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ABSTRACT
Real-time numerical differentiation plays a crucial role in many digital control algorithms, such as PID
control, which requires numerical differentiation to implement derivative action. This paper proposes an
algorithm for estimating the numerical derivative of a signal from noisy sampled data measurements. The
method uses adaptive input estimation with adaptive state estimation (AIE/ASE), and thus it requires only
minimal prior information about the signal and noise statistics. Furthermore, since the estimates of the
derivative at step k provided by AIE/ASE depend only on data available up to step k, AIE/ASE is thus imple-
mentable in real time. The accuracy of AIE/ASE is compared numerically to several conventional numerical
differentiation methods. Finally, AIE/ASE is applied to simulated vehicle position data, generated in the
CarSim simulator software.
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1. Introduction

The dual operations of integration and differentiation provide
the foundation for much of mathematics. Analytically, differen-
tiation is often considered less complex than integration, as evi-
denced by the relative difficulty encountered in differentiating
versus integrating functions such as log(1 + sin2 x3). In numer-
ical analysis, integration techniques have been extensively devel-
oped in Davis and Rabinowitz (1984), whereas differentiation
techniques have been developed more sporadically in Savitzky
andGolay (1964), Cullum (1971), andHamming (1973, pp. 565,
566).

In practice, numerical integration and differentiation tech-
niques are applied to sequences of measurements, that is,
discrete-time signals composed of sampled data. Although
strictly speaking, integration and differentiation are defined on
continuous spaces and not for discrete-time signals, the goal is
to compute a discrete-time ‘integral’ or ‘derivative’ estimate that
approximates the true integral or derivative of the pre-sampled,
analog signal.

In addition to the effect of sampling, numerical integration
and differentiation methods must address the effect of sensor
noise in sampled data. For numerical integration of sampled
data, constant noise in data, that is, bias, leads to a spurious
ramp, while stochastic noise leads to random-walk divergence
due to the numerical integration of noise present in the data.
Mitigation of these effects is of extreme importance in applica-
tions such as inertial navigation as shown in Farrell (2008) and
Grewel et al. (2020).

Compared to numerical integration, the effect of noise on
numerical differentiation is far more severe. This situation is
due to the fact that, whereas integration is a bounded oper-
ator on a complete inner-product space, differentiation is an
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unbounded operator on a dense subspace. Unboundedness
implies a lack of continuity, which is manifested as high sen-
sitivity to sensor noise. Consequently, numerical differentiation
typically involves assumptions on the smoothness of the signal
and spectrum of the noise as considered in Ahn et al. (2006),
Jauberteau and Jauberteau (2009), Stickel (2010), Listmann
and Zhao (2013), Knowles and Renka (2014), and Haimovich
et al. (2022).

Numerical differentiation algorithms are crucial elements
of many digital control algorithms. For example, PID con-
trol requires numerical differentiation to implement derivative
action as presented in Vilanova and Visioli (2012) and Astrom
andHagglund (2006). Flatness-based control is based on a finite
number of derivatives as shown in Nieuwstadt et al. (1998)
and Mboup et al. (2009). In feedback control applications, real-
time implementation of numerical differentiation algorithms
is essential. However, the phase shift and latency associated
with numerical differentiation can result in performance degra-
dation and even instability. Phase shift arises from filtering,
whereas latency arises from noncausal numerical differentia-
tion, that is, numerical differentiation algorithms that require
future data. For real-time applications, a noncausal differenti-
ation algorithm that requires data at future time steps can be
implemented causally by delaying the computation until the
required data are available. For feedback controllers that require
an estimate of the current derivative, the delayed estimate pro-
vided by a noncausal differentiation algorithm may not be a
sufficiently accurate estimate of the required derivative.

In practice, analog or digital filters are used to suppress the
effect of sensor noise, thereby allowing the use of differenc-
ing formulae in the form of inverted ‘V’ filters, which have the
required gain and phase lead at low frequencies and roll off at
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high frequencies. These techniques assume that the character-
istics of the signal and noise are known, thereby allowing the
user to tweak the filter parameters. When both the true signal
and the noise have characteristics that are unknown and may
change over time, filter tuning becomes impossible, significantly
increasing the challenge of the problem. The recent work in Van
Breugel et al. (2020) articulates these challenges and proposes
a Pareto-tradeoff technique for addressing the absence of prior
information. Additional techniques include high-gain observer
methods, where the observer approximates the dynamics of
a differentiator as shown in Dabroom and Khalil (1999).
Li et al. (2018) employed a kernel-based deadbeat observer
for numerical differentiation, utilising Volterra integral oper-
ators. Numerical differentiation based on integration using
Jacobi polynomials was introduced in Da-yan Liu and Perru-
quetti (2011). Yet another approach is to apply sliding-mode
algorithms as shown in Levant (2003), Reichhartinger and Spur-
geon (2018), López-Caamal and Moreno (2019), Mojallizadeh
et al. (2021), Alwi and Edwards (2013), and Levant (1998). Ibrir
and Diop (2004) presented a method involving a simplified
linear optimisation problem to deduce a continuous spline sig-
nal, aiding in the estimation of the derivative of sampled data.
Additionally, Polyakov et al. (2014) analysed a homogeneous
differentiator based on the implicit Lyapunov function method.

