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A B S T R A C T

This paper develops a discrete-time, linear time-varying (DTLTV) framework for analyzing the retrospective
performance variable used in retrospective cost adaptive control (RCAC). This is done by first developing
expressions for transforming between DTLTV state–space models and DTLTV input–output models. These
expressions are then used to derive an additive decomposition of the retrospective performance variable in
terms of a predicted-performance term and a model-matching term that measures the closeness between
the closed-loop dynamics and the target model. Numerical examples are given to illustrate the modeling
information required by RCAC and provide insight into how RCAC achieves closed-loop performance and
model matching.
1. Introduction

Unlike optimal and robust feedback controllers, the gains of an
adaptive controller change over time based on the response of the
actual plant to its initial conditions, exogenous inputs, and control
inputs [1–3]. Hence, for an adaptive control algorithm, a linear, time-
varying (LTV) framework is needed for analyzing closed-loop perfor-
mance.

The present paper focuses on the analysis of retrospective cost
adaptive control (RCAC) [4], which is a discrete-time, direct adap-
tive control algorithm for stabilization, command following, and dis-
turbance rejection. RCAC is based on the concept of retrospectively
optimized control, where past controller coefficients used to generate
past control inputs are reoptimized in the sense that, if the reoptimized
coefficients had been used over a previous window of operation, then
the performance would have been better. RCAC has been used in
various applications including flight control [5], noise control [6], and
quadrotor control [7].

The modeling information required by RCAC is embedded in a filter
that serves as the target model for a specific closed-loop transfer func-
tion. As shown in [4], the essential modeling information for single-
input, single-output (SISO) systems includes the sign of the leading
numerator coefficient, the relative degree, and all nonminimum-phase
(NMP) zeros. Numerical examples in [4] and the current paper show
that RCAC cancels unmodeled NMP zeros leading to unstable pole-zero
cancellations in the closed-loop transfer function.

More recently, an indirect adaptive control extension of RCAC that
incorporates online system identification to update the target model
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was developed in [8]. It is shown in [8] that the retrospective perfor-
mance variable, which is the variable used to define the cost function,
can be decomposed as the sum of a predicted-performance term and a
model-matching term that measures the closeness between the closed-
loop dynamics and the target model. The development in [8], which
is based on input–output models, incorrectly accounts for the LTV
controller dynamics that arise from the controller update, and considers
only linear, time-invariant (LTI) plants and target models. The present
paper revisits the retrospective-performance-variable decomposition by
focusing on discrete-time LTV (DTLTV) models in state–space and
input–output representations as well as transformations between them.

The underlying motivation for the present paper arises from the fact
that RCAC is based on DTLTV input–output models; analysis of RCAC
thus depends on interconnections of these models. Unlike LTI input–
output models, simple examples show that naive multiplication of LTV
input–output models does not yield a correct LTV input–output model
of the cascaded dynamics. To overcome this impediment, transforma-
tions between LTV input–output models and LTV state–space models
are required. The LTV input–output models are transformed to LTV
state–space models, which are interconnected, and the resulting expres-
sions are transformed back to LTV input–output models. By taking this
approach, the present paper correctly accounts for the interconnection
of DTLTV input–output models.

LTV state–space models are considered for continuous-time systems
in [9–14], and for discrete-time systems in [9,15–21]. Analogously,
LTV input–output models are considered for continuous-time systems
167-6911/© 2024 Elsevier B.V. All rights reserved.
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in [9–11], and for discrete-time systems in [9,15–19]. The problem
of transforming between DTLTV state–space and DTLTV input–output
models is considered in [18]. The present paper derives simple and
directly implementable algebraic expressions for transforming DTLTV
state–space models to DTLTV input–output models and vice versa.

The main contribution of the present paper is a derivation of the
retrospective-performance-variable decomposition that accounts for the
LTV dynamics of the plant, controller, and target model as well as
the effect of the initial conditions of the plant. Numerical examples
are given to illustrate the use of retrospective-performance-variable
decomposition in understanding the modeling information required
by RCAC and in providing insight into how RCAC achieves closed-
loop performance and model matching. A related development is given
in [22] within the context of adaptive input estimation. The develop-
ment in the present paper goes beyond [22] by providing complete
proofs for transforming between DTLTV state–space models and DTLTV
input–output models.

Section 2 presents definitions used in the paper. Section 3 sum-
marizes the RCAC algorithm. The retrospective-performance-variable
decomposition is derived in Section 4 and analyzed in Section 5.
Section 6 presents illustrative numerical examples, and Section 7 con-
cludes the paper. Expressions for the transformations between DTLTV
state–space models and DTLTV input–output models are derived in
Appendix A.

Notation. R𝑝×𝑚 denotes the set of 𝑝×𝑚 matrices with real coefficients,
denotes a complex number, R(z)𝑝×𝑚 denotes the set of all transfer

unctions, that is, the set of 𝑝 × 𝑚 matrices each of whose entries is
rational function of z with real coefficients, and R(z)𝑝×𝑚prop denotes

he proper transfer functions in R(z)𝑝×𝑚. 𝐪−1 denotes the time-domain,
ackward shift operator. (𝑥𝑘)∞𝑘=0 denotes the sequence (𝑥0, 𝑥1,…).

2. Discrete-time, linear time-varying models

This section presents definitions relating to discrete-time, linear
time-varying (DTLTV) models that will be used in later sections.

Definition 2.1. Let 𝑦io,−𝑛, 𝑦io,−𝑛+1,… , 𝑦io,−1 ∈ R𝑝, and consider the
DTLTV input–output model given by, for all 𝑘 ≥ 0,

io,𝑘 +𝐷1,𝑘𝑦io,𝑘−1 +⋯ +𝐷𝑛,𝑘𝑦io,𝑘−𝑛 = 𝑁0,𝑘𝑢𝑘 +⋯ +𝑁𝑛,𝑘𝑢𝑘−𝑛, (1)

here 𝑢𝑘 ∈ R𝑚 is the input, 𝑦io,𝑘 ∈ R𝑝 is the output, 𝐷1,𝑘,… , 𝐷𝑛,𝑘 ∈
𝑝×𝑝, 𝑁0,𝑘,… , 𝑁𝑛,𝑘 ∈ R𝑝×𝑚, and 𝑛 is the order of (1). Define

𝑘(𝐪−1) ≜ 𝐼𝑝 +𝐷1,𝑘𝐪−1 +⋯ +𝐷𝑛,𝑘𝐪−𝑛, (2)

𝑘(𝐪−1) ≜ 𝑁0,𝑘 +𝑁1,𝑘𝐪−1 +⋯ +𝑁𝑛,𝑘𝐪−𝑛. (3)

hen, 𝐺𝑘 ≜ 𝐷−1
𝑘 𝑁𝑘 is the time-domain transfer function of (1) at step 𝑘.

n terms of 𝐺𝑘, (1) is written as

io,𝑘 = 𝐺𝑘(𝐪−1)𝑢𝑘, (4)

nd, in terms of 𝑁𝑘 and 𝐷𝑘, (1) is written as

𝑘(𝐪−1)𝑦io,𝑘 = 𝑁𝑘(𝐪−1)𝑢𝑘. (5)

Note that the input–output model (1) and its backward-shift repre-
entation (5) are time-domain models, which include the effect of initial
onditions, as discussed in [23].

