt be the vector of l future

commands, Ct;l ≜ Il ⊗ Ct ∈ Rlpt×lp, where Ctyijk creates the

tracking outputs from yijk; let Yt;1jk;l ≜ Ct;lY1jk;l be the l-step
predicted tracking output; and define ΔU1jk;l ∈ Rlm×1 as

ΔU1jk;l ≜ �u1jk − uk�T · · · �uljk − ul−1jk�T T (60)

The receding horizon optimization problem is then given by

min
U1jk;l

�Yt;1jk;l −Rk;l�TQ�Yt;1jk;l −Rk;l� � ΔUT
1jk;lRΔU1jk;l

s:t: Umin ≤ U1jk;l ≤ Umax

ΔUmin ≤ ΔU1jk;l ≤ ΔUmax (61)

where Q ∈ Rlpt×lpt is the positive-definite tracking weight,

R ∈ Rlm×lm is the positive-definite control move-size weight,

Umin ≜ 1l×1 ⊗ umin ∈ Rlm, Umax ≜ 1l×1 ⊗ umax ∈ Rlm, ΔUmin ≜
1l×1 ⊗ Δumin ∈ Rlm, andΔUmax ≜ 1l×1 ⊗ Δumax ∈ Rlm. The first
entry of U1jk;l is then used as the control augmentation uaug;k.

IV. Examples

To demonstrate the advantage of the adaptive augmentation
method, we compare the algorithm to the nominal robust controller
for a variety of surface properties, including linear and nonlinear
contact models. We also demonstrate a double sampling maneuver
where the sampler mass increases by an unknown amount after
obtaining a surface sample from the firstmaneuver before descending
onto the surface again to obtain additional material. In these exam-
ples, the spacecraft in Fig. 1 descends onto the surface at a speed of
0.1 m∕s starting from a height of 0.2 m. There are seven sensors

measuring θ1, θ2, _θ1, _θ2, _x, _y, and Fc. Once contact is made, the
controller attempts to regulate the sampler’s contact force to Fd �
25 N and its x and yvelocity to 0 before departing the surface after 2 s.

The spacecraft parameters are msc � 420 kg, m1 � m2 � ms �
1 kg, L1�L2�2m, R1�R2�1m, I1 � I2 � �1∕3� kg∕m2,
θ1;0 � π∕4, and θ2;0 � π∕2. The surface coefficient of friction

is taken to be μ � 0.5. The robust controller parameters were

taken to be λ � 0.05, k1 � 300 N∕m, k2 � 2.7 × 105 N∕m, c1 �
0.35 N ⋅ s∕m, and c2 � 103 N ⋅ s∕m. PCAC is initialized with
p � 5, m � 2, n̂ � 1, P0 � 10I35, η � 0.1, τn � 40, τd � 200,
α � 0.001, l � 50, Q � Il ⊗ diag�1000; 100; 1�, R � 1Ilm,
Ct��03×2 I3 �, umax�−umin�100, and Rk;l�13×l⊗ �0 0 0 �T .
The initial PCAC model coefficients w0 are initialized to match the
zero-order-hold discretized model of Eqs. (35) and (36), with the

linear surface contact model ks � 100 N∕m and cs � 103 N ⋅ s∕m,

and θ and _q being set to their respective values at contact. This makes
w0 a 35-parameter vector. The controller runs in a sample-data
feedback loop at 2 kHz.

A. Linear Contact Model

Assuming that the surface has the linear Kelvin–Voigt contact
model (27), we compare the performance of the robust controller
and augmented robust controller with PCAC for stiffness coefficients
between 300 and 2.7 × 105 N∕m, and damping coefficients 0.35 and

103 N ⋅ s∕m. Figure 3 shows the median contact force over the 2 s
contact period over the range of surface properties. Notice that the
nominal robust controller has difficulty reaching the desired contact
force for low surface stiffness coefficients, while the augmented
controller consistently reaches the desired contact force for all
tested surface properties. Figure 4 shows the contact force, sampler
velocity, actuator torques, and PCAC model coefficients for the

surface properties ks � 2 × 105 and cs � 5 N ⋅ s∕m. Notice that
the PCAC-augmented controller quickly reaches the desired contact
force, while the nominal robust controller on its own takesmost of the
2 s contact period to reach the desired contact force of 25 N.

B. Nonlinear Contact Model

Assuming that the surface has the nonlinear Hunt–Crossley con-
tact model (28), we compare the performance of the robust controller
and augmented robust controller with PCAC for stiffness coefficients
between 300 and 2.7 × 105 N∕m, and coefficient of restitution
between 0.1 and 1. Figure 5 shows the median contact force over

Algorithm 1: PCAC identification

Initialize: ŵ0 ∈ R�n̂p�m�p��×1, P0 ∈ R�n̂p�m�p��×�n̂p�m�p�� positive definite,
τd > τn ≥ p, η > 0, α > 0, k � 0, and a buffer of τd � 1 previous
performance variables initialized as 0

function PCAC_ID yk; τf;k
zk ← yk − ϕkŵk

Add zk to performance variable buffer and remove oldest entry

Compute sample covariance matrices Στn ∈ Rp×p and Στd ∈ Rp×p

from previous τn � 1 and τd � 1 errors from buffer

if k ≥ τd � 1 then

Compute a, b, and c using Eq. (52)

g ← Eq. (51)

else
g ← 0

end if
βk ← 1� ηg1�g�
Lk ← βkPk

wk�1 ← wk � Pk�1ϕ
T
k �yk − ϕkwk�

Pk�1 ← Lk − Lkϕ
T
k �Ip � ϕkLkϕ

T
k �−1ϕkLk

ϕk�1 ← Update regressor ϕk with current measurement and input

end function

Algorithm 2: Adaptive force control augmentation

Initialize: p � 5, m � 2, Sample rate Ts, Solve Eq. (41) to get K,
τf;0 � 0m×1, k � 0

while In contact phase do
Measure θ1, θ2, ζk � � _θ1 _θ2 _x _y e �T ∈ Rp×1, and

χk � � _x _y e �T ∈ Rp−2×1

Start Robust Controller
urobust;k ← Kχk

End Robust Controller
Start PCAC Identification

yk ← ζk State measurement

wk�1 ← PCAC_ID(yk; τf;k)