Another approach to numerical differentiation is to apply
state estimation with integrator dynamics, where the state
estimate includes an estimate of the derivative of the mea-
surement as shown in Kalata (1984) and Bogler (1987). This
approach has been widely used for target and vehicle track-
ing in Jia et al. (2008), Khaloozadeh and Karsaz (2009), Lee
and Tahk (1999), and Rana et al. (2020). As an extension of state
estimation, the present paper applies input estimation to numer-
ical differentiation, where the goal is to estimate the input as
well as the state. Input and state estimation methods are dis-
cussed in Gillijns and De Moor (2007), Orjuela et al. (2009),
Fang et al. (2011), Yong et al. (2016), Hsieh (2017), Naderi
and Khorasani (2019), and Alenezi et al. (2021).

The present paper is motivated by the situation where min-
imal prior information about the signal and noise is available.
This case arises when the spectrum of the signal changes slowly
or abruptly in an unknown way, and when the noise char-
acteristics vary due to changes in the environment, such as
weather. With this motivation, adaptive input estimation (AIE)
was applied to target tracking in Ansari and Bernstein (2019),
where it was used to estimate vehicle acceleration using position
data. In particular, the approach of Ansari and Bernstein (2019)
is based on retrospective cost input estimation (RCIE), where
recursive least squares (RLS) is used to update the coefficients of
the estimation subsystem. The error metric used for adaptation
is the residual (innovations) of the state estimation algorithm,
that is, the Kalman filter. This technique requires specifica-
tion of the covariances of the process noise, input-estimation
error, and sensor noise. The present paper extends the approach
of Ansari and Bernstein (2019) by replacing the Kalman filter
with an adaptive Kalman filter in which the input-estimation-
error covariance and the sensor-noise covariance are updated
online. Adaptive extensions of the Kalman filter to the case
where the variance of the disturbance is unknown are con-
sidered in Yaesh and Shaked (2008), Shi et al. (2009), Moghe

et al. (2019), and Zhang et al. (2020). Adaptive Kalman filters
based on the residual for integrating INS/GPS systems are dis-
cussed in Mohamed and Schwarz (1999), Hide et al. (2003),
and Almagbile et al. (2010). Several approaches to adaptive fil-
tering, such as Bayesian, maximum likelihood, correlation, and
covariance matching, are studied in Mehra (1972). A related
algorithm involving a covariance constraint is developed in
Mook and Junkins (1988). The adaptive Kalman filter used in
the present paper as part of adaptive input estimation with
adaptive state estimation (AIE/ASE) is based on a search over
the range of input-estimation error covariance. This technique
has proven to be easy to implement and effective in the pres-
ence of unknown signal and noise characteristics. The main
contribution of the present paper is a numerical investigation
of the accuracy of AIE combined with the proposed adaptive
state estimation (ASE) in the presence of noise with unknown
properties. The accuracy of AIE/ASE is compared to the
backward-difference differentiation, Savitzky-Golay differentia-
tion (Mboup et al., 2009; Savitzky & Golay, 1964; Schafer, 2011;
Staggs, 2005), and numerical differentiation based on high-gain
observers (Dabroom & Khalil, 1999).

The present paper represents a substantial extension of pre-
liminary results presented in Verma et al. (2022). In partic-
ular, the algorithms presented in the present paper extend
the adaptive estimation component of the approach of Verma
et al. (2022) in Section 5, and the accuracy of these algorithms
is more extensively evaluated and compared to prior methods
in Section 6.

The contents of the paper are as follows. In Section 2, we
identify the challenges that arise from implementing numerical
differentiation algorithms in real time. These challenges are pri-
marily due to the delay in the availability of the estimated deriva-
tive, which results from computation time and non-causality.
This section also defines an error metric for comparing the
accuracy of the algorithms considered in this paper. Section 3
summarises three baseline numerical differentiation algorithms
and identifies their limitations, which motivates the proposed
algorithm. Section 4 summarises the adaptive input estimation
algorithm. Section 5 provides the paper’s main contribution,
namely, adaptive input estimation with adaptive state estima-
tion (AIE/ASE), along with its two other variations. Section 6
applies three variations of AIE using harmonic signals with var-
ious noise levels. Finally, Section 7 applies the variations of AIE
to simulated vehicle position data generated by CarSim.

2. Problem statement and error metric

This section presents the problem statement and error met-
ric used to assess the accuracy of the algorithms presented in
this paper. The error metric is specifically chosen to reflect the
implications of real-time implementation.

2.1 Problem statement

Let y be a continuous-time signal with qth derivative y(q). We
assume that the sampled values yk

�= y(kTs) are available, where
Ts is the sample time. The goal is to use the sampled values yk
to obtain an estimate ŷ(q)

k of y(q)
k

�= y(q)(kTs) in the presence
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of measurement noise with unknown properties. This paper
focuses on the cases q = 1 and q = 2.

2.2 Real-time implementation and errormetric

The time Tc required for computation in numerical differen-
tiation invariably results in a delay of δ time steps before the
estimated derivative becomes available. In this paper, we assume
that Tc ≤ Ts, and thus the delay due to computation time is
δ = 1.

This paper considers both causal and noncausal differenti-
ation methods. To estimate the derivative at the current step,
causal differentiation does not require future data; in con-
trast, noncausal differentiation utilises future data. For real-time
implementation, causal differentiation entails a delay of δ = 1
step due to the computation time Tc, whereas noncausal dif-
ferentiation entails a delay of δ ≥ 2 steps. For the case δ = 1,
Figure 1 shows that the estimate ŷ(q)

k of y(q)
k is not available

until step k+ 1. To quantify the accuracy of each numerical
differentiation algorithm, for all k ≥ δ, we define the relative
root-mean-square error (RMSE) of the estimate of the qth
derivative as

ρ
(q)
k �

√√√√∑k
i=δ(y

(q)
i − ŷ(q)

i−δ)
2∑k

i=δ(y
(q)
i−δ)

2
. (1)

Note that the numerator of (1) accounts for the effect of the
delay δ. For real-time implementation, the relevant error metric
depends on the difference between the true current derivative
and the currently available estimate of the past derivative, as can
be seen in the numerator of (1). When the derivative estimates
are exact, (1) determines an RMSE value that can be viewed
as the delay floor for the qth derivative, that is, the error due
solely to the fact that a noncausal differentiation algorithmmust
be implemented with a suitable delay. Note that the delay floor
depends on δ and is nonnegative.