The following definition is based on the definition of the observabil-
ty matrix for DTLTV systems given in [24].

efinition 2.2. Consider the DTLTV state–space model

𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘, (6)

ss,𝑘 = 𝐶𝑘𝑥𝑘 + 𝐸𝑘𝑢𝑘, (7)
2
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here, for all 𝑘 ≥ 0, 𝑥𝑘 ∈ R𝑛 is the state, 𝑢𝑘 ∈ R𝑚 is the input, and
ss,𝑘 ∈ R𝑝 is the output. Define the observability matrix at step 𝑘 as

𝑘 ≜

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶𝑘

𝐶𝑘+1𝛹𝑘,𝑘

𝐶𝑘+2𝛹𝑘+1,𝑘

⋮
𝐶𝑘+𝑛−1𝛹𝑘+𝑛−2,𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (8)

nd the controllability matrix at step 𝑘 as

𝑘 ≜
[

𝐵𝑘−1 𝛹𝑘−1,𝑘−1𝐵𝑘−2 𝛹𝑘−1,𝑘−2𝐵𝑘−3 ⋯ 𝛹𝑘−1,𝑘−𝑛+1𝐵𝑘−𝑛
]

, (9)

here

𝑖,𝑗 ≜
⎧

⎪

⎨

⎪

⎩

𝐴𝑖𝐴𝑖−1 …𝐴𝑗 , 𝑖 > 𝑗,
𝐴𝑖, 𝑖 = 𝑗,
0𝑛×𝑛, 𝑖 < 𝑗.

(10)

efine the sequences  ≜ (𝐴1, 𝐴2,…),  ≜ (𝐵1, 𝐵2,…), and  ≜
𝐶1, 𝐶2,…). If, for all 𝑘 ≥ 0, rank 𝑘 = 𝑛, then (,) is completely
bservable. If, for all 𝑘 ≥ 𝑛, rank 𝑘 = 𝑛, then (,) is completely
ontrollable. Finally, if (,) is completely controllable and (,) is
ompletely observable, then (,,) is minimal.

efinition 2.3. (1) is a DTLTV input–output model corresponding to the
TLTV state–space model (6), (7) if, for all 𝑥0 ∈ R𝑛 and all (𝑢𝑘)∞𝑘=0 ⊂ R𝑚,

here exist 𝑦io,0, 𝑦io,1,… , 𝑦io,𝑛−1 ∈ R𝑝 such that (𝑦io,𝑘)∞𝑘=𝑛 = (𝑦ss,𝑘)∞𝑘=𝑛.

Note that, in Definition 2.3, the DTLTV input–output model (1) is
alid only for 𝑘 ≥ 𝑛.

efinition 2.4. (6), (7) is a DTLTV state–space realization of the DTLTV
nput–output model (1) if, for all 𝑦io,−𝑛, 𝑦io,−𝑛+1,… , 𝑦io,−1 ∈ R𝑝 and all
𝑢𝑘)∞𝑘=0 ⊂ R𝑚, there exists 𝑥0 ∈ R𝑝𝑛 such that (𝑦io,𝑘)∞𝑘=0 = (𝑦ss,𝑘)∞𝑘=0.

Note that, in Definition 2.4, the dimension of the state 𝑥𝑘 of the
TLTV state–space model (6), (7) is 𝑝𝑛.

efinition 2.5. The time-domain transfer function corresponding to the
TLTV state–space model (6), (7) at step 𝑘 is the time-domain transfer

unction of the DTLTV input–output model (1) corresponding to (6),
7) at step 𝑘. Furthermore, the Markov parameters of the time-domain
ransfer function corresponding to (6), (7) at step 𝑘 are defined as

𝑖,𝑘 ≜

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸𝑘, 𝑖 = 0,
𝐶𝑘𝐵𝑘−1, 𝑘 ≥ 𝑖 = 1,
𝐶𝑘𝛹𝑘−1,𝑘−𝑖+1𝐵𝑘−𝑖, 𝑘 ≥ 𝑖 ≥ 2,
0𝑝×𝑚, 𝑖 > 𝑘.

(11)

The following definition is given in [8]. This definition concerns
TLTV input–output models whose input 𝑢𝑘 is a function of a parameter
ector 𝜃 and such that, at step 𝑘, all of the inputs 𝑢𝑘,… , 𝑢𝑘−𝑛 are
valuated at the same parameter vector 𝜃𝑘; in other words, the value
f 𝜃𝑘 is fixed at the current time step. Because of this dependence, the
utput 𝑦𝑘 depends on 𝜃𝑘.

efinition 2.6. Let 𝐷1,𝑘,… , 𝐷𝑛,𝑘 ∈ R𝑝×𝑝, let 𝑁0,𝑘,… , 𝑁𝑛,𝑘 ∈ R𝑝×𝑚, let
−𝑛,… , 𝑌−1 ∈ R𝑝, let (𝜃𝑘)∞𝑘=−𝑛 ∈ R𝑟, and, for all 𝑘 ≥ −𝑛, let 𝑢𝑘 ∶R𝑟 → R𝑚.
hen, the fixed-input-argument (FIA) sequence (𝑦𝑘(𝜃𝑘))∞𝑘=0 is given by the
IA filter

𝑘(𝜃𝑘)+𝐷1,𝑘𝑦𝑘−1(𝜃𝑘−1)+⋯+𝐷𝑛,𝑘𝑦𝑘−𝑛(𝜃𝑘−𝑛)=𝑁0,𝑘𝑢𝑘(𝜃𝑘)+⋯+𝑁𝑛,𝑘𝑢𝑘−𝑛(𝜃𝑘),

(12)

here, for all 𝑘 ∈ [−𝑛,−1], 𝑦𝑘(𝜃𝑘) ≜ 𝑌𝑘.

At each step 𝑘, the arguments of 𝑢𝑘−𝑛,… , 𝑢𝑘 in (12) are fixed at

he current value 𝜃𝑘. In contrast, the left hand side defines the current
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output 𝑦𝑘(𝜃𝑘), which depends on the past output values 𝑦𝑘−𝑛(𝜃𝑘−𝑛),… ,
𝑘−1(𝜃𝑘−1). In terms of 𝐪−1, (12) can be written as either

𝑘(𝐪−1)𝑦𝑘(𝜃𝑘) = 𝑁𝑘(𝐪−1)𝑢𝑘(𝜃𝑘) (13)

or

𝑦𝑘(𝜃𝑘) = 𝐺𝑘(𝐪−1)𝑢𝑘(𝜃𝑘), (14)

here 𝐺𝑘 ≜ 𝐷−1
𝑘 𝑁𝑘 and where the notation 𝑘 denotes the fact that, at

ach step 𝑘, all of the arguments of 𝑢𝑘,… , 𝑢𝑘−𝑛 in (12) are set to 𝜃𝑘.

3. Retrospective cost adaptive control for linear time-varying sys-
tems

This section explains the retrospective cost adaptive control algo-
rithm which can be used for stabilization, command following, and
disturbance rejection.

Consider the DTLTV state–space model

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝐵𝑤,𝑘𝑤𝑘, (15)

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝑣𝑘, (16)

where 𝑘 ≥ 0, 𝑥𝑘 ∈ R𝑙𝑥 is the state, 𝑢𝑘 ∈ R𝑙𝑢 is the control input, 𝑤𝑘 ∈ R𝑙𝑤

is the disturbance, 𝑦𝑘 ∈ R𝑙𝑦 is the measured output, and 𝑣𝑘 ∈ R𝑙𝑦 is the
sensor noise. Define the command-following error

𝑧𝑘 ≜ 𝑟𝑘 − 𝑦𝑘, (17)

where 𝑟𝑘 ∈ R𝑙𝑦 is the command signal. The objective of the adaptive
control problem is to minimize the magnitude of 𝑧𝑘 in the presence of
𝑤𝑘 and 𝑣𝑘.

