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This paper develops a discrete-time, linear time-varying (DTLTV) framework for analyzing the retrospective
performance variable used in retrospective cost adaptive control (RCAC). This is done by first developing
expressions for transforming between DTLTV state-space models and DTLTV input-output models. These
expressions are then used to derive an additive decomposition of the retrospective performance variable in
terms of a predicted-performance term and a model-matching term that measures the closeness between

the closed-loop dynamics and the target model. Numerical examples are given to illustrate the modeling
information required by RCAC and provide insight into how RCAC achieves closed-loop performance and

model matching.

1. Introduction

Unlike optimal and robust feedback controllers, the gains of an
adaptive controller change over time based on the response of the
actual plant to its initial conditions, exogenous inputs, and control
inputs [1-3]. Hence, for an adaptive control algorithm, a linear, time-
varying (LTV) framework is needed for analyzing closed-loop perfor-
mance.

The present paper focuses on the analysis of retrospective cost
adaptive control (RCAC) [4], which is a discrete-time, direct adap-
tive control algorithm for stabilization, command following, and dis-
turbance rejection. RCAC is based on the concept of retrospectively
optimized control, where past controller coefficients used to generate
past control inputs are reoptimized in the sense that, if the reoptimized
coefficients had been used over a previous window of operation, then
the performance would have been better. RCAC has been used in
various applications including flight control [5], noise control [6], and
quadrotor control [7].

The modeling information required by RCAC is embedded in a filter
that serves as the target model for a specific closed-loop transfer func-
tion. As shown in [4], the essential modeling information for single-
input, single-output (SISO) systems includes the sign of the leading
numerator coefficient, the relative degree, and all nonminimum-phase
(NMP) zeros. Numerical examples in [4] and the current paper show
that RCAC cancels unmodeled NMP zeros leading to unstable pole-zero
cancellations in the closed-loop transfer function.

More recently, an indirect adaptive control extension of RCAC that
incorporates online system identification to update the target model
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was developed in [8]. It is shown in [8] that the retrospective perfor-
mance variable, which is the variable used to define the cost function,
can be decomposed as the sum of a predicted-performance term and a
model-matching term that measures the closeness between the closed-
loop dynamics and the target model. The development in [8], which
is based on input-output models, incorrectly accounts for the LTV
controller dynamics that arise from the controller update, and considers
only linear, time-invariant (LTI) plants and target models. The present
paper revisits the retrospective-performance-variable decomposition by
focusing on discrete-time LTV (DTLTV) models in state-space and
input-output representations as well as transformations between them.

The underlying motivation for the present paper arises from the fact
that RCAC is based on DTLTV input—-output models; analysis of RCAC
thus depends on interconnections of these models. Unlike LTI input—
output models, simple examples show that naive multiplication of LTV
input-output models does not yield a correct LTV input-output model
of the cascaded dynamics. To overcome this impediment, transforma-
tions between LTV input-output models and LTV state-space models
are required. The LTV input-output models are transformed to LTV
state—space models, which are interconnected, and the resulting expres-
sions are transformed back to LTV input-output models. By taking this
approach, the present paper correctly accounts for the interconnection
of DTLTV input-output models.

LTV state-space models are considered for continuous-time systems
in [9-14], and for discrete-time systems in [9,15-21]. Analogously,
LTV input-output models are considered for continuous-time systems
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in [9-11], and for discrete-time systems in [9,15-19]. The problem
of transforming between DTLTV state-space and DTLTV input—output
models is considered in [18]. The present paper derives simple and
directly implementable algebraic expressions for transforming DTLTV
state-space models to DTLTV input-output models and vice versa.

The main contribution of the present paper is a derivation of the
retrospective-performance-variable decomposition that accounts for the
LTV dynamics of the plant, controller, and target model as well as
the effect of the initial conditions of the plant. Numerical examples
are given to illustrate the use of retrospective-performance-variable
decomposition in understanding the modeling information required
by RCAC and in providing insight into how RCAC achieves closed-
loop performance and model matching. A related development is given
in [22] within the context of adaptive input estimation. The develop-
ment in the present paper goes beyond [22] by providing complete
proofs for transforming between DTLTV state-space models and DTLTV
input-output models.

Section 2 presents definitions used in the paper. Section 3 sum-
marizes the RCAC algorithm. The retrospective-performance-variable
decomposition is derived in Section 4 and analyzed in Section 5.
Section 6 presents illustrative numerical examples, and Section 7 con-
cludes the paper. Expressions for the transformations between DTLTV
state-space models and DTLTV input-output models are derived in
Appendix A.

Notation. R” ™ denotes the set of pxm matrices with real coefficients,
z denotes a complex number, R(z)?*" denotes the set of all transfer
functions, that is, the set of p x m matrices each of whose entries is
a rational function of z with real coefficients, and R(Z)g;(o'g denotes
the proper transfer functions in R(z)”*". q~!' denotes the time-domain,
backward shift operator. (xk)z"zo denotes the sequence (x,, x|, ...).