The true values of y(q)
k are the sampled values of y(q) in the

absence of sensor noise. Of course, the true values of y(q)
k are

unknown in practice and thus cannot be used as an online
error criterion. However, these values are used in (1), which
is computable in simulation for comparing the accuracy of the
numerical differentiation algorithms.

3. Comparison and limitations of baseline algorithms

This section summarises three algorithms for numerically dif-
ferentiating sampled data. These algorithms provide a baseline
for evaluating the accuracy of the adaptive input and state
estimation algorithms described in Section 5.

3.1 Backward-difference (BD) differentiation

As define in Astrom and Hagglund (2006), let q−1 denote the
backward-shift operator. Then the backward-difference single
differentiator is given by

Gsd(q−1) �
1 − q−1

Ts
, (2)

and the backward-difference double differentiator is given by

Gdd(q−1) �
(1 − q−1)2

T2
s

. (3)

3.2 Savitzky–Golay (SG) differentiation

As shown in Savitzky and Golay (1964), Schafer (2011), and
Staggs (2005), in SG differentiation at each step k, a polynomial

Pk(s) =
pd∑
i=0

ai,ksi (4)

of degree pd is fit over a sliding data window of size 2� + 1 cen-
tred at step k, where � ≥ 1. At each step k, this leads to the

Figure 1. Timing diagram for causal numerical differentiation. The causal numerical differentiator uses data obtained at step k to estimate the derivative of the signal y.
Because of the computation time Tc, the estimate ŷ(q)k of y(q)k is not available until step k+ 1. In this case, the delay is δ = 1 step. For noncausal differentiation, δ ≥ 2.
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least-squares problem

min ‖Yk − AkXk‖, (5)

where

Yk �

⎡
⎢⎣
yk−�

...
yk+�

⎤
⎥⎦ , Xk �

⎡
⎢⎣
a0,k
...

apd,k

⎤
⎥⎦ , (6)

Ak �

⎡
⎢⎣
1 (k − �)Ts · · · ((k − �)Ts)

pd

...
...

. . .
...

1 (k + �)Ts · · · ((k + �)Ts)
pd

⎤
⎥⎦ . (7)

Solving (5) with q ≤ pd ≤ 2� yields

X̂ k =

⎡
⎢⎣
â0,k
...

âpd,k

⎤
⎥⎦ . (8)

Differentiating (4) q times with respect to s, setting s = kTs, and
replacing the coefficients of Pk in (4) with the components of
X̂ k, the estimate ŷ(q)

k of y(q)
k is given by

ŷ(q)
k =

pd∑
i=q

Qi,qâi,k(kTs)
i−q, (9)

where, for all i = q, . . . , pd,

Qi,q �
q∏

j=1
(i − j + 1). (10)

3.3 High-gain-observer (HGO) differentiation

A state space model for the rth-order continuous-time HGO in
Dabroom and Khalil (1999) is given by

˙̂x = Acox̂ + Bcoy, ŷ = Cox̂, (11)

Aco �
[
0(r−1)×1 Ir−1

0 01×(r−1)

]
− H

[
1 01×(r−1)

]
, (12)

Co �
[
0(r−1)×1 Ir−1

]
, (13)

Bco = H �
[
α1

ε

α2

ε2
· · · αr

εr

]T
, (14)

where ε > 0 and α1, . . . ,αr are constants chosen such that the
polynomial

p(s) � sr + α1sr−1 + · · · + αr−1s + αr (15)

is Hurwitz. The transfer function from y to ŷ is given by

G(s) = Co(sI − Aco)
−1H = D−1

G (s)NG(s), (16)

where

DG(s) � εrsr + α1ε
r−1sr−1 + · · · + αr−1εs + αr , (17)

NG(s) �

⎡
⎢⎢⎢⎢⎢⎣

α2ε
r−2sr−1 + · · · + αr−1εs2 + αrs

α3ε
r−3sr−1 + · · · + αr−1εs3 + αrs2

...
αr−1εsr−1 + αrsr−2

αrsr−1

⎤
⎥⎥⎥⎥⎥⎦ . (18)

Since

lim
ε→0

G(s) = [
s s2 · · · sr−1]T , (19)

it follows that, for all i = 1, . . . , r − 1, the ith component of ŷ is
an approximation of y(i). Applying the bilinear transformation
to (11) yields the discrete-time observer

x̂k+1 = Adox̂k + Bdoyk, ŷk = Cox̂k, (20)

where

Ado �
(
Ir − 1

2TsAco
)−1

(Ir + 1
2TsAco), (21)

Bdo �
(
Ir − 1

2TsAco
)−1 BcoTs. (22)

Implementation of (20) provides estimates ŷ(1)
k , . . . , ŷ(r−1)

k of
y(1)
k , . . . , y(r−1)

k .
Several noteworthy differences exist among BD, SG, and

HGO. First, BD differentiation operates on adjacent pairs of
data points, whereas SG differentiation operates on a mov-
ing window of data points. Consequently, SG differentiation is
potentially more accurate than BD differentiation.