We define the strictly proper DTLTV controller using the input–
output model

𝑢𝑘 =
𝑛c
∑

𝑖=1
𝑃𝑖,𝑘𝑢𝑘−𝑖 +

𝑛c
∑

𝑖=1
𝑄𝑖,𝑘𝑧𝑘−𝑖, (18)

where 𝑘 ≥ 0, 𝑛c is the order of the controller, and 𝑄1,𝑘,… , 𝑄𝑛c ,𝑘 ∈
R𝑙𝑢×𝑙𝑦 and 𝑃1,𝑘,… , 𝑃𝑛c ,𝑘 ∈ R𝑙𝑢×𝑙𝑢 are the numerator and denominator
controller coefficient matrices, respectively. For convenience, a ‘‘cold’’
startup is assumed, where 𝑄1,0,… , 𝑄𝑛c ,0, 𝑃1,0,… , 𝑃𝑛c ,0, 𝑢−𝑛c ,… , 𝑢−1, and
𝑧−𝑛c ,… , 𝑧−1 are defined to be zero, and thus 𝑢0 = 0.

Note that (18) can be written as

𝑢𝑘 = 𝜙𝑘𝜃c,𝑘, (19)

where

𝜙𝑘 ≜

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢𝑘−1
⋮

𝑢𝑘−𝑛c
𝑧𝑘−1
⋮

𝑧𝑘−𝑛c

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝖳

⊗ 𝐼𝑙𝑢 ∈ R𝑙𝑢×𝑙𝜃c (20)

is the controller regressor,

𝜃c,𝑘 ≜ vec
[

𝑃1,𝑘 ⋯ 𝑃𝑛c ,𝑘 𝑄1,𝑘 ⋯ 𝑄𝑛c ,𝑘
]

∈ R𝑙𝜃c (21)

is the controller coefficient vector, 𝑙𝜃c ≜ 𝑛c𝑙𝑢(𝑙𝑢 + 𝑙𝑦), and ‘‘vec’’ is the
column-stacking operator. In terms of 𝐪−1, the controller (18) can be
expressed as

𝑢𝑘 = 𝐺c,𝑘(𝐪−1)𝑧𝑘, (22)

where

𝐺c,𝑘 ≜ 𝐷−1
c,𝑘𝑁c,𝑘, (23)

𝐷c,𝑘(𝐪−1) ≜ 𝐼𝑙𝑢 − 𝑃1,𝑘𝐪−1 −⋯ − 𝑃𝑛c ,𝑘𝐪
−𝑛c , (24)

𝑁c,𝑘(𝐪−1) ≜ 𝑄1,𝑘𝐪−1 +⋯ +𝑄𝑛c ,𝑘𝐪
−𝑛c . (25)
3
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To update (21), define the filtered signals

𝑢f ,𝑘 ≜ 𝐺f ,𝑘(𝐪−1)𝑢𝑘, (26)

𝜙f ,𝑘 ≜ 𝐺f ,𝑘(𝐪−1)𝜙𝑘, (27)

where 𝐺f ,𝑘 is an 𝑙𝑦 × 𝑙𝑢 filter of order 𝑛f ≥ 1.
Next, define the retrospective performance variable

𝑧rp,𝑘(𝜃̂) ≜ 𝑧𝑘 − 𝑢f ,𝑘 + 𝜙f ,𝑘𝜃̂, (28)

where 𝜃̂ ∈ R𝑙𝜃c is the optimization variable. The rationale underlying
the definition given in (28) is to replace 𝑢𝑘 with 𝜙𝑘𝜃∗, where 𝜃∗ is
the retrospectively optimized controller coefficient vector obtained by
optimization. The updated controller thus has the coefficients 𝜃c,𝑘+1 =
𝜃∗. Note that 𝑢f ,𝑘 depends on 𝑢𝑘 and thus on the current controller
coefficient vector 𝜃c,𝑘.

The retrospective performance variable 𝑧rp,𝑘(𝜃̂) is used to determine
the updated controller coefficient vector 𝜃c,𝑘+1 by minimizing a function
of 𝑧rp,𝑘(𝜃̂) namely the retrospective cost function defined as

𝐽𝑘(𝜃̂) ≜
𝑘
∑

𝑖=0
𝑧rp,𝑖(𝜃̂)𝖳𝑧rp,𝑖(𝜃̂) + (𝜃̂ − 𝜃c,0)𝖳𝑃−1

c,0 (𝜃̂ − 𝜃c,0), (29)

where 𝑃c,0 ∈ R𝑙𝜃c×𝑙𝜃c is positive definite. Then, for all 𝑘 ≥ 0, the unique
global minimizer 𝜃c,𝑘+1 of 𝐽𝑘 is given by the recursive least squares
(RLS) solution [25]

𝑃c,𝑘+1 = 𝑃c,𝑘 − 𝑃c,𝑘𝜙
𝖳
f ,𝑘(𝐼𝑙𝑦 + 𝜙f ,𝑘𝑃c,𝑘𝜙

𝖳
f ,𝑘)

−1𝜙f ,𝑘𝑃c,𝑘, (30)

𝜃c,𝑘+1 = 𝜃c,𝑘 + 𝑃c,𝑘+1𝜙
𝖳
f ,𝑘𝑧rp,𝑘(𝜃c,𝑘). (31)

Using the updated controller coefficient vector given by (31), the
requested control at step 𝑘 + 1 is obtained by replacing 𝑘 by 𝑘 + 1 in
(19). Note that 𝑃c,0 is a tuning parameter. As discussed in [4,8], for
the case of linear, time-invariant single-input single-output plants, 𝐺f is
constructed based on the relative degree, leading numerator coefficient,
and nonminimum-phase (NMP) zeros of the plant.

Note that, since 𝑧rp,𝑘 is used to determine the updated controller
coefficient vector 𝜃c,𝑘+1 by minimizing 𝐽𝑘, which depends on 𝑧rp,𝑘, the
optimal value of 𝑧rp,𝑘 is given by

𝑧rp,𝑘(𝜃c,𝑘+1) = 𝑧𝑘 − 𝑢f ,𝑘 + 𝜙f ,𝑘𝜃c,𝑘+1, (32)

hich shows that the updated controller coefficient vector 𝜃c,𝑘+1 is
‘applied’’ retrospectively with the filtered controller regressor 𝜙f ,𝑘.
urthermore, note that, in (32), 𝐺f ,𝑘 is used to obtain 𝜙f ,𝑘 from 𝜙𝑘
y means of (27) but does not include past changes in the controller
oefficient vector, as indicated by the product 𝜙f ,𝑘𝜃c,𝑘+1. In effect, 𝜃c,𝑘+1
s fixed over [𝑘 − 𝑛f , 𝑘].

. Retrospective-performance-variable decomposition

This section shows that the retrospective performance variable can
e decomposed into the sum of a predicted-performance term and a
odel-matching term.