2. Discrete-time, linear time-varying models

This section presents definitions relating to discrete-time, linear
time-varying (DTLTV) models that will be used in later sections.

Definition 2.1.  Let y;, _,.¥io—nt1>---»Vio—1 € RP, and consider the
DTLTV input-output model given by, for all k > 0,

Yiok T DipYios—1 + -+ + DyiYio—n = Noglty + -+ + Ny glty_p» (€Y
where u;, € R” is the input, y;,, € R” is the output, D;,,....D,; €
RPXP, Nojo>--»Nyy € RPXmand n is the order of (1). Define

D@ H2I,+Dq ++D,q", 2
N@ )2 Noy + Npq '+ + Ny 3

Then, G, £ D;l N, is the time-domain transfer function of (1) at step k.
In terms of Gy, (1) is written as

Yok = Gr(@ My, @
and, in terms of N, and D,, (1) is written as
D@ yio = Ni(q . (5)

Note that the input-output model (1) and its backward-shift repre-
sentation (5) are time-domain models, which include the effect of initial
conditions, as discussed in [23].

The following definition is based on the definition of the observabil-
ity matrix for DTLTV systems given in [24].

Definition 2.2. Consider the DTLTV state-space model
Xp1 = Ay + By, (6)

Yssk = Cexp + Epuy, @
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where, for all k¥ > 0, x, € R" is the state, u, € R™ is the input, and
Yss.k € R? is the output. Define the observability matrix at step k as
Ck
Cier 1Pk
A
O = Cpa¥rin | (8)

Crorn1¥ian—2,k
and the controllability matrix at step k as

Ce® [Bioy Wiciao1Bica ProiiaBis ¥t hont1Bion] » (9
where
AAy Ay, P>,
v, 21 A, i=], a0
0,505 i<j.

Define the sequences A 2 (A,A,,...), B £ (B|,B,,...), and C £
(Cy,C,,...). If, for all k > 0, rank O, = n, then (A, C) is completely
observable. If, for all k > n, rank C, = n, then (A, B) is completely
controllable. Finally, if (A, B) is completely controllable and (A, C) is
completely observable, then (A, B, C) is minimal.

Definition 2.3. (1) is a DTLTV input-output model corresponding to the
DTLTV state-space model (6), (7) if, for all x, € R” and all (), CR™,
there exist i, 0, Yio,15 -+ » Vion—1 € RP such that (yio )2, = Wesi)pe,-

Note that, in Definition 2.3, the DTLTV input-output model (1) is
valid only for k > n.

Definition 2.4. (6), (7) is a DTLTV state-space realization of the DTLTV
input-output model (1) if, for all y;, . ¥io—pt1>+++5Yio—1 € R? and all
(uk)z":0 c R™, there exists x, € RP" such that (yio,k)zc:() = (yss,k)z":().

Note that, in Definition 2.4, the dimension of the state x, of the
DTLTV state-space model (6), (7) is pn.

Definition 2.5. The time-domain transfer function corresponding to the
DTLTV state-space model (6), (7) at step k is the time-domain transfer
function of the DTLTV input-output model (1) corresponding to (6),
(7) at step k. Furthermore, the Markov parameters of the time-domain
transfer function corresponding to (6), (7) at step k are defined as

E,. i=0,
C.B,_, k>i=1,

H,‘.k A kPk—1 . (11)
C¥rtp—iv1 Broin k2022,
Opsms i>k.

The following definition is given in [8]. This definition concerns
DTLTV input-output models whose input u,, is a function of a parameter
vector # and such that, at step k, all of the inputs u,...,u,_, are
evaluated at the same parameter vector 6,; in other words, the value
of 9, is fixed at the current time step. Because of this dependence, the
output y, depends on 6.

Definition 2.6. Let D;,,....D,, € R”?, let Ny,,...,N,, € R, let
Y, ....Y_ €RP, et O _, R, and, for all k > —n, let y; : R" - R™.
Then, the fixed-input-argument (FIA) sequence (y;(6)));-, is given by the
FIA filter

Vi@ +D1 1 Y1 (Gr—1) 4Dy g Vi O_p) = No sty (01)+-+-+ Ny tt_n(6)),
12)
where, for all k € [-n,—1],y,(0,) £ Y.

At each step k, the arguments of u;_,,...,u; in (12) are fixed at
the current value ;. In contrast, the left hand side defines the current
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output y,(6,), which depends on the past output values y,_,(6;_,). ...,
Yk-1(0x_1). In terms of q~!, (12) can be written as either

Di(q™ )y, (0) = Ni(@ Hu (6p) @3)
or
yk(ﬁk) = Gk(q")uk(eg), (14)

where G, £ D;lN . and where the notation k denotes the fact that, at

each step k, all of the arguments of u,, ..., u,_, in (12) are set to ;.