To compare the presented baseline algorithms, we consider
numerical differentiation of the continuous-time signal y(t) =
sin(20t), where t is time in seconds. The signal y(t) is sampled
with sample timeTs = 0.01 sec. Themeasurements are assumed
to be corrupted by noise, and thus the noisy sampled signal
is given by yk = sin(0.2k) + Dvk, where vk is standard (zero-
mean, unit-variance, Gaussian) white noise. The value of D is
chosen to set the desired signal-to-noise ratio (SNR).

For single differentiation with SG, let � = 2 and pd = 3.
For single differentiation with HGO, let HGO/1 denote HGO
with r = 2, α1 = 2, α2 = 1, and ε = 0.2, and let HGO/2 denote
HGO/1 with ε = 0.2 replaced by ε = 0.7. Note that δ = 1 for
BD and HGO, whereas δ = � + 1 for SG with window size
2� + 1. Figure 2 shows the relative RMSE ρ

(1)
kf

of the estimate of
the first derivative for SNR ranging from 20 dB to 60 dB, where
kf = 2000 steps.

The comparison between HGO/1 and HGO/2 in Figure 2
shows that the performance of HGO differentiation depends on
the noise level, and thus tuning is needed to achieve the best pos-
sible performance. When the noise level is unknown, however,
this tuning is not possible. Hence, we now consider a differenti-
ation technique that adapts to the actual noise characteristics.

4. Adaptive input estimation

This section summarises adaptive input estimation (AIE),
which is a specialisation of retrospective cost input estimation
(RCIE) derived in Ansari and Bernstein (2019). This section
explains how AIE specialises RCIE to the problem of causal
numerical differentiation.

Consider the linear discrete-time system

xk+1 = Axk + Bdk, (23)

yk = Cxk + D2vk, (24)

where k ≥ 0 is the step, xk ∈ R
n is the state, dk

�= d(kTs) ∈ R,
vk ∈ R is standard white noise, and D2vk ∈ R is the sensor
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Figure 2. Relative RMSE ρ
(1)
kf

of the estimate of the first derivative versus SNR,
where kf = 2000 steps, for BD, SG, HGO/1, and HGO/2. For the first derivative, the
reddashed line denotes thedelay floor for δ = 1, and theblack dashed line denotes
the delay floor for δ = 3.

noise. The matrices A ∈ R
n×n, B ∈ R

n×1, C ∈ R
1×n, and D2 ∈

R are assumed to be known. Define the sensor-noise covariance
V2

�= D2DT
2 . The goal of AIE is to estimate dk and xk.

AIE consists of three subsystems, namely, the Kalman fil-
ter forecast subsystem, the input-estimation subsystem, and the
Kalman filter data-assimilation subsystem. First, consider the
Kalman filter forecast step

xfc,k+1 = Axda,k + Bd̂k, (25)

yfc,k = Cxfc,k, (26)

zk = yfc,k − yk, (27)

where d̂k is the estimate of dk, xda,k ∈ R
n is the data-assimilation

state, xfc,k ∈ R
n is the forecast state, zk ∈ R is the residual, and

xfc,0 = 0.
Next, to obtain d̂k, the input-estimation subsystem of order

ne is given by

d̂k =
ne∑
i=1

Pi,kd̂k−i +
ne∑
i=0

Qi,kzk−i, (28)

where Pi,k ∈ R andQi,k ∈ R are time-varying coefficients. Note
that (28) represents an exactly proper transfer function. AIE
minimises zk by using recursive least squares (RLS) to update
Pi,k and Qi,k as shown below. The subsystem (28) can be refor-
mulated as

d̂k = �kθk, (29)

where the regressor matrix �k is defined by

�k �
[
d̂k−1 · · · d̂k−ne zk · · · zk−ne

]
∈ R

1×lθ , (30)

the coefficient vector θk is defined by

θk �
[
P1,k · · · Pne,k Q0,k · · · Qne,k

]T ∈ R
lθ , (31)

and lθ
�= 2ne + 1. In terms of the backward-shift operator

q−1, (28) can be written as

d̂k = Gd̂z,k(q
−1)zk, (32)

where

Gd̂z,k � D−1
d̂z,k

Nd̂z,k, (33)

Dd̂z,k(q
−1) � Ild − P1,kq−1 − · · · − Pne,kq

−ne , (34)

Nd̂z,k(q
−1) � Q0,k + Q1,kq−1 + · · · + Qne,kq

−ne . (35)

To update the coefficient vector θk, we define the filtered signals

�f ,k � Gf ,k(q−1)�k, d̂f ,k � Gf ,k(q−1)d̂k, (36)

where, for all k ≥ 0,

Gf ,k(q−1) =
nf∑
i=1

q−iHi,k, (37)

Hi,k �

⎧⎨
⎩
CB, k ≥ i = 1,
CAk−1 · · ·Ak−(i−1)B, k ≥ i ≥ 2,
0, i > k,

(38)

and Ak
�= A(I + Kda,kC), where Kda,k is the Kalman filter gain

given by (44) below.
Furthermore, define the retrospective variable

zr,k(θ̂) � zk − (d̂f ,k − �f ,kθ̂ ), (39)

where the coefficient vector θ̂ ∈ R
lθ denotes a variable for opti-

misation, and define the retrospective cost function

Jk(θ̂ ) �
k∑

i=0
[Rzz2r,i(θ̂) + Rd(�iθ̂ )2] + (θ̂ − θ0)

TRθ (θ̂ − θ0),

(40)
where Rz ∈ (0,∞), Rd ∈ (0,∞), and Rθ ∈ R

lθ×lθ is positive
definite. Then, for all k ≥ 0, the unique global minimiser θk+1
of (40) is given by the RLS update as shown in Islam and Bern-
stein (2019)

Pk+1 = Pk − Pk�̃T
k	k�̃kPk, (41)

θk+1 = θk − Pk�̃T
k	k(̃zk + �̃kθk), (42)

where

P0 � R−1
θ , 	k � (R̃−1 + �̃kPk�̃T

k )−1, �̃k �
[
�f ,k
�k

]
,

z̃k �
[
zk − d̂f ,k

0

]
, R̃ �

[
Rz 0
0 Rd

]
.