End PCAC Identification
x̂k ← wk�1; yk from Eqs. (54) and (55)

K ← � 02 K �
Âk; B̂k; Ĉ ← wk�1; K from Eqs. (56) and (57)

Start PCAC MPC
U1jk;l ← Solve Eq. (61)

uaug;k ← � Im 0m×�l−1�m �U1jk;l
End PCAC MPC
τf;k ← urobust;k � uaug;k
Start Feedback Linearization

τf ← τf;k
� τ1 τ2 �T ← τf from Eq. (31)

End Feedback Linearization
k ← k� 1

end while
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Fig. 3 Median contact force for various surface stiffness ks and damping cs values using the linear Kelvin–Voigt contact model (27).
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Fig. 4 Contact force, sampler velocity, actuator torques, and PCAC model coefficients for the linear contact model (27) with ks � 2 × 105 N∕m and
cs � 5 N ⋅ s∕m.
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Fig. 5 Median contact force for various surface stiffness ks and damping cs values using the nonlinear Hunt–Crossley contact model (28).
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the 2 s contact period over the range of surface properties. Notice that

the nominal robust controller’s median contact force has difficulty

reaching even half of the desired 25 N, while the augmented con-

troller consistently reaches the desired contact force for all tested

surface properties except for situations where there is low stiffness

combined with a high coefficient of restitution. Figure 6 shows the

contact force, sampler velocity, actuator torques, and PCAC model

coefficients for the surface properties ks � 2 × 105 N∕m and

cr � 0.9. Notice that the PCAC-augmented controller quickly

reaches the desired contact force while the nominal robust controller

never does.

C. Double Sampling Maneuver with Linear Contact Model

We now consider a double sampling maneuver where after

descending onto the surface and collecting a sample, the spacecraft

then descends again onto a different region of the celestial body

to collect additional material. The amount of material collected

on the first maneuver is chosen to be 0.5 kg and is unknown to the

spacecraft. Assuming that the surface has the linear Kelvin–Voigt

contact model (27), the surface on the first maneuver has properties

ks � 2 × 105 N∕m and cs � 5 N ⋅ s∕m, and the surface on the sec-

ond maneuver has ks � 200 N∕m and cs � 500 N ⋅ s∕m. Figure 7

shows that the desired contact force is reached for both maneuvers.

Notice that on contact with the new surface at 8 s, theRLSVRF factor

λk automatically decreases, enabling forgetting of the old surface

properties and causing an increase in the trace of the RLS covariance

tr�Pk� to allow for fast identification of a new surface contact model.

D. Double Sampling Maneuver with Nonlinear Contact Model

For the double sampling maneuver, assuming that the surface has

the nonlinear Hunt–Crossley contact model (28), the surface on the

first maneuver has properties ks � 2 × 105 N∕m and cr � 0.9,
and the surface on the second maneuver has ks � 300 N∕m and

cr � 0.2. Figure 8 shows that the desired contact force is reached for
bothmaneuvers. Notice that on contact with the new surface at 8 s the

RLS VRF factor λk automatically decreases, enabling forgetting of
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Fig. 6 Contact force, sampler velocity, actuator torques, and PCACmodel coefficients for the nonlinear contact model (28) with ks � 2 × 105 N∕m and
cr � 0.9.
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Fig. 7 Contact force, sampler velocity, actuator torques, andPCACmodel coefficients for a double samplingmaneuverwith the linear contactmodel (27)
with ks � 2 × 105 N∕m and cs � 5 N ⋅ s∕m for the first maneuver and ks � 200 N∕m and cs � 500 N ⋅ s∕m for the second maneuver.
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the old surface properties and causing an increase in the trace of the
RLS covariance tr�Pk� to allow for fast identification of a new surface
contact model.

V. Conclusions

This paper developed and investigated the performance of an adap-
tive force control augmentation algorithm for spacecraft sampling
maneuvers on small celestial bodies. The algorithm consisted of a
nominal robust controller with an adaptive augmentation using PCAC
combined with feedback linearization to maintain a desired contact
force during the samplingmaneuver. PCACuses output-feedbackMPC
without an estimator and with concurrent online identification. Both
linear and nonlinear contact models were used to investigate the con-
troller’s performance under various surface properties. Additionally,
a double sampling maneuver was investigated where the spacecraft
collected an unknown amount of material from an initial maneuver
before ascending and descending and then sampling from a different
region of the celestial body with different surface properties. The con-
trollerwas shown to reach the desired contact force over awide range of
surface properties and outperformed the nominal robust controller in all
cases. For the double sampling maneuver, PCACwas able to identify a
new model of the surface and successfully adjust the control input to
reach the desired contact force on the second surface.
When contact is first made with the surface, there is an initially

large transient force exerted on the sampler. This can be mitigated
using a combination of the proposed control algorithm and passive
damping of the sampling arm. The inclusion of passive damping
lessens the total required control input. Additionally, investigation of
more accurate surface contact models is of interest. Complementarity
contact models and high-fidelity, particle-based soil-contact models
are possible avenues for improving the simulation accuracy of the
sampling maneuver.
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