3. Retrospective cost adaptive control for linear time-varying sys-
tems

This section explains the retrospective cost adaptive control algo-
rithm which can be used for stabilization, command following, and
disturbance rejection.

Consider the DTLTV state-space model

Xpp1 = ApXg + By + By, pwy, (15)
Vi =Cexp + o, (16)

where k > 0, x, € R'x is the state, u,, € R'v is the control input, w, € Rlw
is the disturbance, y, € R is the measured output, and v, € R'» is the
sensor noise. Define the command-following error

Z B = Vi a7

where r, € R'v is the command signal. The objective of the adaptive
control problem is to minimize the magnitude of z, in the presence of
wy and vy.

We define the strictly proper DTLTV controller using the input—
output model

fe e
U = Z Py + Z Qi kZk—i> (18)
i=1 i=1
where k > 0, n, is the order of the controller, and Q. ...,0, « €
Ry and Py Pk € R%*u are the numerator and denominator
controller coefficient matrices, respectively. For convenience, a “cold”
startup is assumed, where Q, . ... ,Q,,C_O, P ... nes - s Ul and
Z_yseee 2o ATE defined to be zero, and thus u; = 0.
Note that (18) can be written as

s PnC,O’ u

we = @i s (19)

where

T
Uy

oo 2| | @1, e RV (20)
*k—1
zk—rlC

is the controller regressor,

Oop 2vec|Py = Pi Ok 0, | e R" (21)

is the controller coefficient vector, I, £ n,, + 1), and “vec” is the

column-stacking operator. In terms of q~!, the controller (18) can be
expressed as

up = Ger(q )z (22)
where

Gex 2 DNy (23)
Dex@ 2T, = Paq = =P, g7, (24
Nc,k(q"l) 2 Ql,kq"l + ot an,kq_n°~ (25)
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To update (21), define the filtered signals
up g 2 G (g™ (26)
bk £ Gf,k(q_l)qﬁk, 27)

where G is an [, x I, filter of order n; > 1.
Next, define the retrospective performance variable

Zep ik (0) & 24 — g g + by 0. (28)

where § € R is the optimization variable. The rationale underlying
the definition given in (28) is to replace u, with ¢, 6%, where 6* is
the retrospectively optimized controller coefficient vector obtained by
optimization. The updated controller thus has the coefficients 6, =
6*. Note that u;, depends on u; and thus on the current controller
coefficient vector 6.

The retrospective performance variable er,k(é) is used to determine
the updated controller coefficient vector 6, ,,; by minimizing a function
of er,k(é) namely the retrospective cost function defined as

k

Te@) 2 Y 2 (0) 2,,0) + (0 = 0,0 P (6 - 0., (29)
i=0

where P, € R’ X5 is positive definite. Then, for all k > 0, the unique

global minimizer 6_,,, of J, is given by the recursive least squares

(RLS) solution [25]

Poysr = Peg = Poxd (I + 1 i Perbf )™ bt i Pee 30)
Ocsr =0 + Pc,k+l¢;"r,kzrp¢k(ec¢k)' 1)

Using the updated controller coefficient vector given by (31), the
requested control at step k + 1 is obtained by replacing k by k + 1 in
(19). Note that P, is a tuning parameter. As discussed in [4,8], for
the case of linear, time-invariant single-input single-output plants, G; is
constructed based on the relative degree, leading numerator coefficient,
and nonminimum-phase (NMP) zeros of the plant.

Note that, since z,,, is used to determine the updated controller

coefficient vector 6, by minimizing J,, which depends on z,,, the
optimal value of z,, is given by
ZepkOc pr1) = 2 = g g + Pp b ey (32)

which shows that the updated controller coefficient vector 6., is
“applied” retrospectively with the filtered controller regressor ¢y .
Furthermore, note that, in (32), G;, is used to obtain ¢, from ¢,
by means of (27) but does not include past changes in the controller
coefficient vector, as indicated by the product ¢y 6, ;. In effect, 6,
is fixed over [k — ng, k].

4. Retrospective-performance-variable decomposition

This section shows that the retrospective performance variable can
be decomposed into the sum of a predicted-performance term and a
model-matching term.

Define the virtual external input perturbation

U (0) 2 uy — 0. (33)
Let u; ; (6, x+1) be given by the FIA filter

g 1 Oc ps1) 2 Gra (@™ (O, 17)- (€2

Note that u; (6, 44;) ignores the change in the argument 6., of u;
over the interval [k — n¢, k] in accordance with retrospective optimiza-
tion. Using (34), it follows that (32) can be written as

2ok O i) 2 2 = U (O gr1)- (35)