Using the updated coefficient vector given by (42), the esti-
mated input at step k+ 1 is given by replacing k by k+ 1 in (29).
We choose θ0 = 0, and thus d̂0 = 0. Implementation of AIE
requires that the user specify the orders ne and nf , as well as
the weightings Rz, Rd, and Rθ . These parameters are specified
for each example in the paper.
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4.1 State estimation

The forecast variable xfc,k given by (25) is used to obtain the
estimate xda,k of xk given by the Kalman filter data-assimilation
step

xda,k = xfc,k + Kda,kzk, (43)

where the state estimator gain Kda,k ∈ R
n, the data-assimilation

error covariancePda,k ∈ R
n×n, and the forecast error covariance

Pf ,k+1 ∈ R
n×n are given by

Kda,k = −Pf ,kCT(CPf ,kCT + V2,k)
−1, (44)

Pda,k = (In + Kda,kC)Pf ,k, (45)

Pf ,k+1 = APda,kAT + V1,k, (46)

wherePf ,0 = 0 andV1,k
�= Bvar(dk − d̂k)BT + Acov(xk − xda,k,

dk − d̂k)BT + Bcov(dk − d̂k, xk − xda,k)AT.

4.2 Application of AIE to numerical differentiation

To apply AIE to causal numerical differentiation, (23) and (24)
are used to model a discrete-time integrator. AIE then yields
an estimate d̂k of the derivative of the sampled output yk. For
single discrete-time differentiation, A = 1,B = Ts, and C = 1,
whereas, for double discrete-time differentiation,

A =
[
1 Ts
0 1

]
, B =

[ 1
2T

2
s

Ts

]
, C = [

1 0
]
. (47)

Table 1. Definitions of AIE/NSE, AIE/SSE, and AIE/ASE. Each version of AIE is deter-
mined by whether or not V1,k and/or V2,k is adapted in the state-estimation
subsystem.

V1,k Adaptation V2,k Adaptation

AIE/NSE No No
AIE/SSE Yes No
AIE/ASE Yes Yes

5. Adaptive input and state estimation

In practice, V1,k and V2,k may be unknown in (46) and (44).
To address this problem, three versions of AIE are presented. In
each version, V1,k and V2,k may or may not be adapted. These
versions are summarised in Table 1.

To adapt V1,k and V2,k, at each step k we define the com-
putable performance metric

Jk(V1,V2) � |̂Sk − Sk|, (48)

where Ŝk is the sample variance of zk over [0, k] given by

Ŝk = 1
k

k∑
i=0

(zi − zk)2, (49)

zk = 1
k + 1

k∑
i=0

zi, (50)

and Sk is the variance of the residual zk given by the Kalman
filter, that is,

Sk � C(APda,k−1AT + V1)CT + V2. (51)

Note that (48) is the difference between the theoretical and
empirical variances of zk, which provides an indirect measure
of the accuracy of V1 and V2.

5.1 AIE with non-adaptive state estimation (AIE/NSE)

In AIE/NSE, V1 is fixed at a user-chosen constant value, and
V2 is assumed to be known and fixed constant at its true value.
AIE/NSE is thus a specialisation of AIE with V1,k ≡ V1 in (46)
and V2,k ≡ V2,true in (44), where V2,true is the true value of the
sensor-noise covariance. A block diagram of AIE/NSE is shown
in Figure 3.

5.2 AIE with semi-adaptive state estimation (AIE/SSE)

In AIE/SSE, V1 is adapted, and V2 is assumed to be a known
and fixed constant at its true value. Let V1,adapt,k denote the
adapted value of V1,k. AIE/SSE is thus a specialisation of AIE

Figure 3. Block diagram of AIE/NSE. The unknown input d is the signal whose estimates are desired, v is sensor noise, and y is the noisy measurement. In this version of
AIE, V1 is fixed at a user-chosen value and V2 is fixed at its true value. The state estimator is thus not adaptive.
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Figure 4. Block diagram of AIE/SSE. In this version of AIE, V1 is adapted and V2 is fixed at its true value. The state estimator is thus semi-adaptive.

with V1,k = V1,adapt,k in (46) and V2,k ≡ V2,true in (44). For all
k ≥ 0, we assume thatV1,adapt,k � ηkIn and we define ηk ∈ R as

ηk � argmin
η∈[ηL,ηU]

Jk(ηIn,V2,true), (52)

where 0 ≤ ηL ≤ ηU. Using (48) and (51) to rewrite (52) yields

ηk = argmin
η∈[ηL,ηU]

∣∣̂Sk − CAPda,k−1ATCT − V2,true − ηkCCT∣∣.
(53)

A block diagram of AIE/SSE is shown in Figure 4.