Define the virtual external input perturbation

𝑘(𝜃̂) ≜ 𝑢𝑘 − 𝜙𝑘𝜃̂. (33)

et 𝑢̃f ,𝑘(𝜃c,𝑘+1) be given by the FIA filter

f ,𝑘(𝜃c,𝑘+1) ≜ 𝐺f ,𝑘(𝐪−1)𝑢̃𝑘(𝜃c,𝑘+1). (34)

Note that 𝑢̃f ,𝑘(𝜃c,𝑘+1) ignores the change in the argument 𝜃c,𝑘+1 of 𝑢̃𝑘
ver the interval [𝑘 − 𝑛f , 𝑘] in accordance with retrospective optimiza-
ion. Using (34), it follows that (32) can be written as

̂rp,𝑘(𝜃c,𝑘+1) ≜ 𝑧𝑘 − 𝑢̃f ,𝑘(𝜃c,𝑘+1). (35)

Theorem 4.1 given below presents the retrospective-performance-
ariable decomposition, which shows that 𝑧rp,𝑘 is the sum of the closed-
oop performance and a measure of the extent to which the updated
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closed-loop transfer function from 𝑢̃𝑘(𝜃c,𝑘+1) to 𝑧𝑘 matches 𝐺f ,𝑘. Since
𝐺f ,𝑘 provides a matching objective for the closed-loop transfer function
from 𝑢̃𝑘(𝜃c,𝑘+1) to 𝑧𝑘, the filter 𝐺f ,𝑘 is henceforth called the target model.
The statement of Theorem 4.1 depends on the matrices

𝐴c,𝑘 ≜

⎡

⎢

⎢

⎢

⎢

⎣

0 ⋯ 0 𝑃𝑛c ,𝑘+𝑛c
𝐼 ⋯ 0 𝑃𝑛c−1,𝑘+𝑛c−1
⋮ ⋯ ⋮ ⋮
0 ⋯ 𝐼 𝑃1,𝑘+1

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑙𝑢𝑛c×𝑙𝑢𝑛c , (36)

𝐵c,𝑘 ≜

⎡

⎢

⎢

⎢

⎢

⎣

𝑄𝑛c ,𝑘+𝑛c
𝑄𝑛c−1,𝑘+𝑛c−1

⋮
𝑄1,𝑘+1

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑙𝑢𝑛c×𝑙𝑦 , (37)

𝐵c,𝑘 ≜

⎡

⎢

⎢

⎢

⎢

⎣

𝑃𝑛c ,𝑘+𝑛c
𝑃𝑛c−1,𝑘+𝑛c−1

⋮
𝑃1,𝑘+1

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑙𝑢𝑛c×𝑙𝑢 , 𝐶c ≜
[

0𝑙𝑢×𝑙𝑢(𝑛c−1) 𝐼𝑙𝑢
]

, (38)

𝐴̂𝑘 ≜
[

𝐴𝑘 𝐵𝑘𝐶c
−𝐵c,𝑘+1𝐶𝑘 𝐴c,𝑘+1

]

∈ R(𝑙𝑥+𝑙𝑢𝑛c)×(𝑙𝑥+𝑙𝑢𝑛c), (39)

𝐵̂𝑘 ≜

[

𝐵𝑤,𝑘 0𝑙𝑥×𝑙𝑦 𝐵𝑘

0𝑙𝑢𝑛c×𝑙𝑤 𝐵c,𝑘+1 𝐵c,𝑘+1

]

∈ R(𝑙𝑥+𝑙𝑢𝑛c)×(𝑙𝑤+𝑙𝑦+𝑙𝑢), (40)

𝐶̂𝑘 ≜
[

−𝐶𝑘 0𝑙𝑦×𝑙𝑢𝑛c
]

∈ R𝑙𝑦×(𝑙𝑥+𝑙𝑢𝑛c), (41)

𝐷̂ ≜
[

0𝑙𝑦×𝑙𝑤 𝐼𝑙𝑦 0𝑙𝑦×𝑙𝑢
]

. (42)

heorem 4.1. Let 𝑧rp,𝑘 be defined by (28) and let 𝜃c,𝑘 denote the controller
oefficient vector at step 𝑘. Then, for all 𝑘 ≥ 0,

rp,𝑘(𝜃c,𝑘+1) = 𝑧pp,𝑘(𝜃c,𝑘+1) + 𝑧mm,𝑘(𝜃c,𝑘+1), (43)

here the predicted-performance term 𝑧pp,𝑘(𝜃c,𝑘+1) and the model-matching
erm 𝑧mm,𝑘(𝜃c,𝑘+1) are defined by

𝑧pp,𝑘(𝜃c,𝑘+1) ≜ 𝐺𝑧𝑢,𝑘(𝐪−1)𝑢𝑘, (44)

𝑧mm,𝑘(𝜃c,𝑘+1) ≜ 𝐺𝑧𝑢̃,𝑘(𝐪−1)𝑢̃𝑘(𝜃c,𝑘+1) − 𝐺f ,𝑘(𝐪−1)𝑢̃𝑘(𝜃c,𝑘+1), (45)

and 𝑢𝑘 ≜
[

𝑤𝖳
𝑘 (𝑟𝑘 − 𝑣𝑘)𝖳

]𝖳. Furthermore, the time-domain transfer func-
ions 𝐺𝑧𝑢,𝑘 ∈ R(𝐪−1)𝑙𝑦×(𝑙𝑤+𝑙𝑦)prop and 𝐺𝑧𝑢̃,𝑘 ∈ R(𝐪−1)𝑙𝑦×𝑙𝑢prop are defined by
[

𝐺𝑧𝑢,𝑘 𝐺𝑧𝑢̃,𝑘
]

≜ 𝐺𝑧𝑢̂,𝑘, (46)

here 𝐺𝑧𝑢̂,𝑘 is the time-domain transfer function corresponding to the
tate–space model

̂𝑘+1 = 𝐴̂𝑘𝑥̂𝑘 + 𝐵̂𝑘𝑢̂𝑘, (47)

𝑧𝑘 = 𝐶̂𝑘𝑥̂𝑘 + 𝐷̂𝑢̂𝑘, (48)

t step 𝑘, where 𝑢̂𝑘 ≜
[

𝑢𝖳𝑘 𝑢̃𝑘(𝜃c,𝑘+1)𝖳
]𝖳

, 𝑥̂0 ≜
[

𝑥𝖳0 01×𝑙𝑢𝑛c
]𝖳, and 𝐴̂𝑘,

̂𝑘, 𝐶̂𝑘, and 𝐷̂ are defined by (39)–(42).

roof. Note that (20) and (21) imply that

𝑘𝜃c,𝑘+1 =
𝑛c
∑

𝑖=1
𝑃𝑖,𝑘+1𝑢𝑘−𝑖 +

𝑛c
∑

𝑖=1
𝑄𝑖,𝑘+1𝑧𝑘−𝑖. (49)

ubstituting 𝜃̂ = 𝜃c,𝑘+1 and (49) into (33) yields

𝑘 = 𝑢̃𝑘(𝜃c,𝑘+1) +
𝑛c
∑

𝑖=1
𝑃𝑖,𝑘+1𝑢𝑘−𝑖 +

𝑛c
∑

𝑖=1
𝑄𝑖,𝑘+1𝑧𝑘−𝑖. (50)

sing (24) and (25), it follows from (50) that

𝑘 = 𝑢̃𝑘(𝜃c,𝑘+1) + 𝑢𝑘 −𝐷c,𝑘+1(𝐪−1)𝑢𝑘 +𝑁c,𝑘+1(𝐪−1)𝑧𝑘,

which, using (23), can be rewritten as

𝑢 = 𝐷−1 (𝐪−1)𝑢̃ (𝜃 ) + 𝐺 (𝐪−1)𝑧 . (51)
4

𝑘 c,𝑘+1 𝑘 c,𝑘+1 c,𝑘+1 𝑘
Note that (24), (25), and Proposition A.2 imply that a state–space
realization of (51) is given by

𝑥c,𝑘+1 = 𝐴c,𝑘+1𝑥c,𝑘 + 𝐵c,𝑘+1𝑧𝑘 + 𝐵c,𝑘+1𝑢̃𝑘(𝜃c,𝑘+1), (52)

𝑢𝑘 = 𝐶c𝑥c,𝑘 + 𝑢̃𝑘(𝜃c,𝑘+1), (53)

here 𝐴c,𝑘, 𝐵c,𝑘, 𝐵c,𝑘, and 𝐶c are defined by (36)–(38), and 𝑥c,0 ≜
𝑙𝑢𝑛c×1.