Theorem 4.1 given below presents the retrospective-performance-
variable decomposition, which shows that z,, , is the sum of the closed-
loop performance and a measure of the extent to which the updated
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closed-loop transfer function from % (6 .,) to z;, matches G; . Since
G, provides a matching objective for the closed-loop transfer function
from (0. 1) to z, the filter Gy, is henceforth called the target model.
The statement of Theorem 4.1 depends on the matrices

o - 0 Pnc,k+nC
AL I 00 Byttt | @ RluncXiune (36)
©, PR : ’
[0 - T Py g
an,kJrnC
B P A an—l,k+nc—l c RluncXIy (37)
C,. . b
| Qi
Pnc,k-ﬁ—nC
- P ~
B 2| " 1,:c+nc HeRumext, & [Ol.,xh,(nc—w Il.,] , (38)
| Pl
A - [ BkC € RUHMIXUHne) (39)
L k+1 Ck (. k+1
Ek A Bk O1 xly NBk € RUxHhun)xUy+ly+l,) (40)
Opnext,  Beswr  Begrt
B[ O, | € ROXOH, 1)
pa [o, ay I, o,yx,u] . (42)

Theorem 4.1. Let z,, , be defined by (28) and let 6, denote the controller
coefficient vector at step k. Then, for all k > 0,

er,k(gc,kJrl) = pr,k(gc,kJrl) + me,k(ec,k+l)! 43)

where the predicted-performance term zy, (6. 1) and the model-matching
term z,, (0. 1) are defined by

Zopk Ocr) £ Gz i@ iy, 44
ZomkOc 1) 2 G (@D (O 1) — Gr i (q ! i (6, ) (45)
and u, & [w]  (ry - vk)T]T Furthermore, the time domain transfer func-

1%y

tions Gz, € R(q™");, » and G € R(q‘l) are defined by

prop pl’Op

[Gax  Gaxl & G (46)

where G, is the time-domain transfer function corresponding to the
state—space model

Ri1 = Ay + Biay, 47)
7 = Cy &y + Dily, (48)

T T N
at step k, where i, 2 [EZ ﬁk(BC’kH)T] , %0 & [x) O] > and A,

By, €\, and D are defined by (39)—(42).

Proof. Note that (20) and (21) imply that

PO k1 = Z Tkt 1 Uk 1+ZQ1k+IZk i (49)

i=

Substituting § = 6, ., and (49) into (33) yields

u = U Ocprp) + Z i1 Ug—i Z O k1 Zki- (50)

i=1 i=1
Using (24) and (25), it follows from (50) that
e = WO ps1) + g — Dejepr (@ it + Ne gy (@7 Dz,
which, using (23), can be rewritten as

D;/IC.;.[(q_l)Ek(gc,kH) + G (@ )z (51
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Note that (24), (25), and Proposition A.2 imply that a state-space
realization of (51) is given by

Xe g1 = Acir1Xek + Be 12 + Ec,k+1ﬁk(‘9c,k+l)s (52)
ue = Cexe + 0 (O g1)s (53)
where A, B, EC,,(, and C, are defined by (36)-(38), and x., £
Oluncxl .
Next, substituting (16) into (17) yields
z) =—=Cyxp — v +ry
= —Cyx + [0 Ily] uy. (CD)]
Furthermore, substituting (53) into (15) yields
Xy = ApXg + BiCoxo o + Bl (0 jeyr) + By

= Apxp + B Coxoy + [Buy O U + Bl (O 41)s (55)

and substituting (54) into (52) yields

Xegrt = ~Bepp1 Cexp + Acpp1Xe e + Ec,k+1ﬁk(‘9c,k+1) = Be 41Uk + Begy1 i
=—B 1 1CiXp + Ac g1 Xep t+ [0 Bc,k+1] Uy + B g U (O ey )
(56)
T

Define %, £ xz ka . Then, (47) and (48) follow from (54), (55),

and (56). Since G,; is the time-domain transfer function correspond-

ing to the state-space model (47), (48) at step k, it follows from (46)

that

2k = Gy (@ + Gy (@ (0 gi)- (57)
Finally, substituting (57) into (35) yields (43). [

Note that G, is obtained from (47), (48) in accordance with
Definition 2.1 and Proposition A.1. In order to apply Proposition A.1,
(47), (48) must be transformed to a completely observable state-space
model. The time-varying eigensystem realization algorithm explained
in Section 4 of [26] provides a method for reducing a given DTLTV
state-space model to a minimal DTLTV state-space model.

5. Analysis of the retrospective-performance-variable decomposi-
tion

In this section, we analyze the retrospective-performance-variable
decomposition given by Theorem 4.1.
Using (43) in (29) yields
k

Jk(ec.k+l) = Z ( pr,i(ec,kﬂ)szp,i(ac,kJrl) + me,i(ec,k+l)szm,i(gc,kJrl)
i=0

+ 2pr.i(ec,IH-I)szm,i(ec,k+l) )
+ (ec,k-H - 0C,0)TP(;1(0C,k+1 - GC,O)' (58)

Note that, in (58), the first two terms in the sum are nonnegative,
whereas the third term can have an arbitrary sign. This suggests that
RLS can minimize J; (6. ,,;) by making the third term negative while
the nonnegative terms remain large. In the case where P, is large, using
RLS to minimize (58) yields, for k > k, € R,

er,k(ec,kJrl) ~ 0’ (59)
which, using (43), implies that
Zopk Oc ks 1) ® —Znm i Oc 41)- (60)

Note that (60) implies that z,,, and z,, , may be large in magnitude
with opposite signs.