5.3 AIE with adaptive state estimation (AIE/ASE)

In AIE/ASE, both V1 and V2 are adapted. Let V1,adapt,k = ηkIn,
where ηk ≥ 0, and V2,adapt,k denote the adapted values of V1

and V2, respectively. Hence, AIE/ASE can be viewed as a spe-
cialised form of AIE, with V1,k = V1,adapt,k in (46) and V2,k =
V2,adapt,k in (44). The objective is thus to determine ηk ≥ 0 and
V2,adapt,k ≥ 0 such that Jk in (48) is minimised, that is,

(ηk,V2,adapt,k) � argmin
η∈[ηL,ηU],V2≥0

Jk(ηIn,V2), (54)

where 0 ≤ ηL < ηU.
The following result provides the minimising values of ηk

and V2,adapt,k.

Proposition 5.1: Consider the optimisation problem (54).
Define the function Jf ,k : R

n×n → R by

Jf ,k(V1) � Ŝk − C(APda,k−1AT + V1)CT, (55)

Figure 5. Block diagram of AIE/ASE. In this version of AIE, both V1 and V2 are adapted. The state estimator is thus adaptive.
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and the set

Jf ,k � {Jf ,k(ηIn) : Jf ,k(ηIn) > 0, ηL ≤ η < ηU} ⊆ (0,∞).
(56)

IfJf ,k is empty, then aminimiser (ηk,V2,adapt,k) of (54) is given by

ηk = argmin
η∈[ηL,ηU]

|Jf ,k(ηIn)|, (57)

V2,adapt,k = 0, (58)

and the minimum value of Jk is

Jk(ηkIn,V2,adapt,k) = Ŝk − CAPda,k−1ATCT − ηkCCT.

Now, assume that Jf ,k is not empty, and let Ĵf ,k ∈ [minJf ,k,
maxJf ,k]. Then, a minimiser (ηk,V2,adapt,k) of (54) is given by

ηk = argmin
η∈[ηL,ηU]

|Jf ,k(ηIn) − Ĵf ,k|, (59)

V2,adapt,k = Jf ,k(ηkIn), (60)

and the minimum value of Jk is

Jk(ηkIn,V2,adapt,k) = 0. (61)

Proof: First note that, for all η ∈ [ηL, ηU] and V2 ≥ 0,

Jk(ηIn,V2) = |Jf ,k(ηIn) − V2|. (62)

We first consider the case whereJf ,k is empty. In this case, for all
η ∈ [ηL, ηU], Jf ,k(ηIn) ≤ 0. Hence it follows from (62) that (54)
is minimised by (57) and (58).

Next, we consider the case where Jf ,k is not empty, and thus
Ĵf ,k > 0. With ηk given by (59), it follows that V1,adapt,k = ηkIn.
Hence, it follows from (59) and (60) that the minimum value of
(54) is given by

Jk(V1,adapt,k,V2,adapt,k) = |Jf ,k(V1,adapt,k) − V2,adapt,k|
= |Jf ,k(ηkIn) − Jf ,k(ηkIn)|
= 0.

�

Numerical examples show that

Ĵf ,k = 1
2 [minJf ,k + maxJf ,k] (63)

yields a value of ηk that approximately minimises the RMSE (1)
of the estimate of the derivative. A block diagram of AIE/ASE is
shown in Figure 5. AIE/ASE is summarised by Algorithm 1.

6. Numerical differentiation of two-tone harmonic
signal

In this section, a numerical example is given to compare the
accuracy of the numerical differentiation algorithms discussed
in the previous sections. We consider a two-tone harmonic
signal, and we compare the accuracy (relative RMSE) of BD,
HGO/1, SG, AIE/NSE, AIE/SSE, and AIE/ASE. For single and
double differentiation, the parameters for HGO/1 and SG are
given in Section 2.

Algorithm 1Adaptive Input Estimation/Adaptive State Estima-
tion (AIE/ASE)
1: Choose ne ≥ 1, nf ≥ 1, Rz, Rd, Rθ , ηL, ηU.
2: Set xfc,0 = 0, Pf ,0 = 0n×n, Kda,0 = 0n×1, d̂0 = 0, θkn−1 =

0lθ×1, Pkn−1 = R−1
θ , V1,adapt,0 = 0n×n, V2,adapt,0 = 0.

3: kn = max(ne, nf ); R̃ = blockdiag(Rz,Rd);
4: for k = 0 to N − 1 do

(�)Residual
5: yfc,k = Cxfc,k;
6: zk = yfc,k − yk;

(�)Adaptive Input Estimation
7: if k < kn − 1 do
8: d̂k = d̂0;
9: else do
10: �k =

[
d̂k−1& · · ·&d̂k−ne&zk& · · ·&zk−ne

]
;

11: d̂k = �kθk;
12: Ak−1 = A(In + Kda,k−1C);
13: for i = 2 to nf do
14: Hi,k = CAk−1 · · ·Ak−(i−1)B;
15: end for
16: H̃k = [

CB&H2,k& · · ·&Hnf ,k
]
;

17: �f ,k = H̃k

[
�T

k−1& · · ·&�T
k−nf

]T
;

18: d̂f ,k = H̃k

[
d̂Tk−1& · · ·&d̂Tk−nf

]T
;

19: �̃k = [
�T

f,k&�T
k
]T;

20: z̃k =
[
(zk − d̂f ,k)T&0

]T
;

21: 	k = (̃R−1 + �̃kPk�̃T
k )−1;

22: Pk+1 = Pk − Pk�̃T
k	k�̃kPk;

23: θk+1 = θk − Pk�̃T
k	k(̃zk + �̃kθk);

24: end if
(�)Adaptive State Estimation
25: if k ≥ 1 do
26: Jf ,k = [ ]; (�)empty set
27: Ŝk = variance([z0 · · · zk]); (�) using (49)
28: for i = 0 to w do (�) Choose w > 0
29: ηi = ηL + i(ηU − ηL)/w;
30: P̃f ,k,i = APda,k−1AT + ηiIn;
31: J̃f ,k,i = Ŝk − CP̃f ,k,iCT;
32: if J̃f ,k,i > 0 do
33: Jf ,k = append(Jf ,k, J̃f ,k,i);
34: end if
35: end for

Example 6.1: Differentiation of a two-tone harmonic signal
Consider the continuous-time signal y(t) = sin(20t) +

sin(30t), where t is time in seconds. The signal y(t) is sam-
pled with sample time Ts = 0.01 sec. The measurements are
assumed to be corrupted by noise, and thus the noisy sampled
signal is given by yk = sin(0.2k) + sin(0.3k) + D2vk, where vk
is standard white noise.