Next, substituting (16) into (17) yields

𝑘 = −𝐶𝑘𝑥𝑘 − 𝑣𝑘 + 𝑟𝑘

= −𝐶𝑘𝑥𝑘 +
[

0 𝐼𝑙𝑦
]

𝑢𝑘. (54)

Furthermore, substituting (53) into (15) yields

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝐶c𝑥c,𝑘 + 𝐵𝑘𝑢̃𝑘(𝜃c,𝑘+1) + 𝐵𝑤,𝑘𝑤𝑘

= 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝐶c𝑥c,𝑘 +
[

𝐵𝑤,𝑘 0
]

𝑢𝑘 + 𝐵𝑘𝑢̃𝑘(𝜃c,𝑘+1), (55)

and substituting (54) into (52) yields

𝑥c,𝑘+1 = −𝐵c,𝑘+1𝐶𝑘𝑥𝑘 + 𝐴c,𝑘+1𝑥c,𝑘 + 𝐵c,𝑘+1𝑢̃𝑘(𝜃c,𝑘+1) − 𝐵c,𝑘+1𝑣𝑘 + 𝐵c,𝑘+1𝑟𝑘
= −𝐵c,𝑘+1𝐶𝑘𝑥𝑘 + 𝐴c,𝑘+1𝑥c,𝑘 +

[

0 𝐵c,𝑘+1
]

𝑢𝑘 + 𝐵c,𝑘+1𝑢̃𝑘(𝜃c,𝑘+1).

(56)

efine 𝑥̂𝑘 ≜
[

𝑥𝖳𝑘 𝑥𝖳c,𝑘
]𝖳

. Then, (47) and (48) follow from (54), (55),
nd (56). Since 𝐺𝑧𝑢̂,𝑘 is the time-domain transfer function correspond-
ng to the state–space model (47), (48) at step 𝑘, it follows from (46)
hat

𝑘 = 𝐺𝑧𝑢,𝑘(𝐪−1)𝑢𝑘 + 𝐺𝑧𝑢̃,𝑘(𝐪−1)𝑢̃𝑘(𝜃c,𝑘+1). (57)

Finally, substituting (57) into (35) yields (43). □

Note that 𝐺𝑧𝑢̂,𝑘 is obtained from (47), (48) in accordance with
Definition 2.1 and Proposition A.1. In order to apply Proposition A.1,
(47), (48) must be transformed to a completely observable state–space
model. The time-varying eigensystem realization algorithm explained
in Section 4 of [26] provides a method for reducing a given DTLTV
state–space model to a minimal DTLTV state–space model.

5. Analysis of the retrospective-performance-variable decomposi-
tion

In this section, we analyze the retrospective-performance-variable
decomposition given by Theorem 4.1.

Using (43) in (29) yields

𝐽𝑘(𝜃c,𝑘+1) =
𝑘
∑

𝑖=0

(

𝑧pp,𝑖(𝜃c,𝑘+1)𝖳𝑧pp,𝑖(𝜃c,𝑘+1) + 𝑧mm,𝑖(𝜃c,𝑘+1)𝖳𝑧mm,𝑖(𝜃c,𝑘+1)

+ 2𝑧pp,𝑖(𝜃c,𝑘+1)𝖳𝑧mm,𝑖(𝜃c,𝑘+1)
)

+ (𝜃c,𝑘+1 − 𝜃c,0)𝖳𝑃−1
0 (𝜃c,𝑘+1 − 𝜃c,0). (58)

ote that, in (58), the first two terms in the sum are nonnegative,
hereas the third term can have an arbitrary sign. This suggests that
LS can minimize 𝐽𝑘(𝜃c,𝑘+1) by making the third term negative while

he nonnegative terms remain large. In the case where 𝑃0 is large, using
LS to minimize (58) yields, for 𝑘 ≥ 𝑘0 ∈ R,

rp,𝑘(𝜃c,𝑘+1) ≈ 0, (59)

hich, using (43), implies that

pp,𝑘(𝜃c,𝑘+1) ≈ −𝑧mm,𝑘(𝜃c,𝑘+1). (60)

ote that (60) implies that 𝑧pp,𝑘 and 𝑧mm,𝑘 may be large in magnitude
ith opposite signs.

Next, we consider the initial conditions associated with 𝐺𝑧𝑢,𝑘 and
𝐺𝑧𝑢̃,𝑘. Since 𝐺𝑧𝑢̂,𝑘 is the time-domain transfer function corresponding to
(47), (48) at step 𝑘, it follows from (46) that

(𝐪−1)𝑢 + 𝐺 (𝐪−1)𝑢̃ (𝜃 ). (61)
𝑧𝑘 = 𝐺𝑧𝑢̂,𝑘𝑢̂𝑘 = 𝐺𝑧𝑢,𝑘 𝑘 𝑧𝑢̃,𝑘 𝑘 c,𝑘+1
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Fig. 1. Example 6.1 with 𝐺f given by (65). (a) After an initial transient of 50 steps, the output 𝑦 follows the command signal 𝑟. (b) The estimator coefficient 𝜃c converges after
about 50 steps. (c) The virtual external input perturbation 𝑢̃ converges to zero after about 50 steps. (d) For all 𝑘 ≥ 50, 𝑧rp,𝑘 ≈ 0. (e) For all 𝑘 ≥ 50, 𝑧pp,𝑘 ≈ 𝑧mm,𝑘 ≈ 0. (f) For all 𝑘 ≥ 0,
|𝑧rp,𝑘 − (𝑧pp,𝑘 + 𝑧mm,𝑘)| ≤ 2 × 10−13, which confirms (43).
𝐴

w
t

i

Furthermore, (46), (47), and (48) imply that 𝐺𝑧𝑢,𝑘 and 𝐺𝑧𝑢̃,𝑘 are the
time-domain transfer functions corresponding to the state–space mod-
els (𝐴̂𝑘, 𝐵𝑢,𝑘, 𝐶̂𝑘, 𝐷𝑢) and (𝐴̂𝑘, 𝐵𝑢̃,𝑘, 𝐶̂𝑘, 0𝑙𝑦×𝑙𝑢 ) at step 𝑘, respectively,
where

𝐵𝑢,𝑘 ≜

[

𝐵𝑤,𝑘 0𝑙𝑥×𝑙𝑦
0𝑙𝑢𝑛c×𝑙𝑤 𝐵c,𝑘+1

]

, 𝐷𝑢 ≜
[

0𝑙𝑦×𝑙𝑤 𝐼𝑙𝑦
]

, 𝐵𝑢̃,𝑘 ≜
[

𝐵𝑘
𝐵c,𝑘+1

]

.