Next, we consider the initial conditions associated with G, and
G ;- Since G, is the time-domain transfer function corresponding to
(47), (48) at step k, it follows from (46) that

2 = Gyl = G (7 ity + G (@I (O 1) (61)
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%1078 ()

T T T
Zrpk — (pr,k' + meJc)‘

0 2 40 60 8 100 120 140 160 180 200
k (step)

Fig. 1. Example 6.1 with G; given by (65). (a) After an initial transient of 50 steps, the output y follows the command signal r. (b) The estimator coefficient 6, converges after
about 50 steps. (¢) The virtual external input perturbation u converges to zero after about 50 steps. (d) For all k > 50, Zypx ~ 0. (e) For all k > 50, Zypk X Zpmi 0. (f) For all k >0,

1Zepx = Zppic + Zmma)l < 2% 10713, which confirms (43).

Tp.k

Furthermore, (46), (47), and (48) imply that G,;, and G, are the
time-domain transfer functions corresponding to the state-space mod-
els (A, By, Cr. D;) and (Ak,Bik,Ck,OlyX,") at step k, respectively,

Bk 07 B
B, & [0 w, Bxxy , Dz % [Olyxlw I,y], By & 5 k|
e Xy k1 c k+1

(62)

Note from Theorem 4.1 that % is the initial condition associated with
the state space model (A, By, C,, D). Now, let the initial condition
corresponding to the state-space model (A, B, C, D;) be denoted by
x50, and let the initial condition corresponding to the state—space model
(Ay. By . 0,1,) be denoted by x;. Since the transfer functions G,
and G, have the same state matrix A, in their corresponding state-
space models and since z, is additively decomposed into two parts
based on the partitioning of the input vector &, into u, and (6, ), it
follows that %, = x;o+x;. This implies that, in order to implement (44)
and (45), %, must be additively decomposed into two values, namely,
xz0 and xzg. Since x; and x;, are not uniquely determined, it follows
that the transient responses of z,, and z,,,, which depend on the values
of x; and x;, are not uniquely determined.

6. Numerical examples

This section presents numerical examples to illustrate the
retrospective-performance-variable decomposition. These examples
demonstrate how the decomposition can be used for the analysis of
RCAC.

Example 6.1. This example illustrates how the performance of RCAC
is affected by the choice of G;. In particular, this example shows that
the retrospective-performance-variable decomposition provides insight
into understanding why nonminimum phase (NMP) zeros of the plant
must be included in the filter G;.

Consider the state-space model (15), (16), where, for all k£ > 0,

1>

A=A

0 1 a |0 A
B,=B#2 —Cc2 (1.
[—1.3 —0.67]’ k H Ge=C2[-11 1],

(63)

w = 0, v, is Gaussian white noise with mean zero and variance 0.01,
T . .

and x, = [-2 -2] . Note that the transfer function corresponding to

the state-space model in (63) is given by

_ q—l _ l.lq_2
1+0.67q7! +1.3q%

which is unstable and has a NMP zero at 1.1.
First, RCAC is applied to command following with r, = sin(0.2k),
n. =15, P,y = 1015, and, for all k > 0,

GyqH 2 (64)

G g =-q' - 11q7% (65)

Note that G; given by (65) contains the NMP zero of G,. The conver-
gence to zero of the error between the output y and the command signal
r, the convergence of the estimator coefficients 6,, and the convergence
of the virtual external input perturbation # are shown in (a), (b), and
(c), respectively, of Fig. 1. Furthermore, (d) and (e) of Fig. 1 show
that, after an initial transient, (59) and (60) are satisfied. Finally, (f) of
Fig. 1 shows that the difference between z,, and z,, + z,,, is negligible,
which confirms (43). In order to observe the asymptotic behavior of
the time-domain transfer functions G, G, and G after 6, converges,
the frequency-response plots of Gy, G000, @nd G5y are shown
in (a), (c), (e), and (f) of Fig. 2, where [G,,000 G- _p200] = Gaz005
and the extent to which the frequency response of G ;,,, matches the
frequency response of Gy, is shown in (b) and (d) of Fig. 2.
Next, the simulation is repeated with, for all k > 0,

Gr,k(q_]) =-q"! (66)

and with the remaining parameters unchanged. Since G; given by (66)
does not possess the NMP zero of Gy, which is unmoved by feedback,
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0 —Ge200
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(b)

&h o o
T
|

Q

21,200
---Grooo |

Magnitude (dB)
>

21,200
---Gt200

o & o o

Magnitude (dB)

o

0 /4 w2 3n/4 P
Frequency (rad/step)