Single Differentiation. For AIE/NSE, let ne = 12, nf = 25,
Rz = 1,Rd = 10−5,Rθ = 10−1I25, V1 = 10−6, and V2 = 0.01
for SNR 20 dB. For AIE/SSE, the parameters are the same as
those of AIE/NSE, except thatV1,k is adapted, where ηL = 10−6
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Algorithm 1Adaptive Input Estimation/Adaptive State Estima-
tion (AIE/ASE) (continued)
36: if Jf ,k is non-empty do
37: Ĵf ,k = (minJf ,k + maxJf ,k)/2;
38: V1,adapt,k = argminηIn |Jf ,k(ηIn) − Ĵf ,k|;
39: V2,adapt,k = Jf ,k(V1,adapt,k);
40: else do
41: V1,adapt,k = argminηIn |Jf ,k(ηIn)|;
42: V2,adapt,k = 0;
43: end if
44: end if
(�) Kalman Filter Data-Assimilation
45: Kda,k = −Pf ,kCT(CPf ,kCT + V2,adapt,k)

−1;
46: Pda,k = (In + Kda,kC)Pf ,k;
47: xda,k = xfc,k + Kda,kzk;
(�) Kalman Filter Forecast
48: Pf ,k+1 = APda,kAT + V1,adapt,k;
49: xfc,k+1 = Axda,k + Bd̂k
50: end for

and ηU = 102 in Section 5.2. Similarly, for AIE/ASE, the param-
eters are the same as those of AIE/SSE except thatV2,k is adapted
as in Section 5.3.

Figure 6 compares the true first derivative with the esti-
mates obtained fromAIE/NSE,AIE/SSE, andAIE/ASE. Figure 7
shows that AIE/ASE has the best accuracy over the range of
SNR. Figure 8 shows that the accuracy of AIE/ASE is close to
the best accuracy of AIE/NSE.

Double Differentiation. For AIE/NSE, let ne = 12, nf =
20,Rz = 1,Rd = 10−5,Rθ = 10−0.1I25,V1 = 10−1I2, andV2 =
0.0001 for SNR 40 dB. For AIE/SSE, the parameters are the
same as those of AIE/NSE, except that V1,k is adapted, where
ηL = 10−6 and ηU = 1 in Section 5.2. Similarly, for AIE/ASE,
the parameters are the same as those of AIE/SSE except thatV2,k
is adapted as in Section 5.3.

Figure 6. Example 6.1: Single differentiation of a sampled two-tone harmonic sig-
nal. (a) The numerical derivatives estimated by AIE/NSE, AIE/SSE with V2 = V2,true,
and AIE/ASE follow the true first derivative y(1) after an initial transient. (b) Zoomof
(a). At steady state, AIE/ASE is more accurate than both AIE/NSE and AIE/SSE with
V2 = V2,true. The SNR is 20 dB.

Figure 7. Example 6.1: Relative RMSEρ
(1)
kf

of the estimate of the first derivative of a
two-tone harmonic signal versus SNR. AIE/ASE has the best accuracy over the range
of SNR. Here kf = 2000 steps.

Figure 9 compares the true second derivative with the esti-
mates obtained from AIE/NSE, AIE/SSE with V2 = V2,true, and
AIE/ASE. Figure 10 shows that AIE/ASE has the best accuracy
over the range of SNR. Figure 11 shows that the accuracy of
AIE/ASE is close to the best accuracy of AIE/NSE.

7. Application to ground-vehicle kinematics

In this section, CarSim is used to simulate a scenario inwhich an
oncoming vehicle (the white van in Figure 12) slides over to the
opposing lane. The host vehicle (the blue van) performs an eva-
sive maneuver to avoid a collision. Relative position data along
the global y-axis (shown in Figure 12) is differentiated to esti-
mate the relative velocity and acceleration along the same axis.

Figure 8. Example 6.1: Relative RMSE ρ
(1)
kf

of the estimate of the first derivative of
a two-tone harmonic signal versus η, such that V1 = η. AIE/SSE with V2 = V2,true
is more accurate than AIE/SSE with V2 = 2V2,true, which shows the effect of V2 on
accuracy. The accuracy of AIE/ASE is close to the best accuracy of AIE/NSE. The SNR
is 20 dB, and kf = 2000 steps.
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Figure 9. Example 6.1: Double differentiation of a sampled two-tone harmonic
signal. (a) The numerical derivatives estimated by AIE/NSE, AIE/SSE with V2 =
V2,true, and AIE/ASE follow the true second derivative y(2) after an initial transient.
(b) Zoom of (a). At steady state, AIE/ASE is more accurate than AIE/SSE with V2 =
V2,true and AIE/NSE. The SNR is 40 dB.

Figure 10. Example 6.1: Relative RMSE ρ
(2)
kf

of the estimate of the second deriva-
tive of a two-tone harmonic signal versus SNR. AIE/ASE has the best accuracy over
the range of SNR. Here kf = 2000 steps.