(62)

Note from Theorem 4.1 that 𝑥̂0 is the initial condition associated with
the state space model (𝐴̂𝑘, 𝐵̂𝑘, 𝐶̂𝑘, 𝐷̂). Now, let the initial condition
corresponding to the state–space model (𝐴̂𝑘, 𝐵𝑢,𝑘, 𝐶̂𝑘, 𝐷𝑢) be denoted by
𝑥𝑢,0, and let the initial condition corresponding to the state–space model
𝐴̂𝑘, 𝐵𝑢̃,𝑘, 𝐶̂𝑘, 0𝑙𝑦×𝑙𝑢 ) be denoted by 𝑥𝑢̃,0. Since the transfer functions 𝐺𝑧𝑢,𝑘
nd 𝐺𝑧𝑢̃,𝑘 have the same state matrix 𝐴̂𝑘 in their corresponding state–

space models and since 𝑧𝑘 is additively decomposed into two parts
based on the partitioning of the input vector 𝑢̂𝑘 into 𝑢𝑘 and 𝑢̃𝑘(𝜃c,𝑘+1), it
ollows that 𝑥̂0 = 𝑥𝑢,0+𝑥𝑢̃,0. This implies that, in order to implement (44)

and (45), 𝑥̂0 must be additively decomposed into two values, namely,
𝑥𝑢,0 and 𝑥𝑢̃,0. Since 𝑥𝑢,0 and 𝑥𝑢̃,0 are not uniquely determined, it follows
hat the transient responses of 𝑧pp and 𝑧mm, which depend on the values
f 𝑥𝑢,0 and 𝑥𝑢̃,0, are not uniquely determined.

6. Numerical examples

This section presents numerical examples to illustrate the
retrospective-performance-variable decomposition. These examples
demonstrate how the decomposition can be used for the analysis of
RCAC.

Example 6.1. This example illustrates how the performance of RCAC
is affected by the choice of 𝐺f . In particular, this example shows that
the retrospective-performance-variable decomposition provides insight
into understanding why nonminimum phase (NMP) zeros of the plant
must be included in the filter 𝐺 .
5

f

Consider the state–space model (15), (16), where, for all 𝑘 ≥ 0,

𝑘 = 𝐴 ≜
[

0 1
−1.3 −0.67

]

, 𝐵𝑘 = 𝐵 ≜
[

0
1

]

, 𝐶𝑘 = 𝐶 ≜
[

−1.1 1
]

,

(63)

𝑤 ≡ 0, 𝑣𝑘 is Gaussian white noise with mean zero and variance 0.01,
and 𝑥0 =

[

−2 −2
]𝖳. Note that the transfer function corresponding to

the state–space model in (63) is given by

𝐺d(𝐪−1) ≜
− 𝐪−1 − 1.1𝐪−2

1 + 0.67𝐪−1 + 1.3𝐪−2
, (64)

which is unstable and has a NMP zero at 1.1.
First, RCAC is applied to command following with 𝑟𝑘 = sin(0.2𝑘),

𝑛c = 15, 𝑃c,0 = 10𝐼30, and, for all 𝑘 ≥ 0,

𝐺f ,𝑘(𝐪−1) = −𝐪−1 − 1.1𝐪−2. (65)

Note that 𝐺f given by (65) contains the NMP zero of 𝐺d. The conver-
gence to zero of the error between the output 𝑦 and the command signal
𝑟, the convergence of the estimator coefficients 𝜃c, and the convergence
of the virtual external input perturbation 𝑢̃ are shown in (a), (b), and
(c), respectively, of Fig. 1. Furthermore, (d) and (e) of Fig. 1 show
that, after an initial transient, (59) and (60) are satisfied. Finally, (f) of
Fig. 1 shows that the difference between 𝑧rp and 𝑧pp+𝑧mm is negligible,

hich confirms (43). In order to observe the asymptotic behavior of
he time-domain transfer functions 𝐺c, 𝐺𝑧𝑢, and 𝐺𝑧𝑢̃ after 𝜃c converges,

the frequency-response plots of 𝐺c,200, 𝐺𝑧𝑤,200, and 𝐺𝑧𝑟,200 are shown
n (a), (c), (e), and (f) of Fig. 2, where

[

𝐺𝑧𝑤,200 𝐺𝑧,𝑟−𝑣,200
]

= 𝐺𝑧𝑢,200,
and the extent to which the frequency response of 𝐺𝑧𝑢̃,200 matches the
frequency response of 𝐺f ,200 is shown in (b) and (d) of Fig. 2.

Next, the simulation is repeated with, for all 𝑘 ≥ 0,

𝐺f ,𝑘(𝐪−1) = −𝐪−1 (66)

and with the remaining parameters unchanged. Since 𝐺f given by (66)
does not possess the NMP zero of 𝐺 , which is unmoved by feedback,
d
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Fig. 2. Example 6.1 with 𝐺f given by (65). (a), (c) The frequency-response plots of 𝐺c,200. The magnitude of 𝐺c,200 peaks at the frequency 0.2 rad/step, which is the frequency of
he command signal 𝑟. (b), (d) Comparison of the frequency response of 𝐺𝑧𝑢̃,200 with the frequency response of 𝐺f . The magnitude and phase plots match approximately. (e) The
agnitude of 𝐺𝑧𝑤,200 is approximately zero at all frequencies. (f) The magnitude of 𝐺𝑧𝑟,200 at the frequency 0.2 rad/step is approximately zero. These observations show that, for

arge 𝑘, 𝑧pp,𝑘 ≈ 0 and 𝑧mm,𝑘 ≈ 0.
t
nd since the closed-loop transfer function 𝐺𝑧𝑢̃ tries to match the filter
f , the converged controller has an unstable pole at 1.1, as shown in
ig. 5. This leads to unstable pole-zero cancellation, which makes the
ignals 𝑦, 𝑢̃, 𝑧rp, and 𝑧mm diverge, as shown in Fig. 3. The frequency-
esponse plots of 𝐺c,200, 𝐺𝑧𝑤,200, and 𝐺𝑧𝑟,200 are shown in (a), (c), (e),
nd (f) of Fig. 4, and the extent to which the frequency response of
𝑧𝑢̃,200 matches that of 𝐺f ,200 is shown in (b) and (d) of Fig. 4. The

wo choices of 𝐺f in this example and their corresponding effect on the
erformance confirms the RCAC modeling requirement that 𝐺f contain
he NMP zeros of 𝐺d. ⋄

xample 6.2. This example illustrates how the retrospective-
erformance-variable decomposition is affected by the initial condi-
ions associated with 𝐺𝑧𝑢,𝑘 and 𝐺𝑧𝑢̃,𝑘. In particular, we show that the

initial conditions associated with 𝐺𝑧𝑢,𝑘 and 𝐺𝑧𝑢̃,𝑘 affect only the tran-
ient response of the predicted-performance term and model-matching
erm and not the steady-state response.

Consider the state–space model given by (15), (16), where, for all
≥ 0,

𝑘 = 0.5 − 0.2 sin(0.01𝑘), 𝐵𝑘 = 𝐵 ≜ 1, 𝐶𝑘 = 𝐶 ≜ 1, (67)

≡ 𝑣 ≡ 0, and 𝑥0 = 4. Let the command signal be 𝑟𝑘 = sin(0.2𝑘). Let
c = 7, 𝑛f = 2, 𝑃c,0 = 10𝐼14, and, for all 𝑘 ≥ 0, let 𝐺f ,𝑘(𝐪−1) = −𝐪−2 − 𝐪−1.