Fig. 2. Example 6.1 with G; given by (65). (a), (c) The frequency-response plots of G .. The magnitude of G,y peaks at the frequency 0.2 rad/step, which is the frequency of
the command signal r. (b), (d) Comparison of the frequency response of G, with the frequency response of G;. The magnitude and phase plots match approximately. (e) The

211,21

magnitude of G, ,, is approximately zero at all frequencies. (f) The magnitude of G, ,y, at the frequency 0.2 rad/step is approximately zero. These observations show that, for

large k, z,,, ~ 0 and z,,, ~ 0.

and since the closed-loop transfer function G; tries to match the filter
G, the converged controller has an unstable pole at 1.1, as shown in
Fig. 5. This leads to unstable pole-zero cancellation, which makes the
signals y, 1, Zyp, and zp, diverge, as shown in Fig. 3. The frequency-
response plots of G509, G000, and G, 50y are shown in (a), (c), (e),
and (f) of Fig. 4, and the extent to which the frequency response of
G200 matches that of Gy, is shown in (b) and (d) of Fig. 4. The
two choices of G; in this example and their corresponding effect on the
performance confirms the RCAC modeling requirement that G; contain
the NMP zeros of G4. o

Example 6.2. This example illustrates how the retrospective-
performance-variable decomposition is affected by the initial condi-
tions associated with G, and G;,. In particular, we show that the
initial conditions associated with G,;, and G, affect only the tran-
sient response of the predicted-performance term and model-matching
term and not the steady-state response.

Consider the state-space model given by (15), (16), where, for all
k>0,

A, =05-02sin(0.01k), B,=B21, C,=C=21, 67)

w = v =0, and x; = 4. Let the command signal be r, = sin(0.2k). Let
ne=17,n; =2, P,y =101, and, for all k > 0, let Gy, (q"}) = -q2—q7L.

First, the decomposition is performed with x;, = 3.6 and x;, = 0.4,
where x;, and x;, are initial conditions corresponding to the state—
space models (A, B; ;.. C;, Dy) and (A, B, Cy. 0;,5,), respectively. The
convergence to zero of the error between the output y and the com-
mand signal r, the convergence of the estimator coefficients 6., and the
convergence of the virtual external input perturbation & are shown in
(a), (b), and (c), respectively, of Fig. 6. Plots (d) and (e) of Fig. 6 show
that, after an initial transient, (59) and (60) are satisfied. Plot (f) of
Fig. 6 shows that the difference between z,, and z,, +z,, is negligible,
which confirms (43). The frequency-response plots of G40, G200,
and G,, 5, are shown in (a), (c), (e), and (f) of Fig. 7, and the extent to
which the frequency response of G ;,,, matches that of G; 5, is shown
in (b) and (d) of Fig. 7. Note that, since the plant is time-varying,

the time-domain transfer functions G, G, and G do not converge
after the estimator coefficient 6, converges. Next, the decomposition is
repeated with x;, = 8 and x;, = —4. The change in initial conditions
changes the transient responses of z,, and z,,,, as shown in (e) of Fig. 8.
However, the asymptotic behavior of z;, and z,, is the same as in the
previous case. ©

Example 6.3. This example illustrates the retrospective-performance-
variable decomposition for a multi-input multi-output system. It also
shows, through retrospective-performance-variable decomposition, how
RCAC adapts when there are sudden changes in the nature of the
command signal.

Consider the state-space model (15), (16), where, for all k£ > 0,

[ 0.8777  0.0847  0.0777  0.0338
_ . a|—07630 0.1363 04241  0.2262
A=AZ 01436 00423 08420 0.1333 [ ©8)
1.0741 0.2827 —1.2433 0.4077
[0.0112 0.0034
. a|0.0847  0.0423
Be=B=100034 00191 (69)
0.0423  0.1666
0.01
_ . a|001 At 00 0
Buk=BuZlgor| G=€= [o 0 1 0] ’ (70)
0.01
wy is standard Gaussian white noise, v, is Gaussian white noise with
mean zero and variance 10747, and xo = [I -1 0 O.S]T. Let the
command signal be

12", k<300,

71
1 =37, &> 300. 7y

-
Let n, =2,n; = 1, Py = I}, and, for all k > 0, let G, (q™!) = -CBq~".
The convergence to zero of the error between the output y and the
command signal r, the convergence of the estimator coefficients 6., and
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Fig. 3. Example 6.1 with G, given by (66). The estimator coefficients converge, but y, & and z,, diverge. Since z,
minimal state-space model, z,, does not diverge. Although z,,, is also computed using an input-output model corresponding to a minimal state-space model, since u diverges,