Figure 13 shows the relative position trajectory of the vehicles
on the x-y plane.

Example 7.1: Differentiation of CarSim position data.
Discrete-time position data generated by CarSim is cor-

rupted with discrete-time, zero-mean, Gaussian white noise
whose variance is chosen to vary the SNR.

Single Differentiation
ForAIE/NSE, letne = 25,nf = 50,Rz = 1,Rd = 10−6,Rθ =

10−0.1I51, V1 = 10−5, and V2 = 0.0049 for SNR 40 dB. For
AIE/SSE, the parameters are the same as those of AIE/NSE,
except that V1,k is adapted, where ηL = 10−6 and ηU = 10−2

in Section 5.2. Similarly, for AIE/ASE, the parameters are the
same as those of AIE/SSE except that V2,k is adapted as in
Section 5.3. Figure 14 compares the true first derivative with the
estimates obtained from AIE/NSE, AIE/SSE with V2 = V2,true,
and AIE/ASE. Figure 15 shows that the accuracy of AIE/ASE is
close to the best accuracy of AIE/NSE.

Figure 11. Example 6.1: Relative RMSE ρ
(2)
kf

of the estimate of the second deriva-
tive of a two-tone harmonic signal versus η, such that V1 = ηI2. AIE/SSE with V2 =
V2,true is more accurate than AIE/SSE with V2 = 2V2,true, which shows the effect of
V2 on accuracy. The accuracy of AIE/ASE is close to the best accuracy of AIE/NSE. The
SNR is 40 dB, and kf = 2000 steps.

Figure 12. Collision-avoidance scenario in CarSim. In this scenario, the oncoming
vehicle (thewhite van) enters the opposite lane, and the host vehicle (the blue van)
performs an evasive maneuver to avoid a collision.

Double Differentiation
For AIE/NSE, Let ne = 25, nf = 21, Rz = 1,Rd = 10−5,Rθ

= 10−8I51, V1 = 10−3I2, and V2 = 0.0049 for SNR 40 dB. For
AIE/SSE, the parameters are the same as those of AIE/NSE,
except that V1,k is adapted, where ηL = 10−3 and ηU = 1 in
Section 5.2. Similarly, for AIE/ASE, the parameters are the same
as those of AIE/SSE except thatV2,k is adapted as in Section 5.3.

Figure 16 compares the true second derivative with the esti-
mates obtained from AIE/NSE, AIE/SSE with V2 = V2,true, and
AIE/ASE. Figure 17 shows that the accuracy of AIE/ASE is close
to the best accuracy of AIE/NSE.
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Figure 13. Collision-avoidance scenario in CarSim. Relative position trajectory of
the host and the target vehicles on x-y plane.

Figure 14. Example 7.1: Single differentiation of CarSim data. (a) The numerical
derivatives estimated by AIE/NSE, AIE/SSEwith V2 = V2,true, and AIE/ASE follow the
true first derivative y(1) after an initial transient of 200 steps. (b) Zoom of (a). At
steady state, AIE/ASE is more accurate than both AIE/NSE and AIE/SSE with V2 =
V2,true. The SNR is 40 dB.

Figure 15. Example 7.1: Relative RMSE ρ
(1)
kf

of the estimate of the first derivative
of CarSim data versus η, such that V1 = η. AIE/SSE with V2 = V2,true is more accu-
rate than AIE/SSE with V2 = 2V2,true, which shows the effect of V2 on accuracy. The
accuracy of AIE/ASE is close to the best accuracy of AIE/NSE. The SNR is 40 dB, and
kf = 1500 steps.

Figure 16. Example 7.1: Double differentiation of CarSim data. (a) The numerical
derivatives estimated by AIE/NSE, AIE/SSEwith V2 = V2,true, and AIE/ASE follow the
true first derivative y(2) after an initial transient. (b) Zoom of (a). At steady state,
AIE/ASE ismore accurate than both AIE/NSE and AIE/SSEwith V2 = V2,true. The SNR
is 40 dB.

Figure 17. Example 7.1: Relative RMSE ρ
(2)
kf

of the estimate of the second deriva-
tive of CarSim data versus η, such that V1 = ηI2. AIE/SSE with V2 = V2,true is more
accurate than AIE/SSE with V2 = 2V2,true, which shows the effect of V2 on accuracy.
The accuracy of AIE/ASE is close to the best accuracy of AIE/NSE. The SNR is 40 dB,
and kf = 1500 steps.

8. Conclusions

This paper presented the adaptive input and state estima-
tion algorithm AIE/ASE for causal numerical differentiation.
AIE/ASE uses the Kalman-filter residual to adapt the input-
estimation subsystem and an empirical estimate of the esti-
mation error to adapt the input-estimation and sensor-noise
covariances. For dual-tone harmonic signals with various lev-
els of sensor noise, the accuracy of AIE/ASE was compared to
several conventional numerical differentiationmethods. Finally,
AIE/ASE was applied to simulated vehicle position data gener-
ated by CarSim.

Future workwill focus on the following extensions. Themin-
imisation of (54) was performed by using a gridding procedure;
more efficient optimisation is possible.

Furthermore, it is of interest to compare the accuracy of
AIE/ASE to the adaptive sliding mode differentiator in Alwi
and Edwards (2013). Finally, in practice, the spectrum of
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the measured signal and sensor noise may change abruptly.
In these cases, it may be advantageous to replace the RLS
update (41), (42) with RLS that uses variable-rate forgetting in
Bruce et al. (2020) and Mohseni and Bernstein (2022).
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