First, the decomposition is performed with 𝑥𝑢,0 = 3.6 and 𝑥𝑢̃,0 = 0.4,
where 𝑥𝑢,0 and 𝑥𝑢̃,0 are initial conditions corresponding to the state–
pace models (𝐴̂𝑘, 𝐵𝑢,𝑘, 𝐶̂𝑘, 𝐷𝑢) and (𝐴̂𝑘, 𝐵𝑢̃,𝑘, 𝐶̂𝑘, 0𝑙𝑦×𝑙𝑢 ), respectively. The
onvergence to zero of the error between the output 𝑦 and the com-
and signal 𝑟, the convergence of the estimator coefficients 𝜃c, and the

onvergence of the virtual external input perturbation 𝑢̃ are shown in
a), (b), and (c), respectively, of Fig. 6. Plots (d) and (e) of Fig. 6 show
hat, after an initial transient, (59) and (60) are satisfied. Plot (f) of
ig. 6 shows that the difference between 𝑧rp and 𝑧pp+𝑧mm is negligible,
hich confirms (43). The frequency-response plots of 𝐺c,200, 𝐺𝑧𝑤,200,
nd 𝐺𝑧𝑟,200 are shown in (a), (c), (e), and (f) of Fig. 7, and the extent to
hich the frequency response of 𝐺𝑧𝑢̃,200 matches that of 𝐺f ,200 is shown
6

n (b) and (d) of Fig. 7. Note that, since the plant is time-varying,
he time-domain transfer functions 𝐺c, 𝐺𝑧𝑢, and 𝐺𝑧𝑢̃ do not converge
after the estimator coefficient 𝜃c converges. Next, the decomposition is
repeated with 𝑥𝑢,0 = 8 and 𝑥𝑢̃,0 = −4. The change in initial conditions
changes the transient responses of 𝑧pp and 𝑧mm, as shown in (e) of Fig. 8.
However, the asymptotic behavior of 𝑧pp and 𝑧mm is the same as in the
previous case. ⋄

Example 6.3. This example illustrates the retrospective-performance-
variable decomposition for a multi-input multi-output system. It also
shows, through retrospective-performance-variable decomposition, how
RCAC adapts when there are sudden changes in the nature of the
command signal.

Consider the state–space model (15), (16), where, for all 𝑘 ≥ 0,

𝐴𝑘 = 𝐴 ≜

⎡

⎢

⎢

⎢

⎢

⎣

0.8777 0.0847 0.0777 0.0338
−0.7630 0.1363 0.4241 0.2262
0.1436 0.0423 0.8429 0.1333
1.0741 0.2827 −1.2433 0.4077

⎤

⎥

⎥

⎥

⎥

⎦

, (68)

𝐵𝑘 = 𝐵 ≜

⎡

⎢

⎢

⎢

⎢

⎣

0.0112 0.0034
0.0847 0.0423
0.0034 0.0191
0.0423 0.1666

⎤

⎥

⎥

⎥

⎥

⎦

, (69)

𝐵𝑤,𝑘 = 𝐵𝑤 ≜

⎡

⎢

⎢

⎢

⎢

⎣

0.01
0.01
0.01
0.01

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐶𝑘 = 𝐶 ≜
[

1 0 0 0
0 0 1 0

]

, (70)

𝑤𝑘 is standard Gaussian white noise, 𝑣𝑘 is Gaussian white noise with
mean zero and variance 10−4𝐼2, and 𝑥0 =

[

1 −1 0 0.5
]𝖳. Let the

command signal be

𝑟𝑘 =

{

[

1 2
]𝖳 , 𝑘 ≤ 300,

[

−1 −3
]𝖳 , 𝑘 > 300.

(71)

Let 𝑛c = 2, 𝑛f = 1, 𝑃c,0 = 𝐼16, and, for all 𝑘 ≥ 0, let 𝐺f ,𝑘(𝐪−1) = −𝐶𝐵𝐪−1.
The convergence to zero of the error between the output 𝑦 and the

command signal 𝑟, the convergence of the estimator coefficients 𝜃c, and
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Fig. 3. Example 6.1 with 𝐺f given by (66). The estimator coefficients converge, but 𝑦, 𝑢̃, and 𝑧rp diverge. Since 𝑧pp is computed using an input–output model corresponding to a
minimal state–space model, 𝑧pp does not diverge. Although 𝑧mm is also computed using an input–output model corresponding to a minimal state–space model, since 𝑢̃ diverges,
𝑧mm diverges.

Fig. 4. Example 6.1 with 𝐺f given by (66). (a), (c) The frequency-response plots of 𝐺c,200. The magnitude of 𝐺c,200 peaks at the frequency 0.2 rad/step, which is the frequency of
the command signal 𝑟. (b), (d) Comparison of the frequency response of 𝐺𝑧𝑢̃,200 with the frequency response of 𝐺f . The magnitude and phase plots match approximately. (e) The
magnitude of 𝐺𝑧𝑤,200 is approximately zero at all frequencies. (f) The magnitude of 𝐺𝑧𝑟,200 at the frequency 0.2 rad/step is approximately zero. However, these observations do not
ensure that RCAC performs as expected. Due to a hidden instability, the output 𝑦 diverges, as shown in Fig. 3.
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Fig. 5. Example 6.1 with 𝐺f given by (66). (a) Pole-zero plots of 𝐺d and 𝐺c,200. 𝐺c,200 has a pole at the NMP zero of 𝐺d. This leads to an unstable pole-zero cancellation in the
losed-loop system. (b) shows that the spectral radius of 𝐺c,𝑘 converges to the NMP zero of 𝐺d.
Fig. 6. Example 6.2 with 𝑥𝑢,0 = 3.6 and 𝑥𝑢̃,0 = 0.4. (a) After an initial transient of 75 steps, the output 𝑦 follows the command signal 𝑟. (b) The estimator coefficient 𝜃c converges
fter about 75 steps. (c) The virtual external input perturbation 𝑢̃ converges to zero after about 75 steps. (d) For all 𝑘 ≥ 75, 𝑧rp,𝑘 ≈ 0. (e) For all 𝑘 ≥ 75, 𝑧pp,𝑘 ≈ 𝑧mm,𝑘 ≈ 0. (f) For all
≥ 0, |𝑧rp,𝑘 − (𝑧pp,𝑘 + 𝑧mm,𝑘)| ≤ 10−13, which confirms (43).
7

t
m
t

he convergence of the virtual external input perturbation 𝑢̃ are shown
n (a), (b), and (c), respectively, of Fig. 9. Plots (d) and (e) of Fig. 9
how that, after an initial transient, (59) and (60) are satisfied. Plot
f) of Fig. 9 shows that the difference between 𝑧rp and 𝑧pp + 𝑧mm is
egligible, which confirms (43). Note that, as shown in Fig. 9, when
he nature of the input changes, RCAC re-adapts and subsequently
onverges. ⋄
8

c

. Conclusions

This paper developed transformations between discrete-time linear
ime-varying (DTLTV) state–space models and DTLTV input–output
odels. These transformations were used to derive and demonstrate

he retrospective-performance-variable decomposition in retrospective
ost adaptive control (RCAC). This decomposition shows how RCAC
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Fig. 7. Example 6.2 with 𝑥𝑢,0 = 3.6 and 𝑥𝑢̃,0 = 0.4. (a), (c) The frequency-response plots of 𝐺c,200. The magnitude of 𝐺c,200 peaks at the frequency 0.2 rad/step, which is the frequency
of the command signal 𝑟. (b), (d) Comparison of the frequency response of 𝐺𝑧𝑢̃,200 with the frequency response of 𝐺f . The magnitude and phase plots match approximately. (e)
The magnitude of 𝐺𝑧𝑤,200 is approximately zero at all frequencies. (f) The magnitude of 𝐺𝑧𝑟,200 at the frequency 0.2 rad/step is approximately zero.