Znm diverges.
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Fig. 4. Example 6.1 with G; given by (66). (a), (c) The frequency-response plots of G_,y. The magnitude of G, peaks at the frequency 0.2 rad/step, which is the frequency of
the command signal r. (b), (d) Comparison of the frequency response of G,y with the frequency response of G;. The magnitude and phase plots match approximately. (e) The
magnitude of G, is approximately zero at all frequencies. (f) The magnitude of G,, \, at the frequency 0.2 rad/step is approximately zero. However, these observations do not
ensure that RCAC performs as expected. Due to a hidden instability, the output y diverges, as shown in Fig. 3.
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Fig. 5. Example 6.1 with G; given by (66). (a) Pole-zero plots of G, and G- G,y has a pole at the NMP zero of G,. This leads to an unstable pole-zero cancellation in the
closed-loop system. (b) shows that the spectral radius of G, converges to the NMP zero of G,.
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Fig. 6. Example 6.2 with x;, = 3.6 and x;, = 0.4. (a) After an initial transient of 75 steps, the output y follows the command signal r. (b) The estimator coefficient 6, converges
after about 75 steps. (c) The virtual external input perturbation u converges to zero after about 75 steps. (d) For all k > 75, z,,, ~ 0. (e) For all k > 75, z,,, ~ Zy, = 0. (f) For all

k20, |2, = (Zppx + Zmma)| < 1073, which confirms (43).

the convergence of the virtual external input perturbation @ are shown
in (a), (b), and (c), respectively, of Fig. 9. Plots (d) and (e) of Fig. 9
show that, after an initial transient, (59) and (60) are satisfied. Plot
(f) of Fig. 9 shows that the difference between z,, and z,, + zyy, is
negligible, which confirms (43). Note that, as shown in Fig. 9, when
the nature of the input changes, RCAC re-adapts and subsequently
converges. <

7. Conclusions

This paper developed transformations between discrete-time linear
time-varying (DTLTV) state-space models and DTLTV input-output
models. These transformations were used to derive and demonstrate
the retrospective-performance-variable decomposition in retrospective
cost adaptive control (RCAC). This decomposition shows how RCAC
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Fig. 7. Example 6.2 with x;, = 3.6 and x;, = 0.4. (a), (c) The frequency-response plots of G, ,y. The magnitude of G_,,, peaks at the frequency 0.2 rad/step, which is the frequency
of the command signal r. (b), (d) Comparison of the frequency response of G, with the frequency response of G;. The magnitude and phase plots match approximately. (e)
The magnitude of G, . is approximately zero at all frequencies. (f) The magnitude of G, 5, at the frequency 0.2 rad/step is approximately zero.
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Fig. 8. Example 6.2 with x;, = 8 and xz, = —4. In (e), the transient responses of z,, and z,,, are different from the case where x;, = 3.6 and x;, = 0.4 (Fig. 6). However, the

asymptotic behavior of z,, and z,,, are the same as in the previous case. All other plots are the same as in Fig. 6.
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Fig. 9. Example 6.3. (a) The components y, and y, of the output y follow the components r; and r, of the command signal r. (b) The estimator coefficient 6, converges. (c) The
components #; and u, of the virtual external input perturbation u converge to zero. (d) For all k > 400, z,,,, ~ 0 and z,,,, ~ 0, where z.,, =[z,,14 Zyp.]"- (€) For all k > 400,
Zopik R Zmmx 0 and zoo %z, 20, where z,, = (2,1, zpplk]T and z,,; = [Zymik  Zmmaxl'- (f) For all k >0, 1Zepk = Gppe + Zmmp)] < 10713, which confirms (43).

achieves closed-loop performance and matches the closed-loop dynam-
ics to the target model. These results and insights are a key step toward
analyzing the convergence and asymptotic stability of RCAC algorithm.
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Appendix A. Transformations between DTLTV state-space models
and DTLTV input-output models

This section constructs DTLTV state-space realizations of DTLTV
input-output models as well as DTLTV input-output models corre-
sponding to DTLTV state-space models. These constructions were used
in the decomposition of the retrospective performance variable in Sec-
tion 4. The following result provides an explicit expression for a DTLTV
input-output model corresponding to a DTLTV state-space model.

Proposition A.1. Consider the DTLTV state-space model (6), (7), and
assume that (A, C) is completely observable. Then, a DTLTV input—output
model corresponding to (6), (7) is given by (1), where, for all k € [0,n—1],

Yiok £ Vss 4o and, for all k > n,
Hoyo i=0,

N & (A1)

i
Hyo+ Y Dy H_ ;o 1<i<n,
=

D] 2 —C¥y 10O

k—n>

(Do (A.2)

and O} is a left inverse of O.

Proof. Post-multiplying (A.2) by O,_, yields, for all k > n,
0=[D,x Dy ) Oy + Cu¥ii jmn
=C WVt hen + D1aCr1 W o gon + -
+ D1k Crmpi1 Pronk—n + Dy Crmp- (A.3)
Next, it follows from (6), (7) that, for all k > n,
n=2

Vssk = Ce¥Pmt kmnXp—n + C Z et k-ntit1 Biontik—n+i
i=0

+ CyBy_1up_1 + Epuy.
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Hence, for all k > n,

Vss.k + Dl,kyss,k—l +t Dn—l,kyss,k—n+l + Dn,kyss,k—n
n=2

= Ce¥—1k-nXk-n T Ck Z ¥yt kntit1 Biontili—nyi
i=0

+ C By _up_1 + Epuy
+ Dl,k(ck—l Y2 k—nXk=n
n-3

+ Ci Z 2 k-ntitt Biontithimn+i + Co1 Biathi—n
i=0

+ Ek—luk—]) o+ Dy 4 (Crmnt P nhnX—n
+ Cront1 Bioptti—n + Eppyty—pi1)
+ Dy 1 (CpopXp—p + Eg_ptiy_p)- (A4)
Regrouping the terms in (A.4) and using (11) yields, for all k > n,
Yssk T DipYssh—1 + -+ Dyt g Vs k—nt1 + P Yss k-n
=(C 1 hon + D1k Cr1 ¥ apn + -
+ Dyt kCrmnt1 Pkmnk—n + D g Cpmp) X

n
+ | Hyp + Z D Hy i | Uk—n

Jj=1
n—1
+\ Hi—x + Z D Hy, 1 jj—j | Yk—nt1
j=1
+ o (Hy g+ Dy Hoyoy) ey + Ho gy (A.5)
Then, substituting (A.3) and (A.1) into (A.5) yields, for all k > n,
Vss,k + Dl,kyss,k—l +oeet Dn,kyss,k—n = NO,kuk +ot Nn,kuk—n' (A6)

Since, for all k € [0,n — 1], yjox = Vs it follows from (1) and (A.6)
that, for all k > n, y;,; =y O

The following result provides a DTLTV state-space realization of a
DTLTV input-output model.

Proposition A.2. A completely observable DTLTV state—space realization
of the DTLTV input—output model in (1) is given by (6), (7), where, for all
k>0,

0 0 _Dn,k+n
Ak A 1 0 _an{,k+n71 e anxpn, (A7)
o - I =D k41
Nn,k+n - Dn,k+n NO,k
Bk A Nn—l,k+n—1 - .Dn—l,k+n—1N0,k e anxm, (AS)
| Nikrt = D Nog
Ci & [0ppiury  1,] ERP",  Ei £ Ny € RO, (A.9)
a [, T T 17
Furthermore, for all k > 0, x;, = [xlsk Xk Xkl where, for all
ie[0,n—1],
n n
Xnoik 2 Z N prithh—jyi = Z Dj y4iYiok—j+i- (A.10)
j=itl j=itl
Proof. Rearranging terms in (1) yields
n n
Yiok = Z Njjue_j — Z D; i Viok—j + No U (A11)

j=1
Setting i = 0 in (A.10) yields

n
Xy = Z N;
Jj=1

J=1

n
jkUk—j — Z D; i iok—j»
j=1
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which, along with (A.11), implies that

Xnk = Yiox — Noxly- (A.12)
Next, setting i = n— 1 in (A.10) yields
X1k = Npgno1i—1 = Dy gn—1Yiok—1- (A.13)
Hence, it follows from (A.12) and (A.13) that
X g1 = Nogantte = DpgesnViok

= =Dy j1nWiox = Nosxthi) + Ny geyn = Dy geynNo Uk

= =Dy pinXnk + Nygin = DygeanNo U (A.14)

Furthermore, for all i € [0,n — 2], (A.10) and (A.12) imply that

n n
Xp—ik+l = 2 Nj vt Wh—jrivs = 2 Dj ketiv1Yiok—j+i+l

Jj=it+1 Jj=it+1
n n
= Z Nj,k+i+1uk—j+i+1 - Z Dj,k+i+1yin,k—j+i+1
Jj=i+2 Jj=i+2

+ Nigtrit1 U = Digt i1 Yiok
=Xpoim1k T Nigterirt 4 = Digt griv1 Viok
=Xp_ic1k ~ Divtarivt Giox — Noxtti)
+ (Nigtktiv1 = Divt it Noadug
=Xpoio1k ~ Divt it Xk ¥ (Nigtkriet = Dt gorivs Nog)t-
(A.15)
Hence, it follows from (A.7), (A.8), (A.14), and (A.15) that
Apx; + Bruy

_Dn,k+n X,k N Dn,k+n NO,k
X1k~ Dn—l,k+n—|xn,k + Nyt jen—1 — Dn—l,k+n—1N0,k

nk+n —

X1k — D1 g1 Xnk Nys1 = Dygg1 Nog

X1,k+1

_ | X2.k+1 = Xpp
. = Mk+1-

X k+1

Finally, (A.9) and (A.12) imply that

Cixy + Egup = X, 1 + Nogty = Yio k- (A.16)
Comparing (7) and (A.16) implies that, for all k > 0, yg, = Yiox-
Since, for all k > 0, rank O, = pn, it follows that (A, C) is completely

observable. [
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