Fig. 8. Example 6.2 with 𝑥𝑢,0 = 8 and 𝑥𝑢̃,0 = −4. In (e), the transient responses of 𝑧pp and 𝑧mm are different from the case where 𝑥𝑢,0 = 3.6 and 𝑥𝑢̃,0 = 0.4 (Fig. 6). However, the
asymptotic behavior of 𝑧pp and 𝑧mm are the same as in the previous case. All other plots are the same as in Fig. 6.
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Fig. 9. Example 6.3. (a) The components 𝑦1 and 𝑦2 of the output 𝑦 follow the components 𝑟1 and 𝑟2 of the command signal 𝑟. (b) The estimator coefficient 𝜃c converges. (c) The
omponents 𝑢̃1 and 𝑢̃2 of the virtual external input perturbation 𝑢̃ converge to zero. (d) For all 𝑘 ≥ 400, 𝑧rp,1,𝑘 ≈ 0 and 𝑧rp,2,𝑘 ≈ 0, where 𝑧rp,𝑘 = [𝑧rp,1,𝑘 𝑧rp,2,𝑘]𝖳. (e) For all 𝑘 ≥ 400,
pp,1,𝑘 ≈ 𝑧mm,1,𝑘 ≈ 0 and 𝑧pp,1,𝑘 ≈ 𝑧mm,1,𝑘 ≈ 0, where 𝑧pp,𝑘 = [𝑧pp,1,𝑘 𝑧pp,2,𝑘]𝖳 and 𝑧mm,𝑘 = [𝑧mm,1,𝑘 𝑧mm,2,𝑘]𝖳. (f) For all 𝑘 ≥ 0, |𝑧rp,𝑘 − (𝑧pp,𝑘 + 𝑧mm,𝑘)| ≤ 10−13, which confirms (43).
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chieves closed-loop performance and matches the closed-loop dynam-
cs to the target model. These results and insights are a key step toward
nalyzing the convergence and asymptotic stability of RCAC algorithm.
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ppendix A. Transformations between DTLTV state-space models
nd DTLTV input-output models

This section constructs DTLTV state–space realizations of DTLTV
nput–output models as well as DTLTV input–output models corre-
ponding to DTLTV state–space models. These constructions were used
n the decomposition of the retrospective performance variable in Sec-
ion 4. The following result provides an explicit expression for a DTLTV
nput–output model corresponding to a DTLTV state–space model.

roposition A.1. Consider the DTLTV state–space model (6), (7), and
ssume that (,) is completely observable. Then, a DTLTV input–output
odel corresponding to (6), (7) is given by (1), where, for all 𝑘 ∈ [0, 𝑛−1],
io,𝑘 ≜ 𝑦ss,𝑘, and, for all 𝑘 ≥ 𝑛,

𝑖,𝑘 ≜
⎧

⎪

⎨

⎪

⎩

𝐻0,𝑘, 𝑖 = 0,

𝐻𝑖,𝑘 +
𝑖

∑

𝑗=1
𝐷𝑗,𝑘𝐻𝑖−𝑗,𝑘−𝑗 , 1 ≤ 𝑖 ≤ 𝑛, (A.1)

𝐷𝑛,𝑘 ⋯ 𝐷1,𝑘
]

≜ −𝐶𝑘𝛹𝑘−1,𝑘−𝑛L
𝑘−𝑛, (A.2)

nd L
𝑘 is a left inverse of 𝑘.

roof. Post-multiplying (A.2) by 𝑘−𝑛 yields, for all 𝑘 ≥ 𝑛,

=
[

𝐷𝑛,𝑘 ⋯ 𝐷1,𝑘
]

𝑘−𝑛 + 𝐶𝑘𝛹𝑘−1,𝑘−𝑛

= 𝐶𝑘𝛹𝑘−1,𝑘−𝑛 +𝐷1,𝑘𝐶𝑘−1𝛹𝑘−2,𝑘−𝑛 +⋯

+ 𝐷𝑛−1,𝑘𝐶𝑘−𝑛+1𝛹𝑘−𝑛,𝑘−𝑛 +𝐷𝑛,𝑘𝐶𝑘−𝑛. (A.3)

ext, it follows from (6), (7) that, for all 𝑘 ≥ 𝑛,

ss,𝑘 = 𝐶𝑘𝛹𝑘−1,𝑘−𝑛𝑥𝑘−𝑛 + 𝐶𝑘

𝑛−2
∑

𝑖=0
𝛹𝑘−1,𝑘−𝑛+𝑖+1𝐵𝑘−𝑛+𝑖𝑢𝑘−𝑛+𝑖
+ 𝐶𝑘𝐵𝑘−1𝑢𝑘−1 + 𝐸𝑘𝑢𝑘.
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𝑦

Hence, for all 𝑘 ≥ 𝑛,

ss,𝑘 +𝐷1,𝑘𝑦ss,𝑘−1 +⋯ +𝐷𝑛−1,𝑘𝑦ss,𝑘−𝑛+1 +𝐷𝑛,𝑘𝑦ss,𝑘−𝑛

= 𝐶𝑘𝛹𝑘−1,𝑘−𝑛𝑥𝑘−𝑛 + 𝐶𝑘

𝑛−2
∑

𝑖=0
𝛹𝑘−1,𝑘−𝑛+𝑖+1𝐵𝑘−𝑛+𝑖𝑢𝑘−𝑛+𝑖

+ 𝐶𝑘𝐵𝑘−1𝑢𝑘−1 + 𝐸𝑘𝑢𝑘

+ 𝐷1,𝑘

(

𝐶𝑘−1𝛹𝑘−2,𝑘−𝑛𝑥𝑘−𝑛

+ 𝐶𝑘−1

𝑛−3
∑

𝑖=0
𝛹𝑘−2,𝑘−𝑛+𝑖+1𝐵𝑘−𝑛+𝑖𝑢𝑘−𝑛+𝑖 + 𝐶𝑘−1𝐵𝑘−2𝑢𝑘−2

+ 𝐸𝑘−1𝑢𝑘−1
)

+⋯ +𝐷𝑛−1,𝑘(𝐶𝑘−𝑛+1𝛹𝑘−𝑛,𝑘−𝑛𝑥𝑘−𝑛

+ 𝐶𝑘−𝑛+1𝐵𝑘−𝑛𝑢𝑘−𝑛 + 𝐸𝑘−𝑛+1𝑢𝑘−𝑛+1)

+ 𝐷𝑛,𝑘(𝐶𝑘−𝑛𝑥𝑘−𝑛 + 𝐸𝑘−𝑛𝑢𝑘−𝑛). (A.4)

Regrouping the terms in (A.4) and using (11) yields, for all 𝑘 ≥ 𝑛,

𝑦ss,𝑘 +𝐷1,𝑘𝑦ss,𝑘−1 +⋯ +𝐷𝑛−1,𝑘𝑦ss,𝑘−𝑛+1 +𝐷𝑛,𝑘𝑦ss,𝑘−𝑛
= (𝐶𝑘𝛹𝑘−1,𝑘−𝑛 +𝐷1,𝑘𝐶𝑘−1𝛹𝑘−2,𝑘−𝑛 +⋯

+ 𝐷𝑛−1,𝑘𝐶𝑘−𝑛+1𝛹𝑘−𝑛,𝑘−𝑛 +𝐷𝑛,𝑘𝐶𝑘−𝑛)𝑥𝑘−𝑛

+

(

𝐻𝑛,𝑘 +
𝑛
∑

𝑗=1
𝐷𝑗,𝑘𝐻𝑛−𝑗,𝑘−𝑗

)

𝑢𝑘−𝑛

+

(

𝐻𝑛−1,𝑘 +
𝑛−1
∑

𝑗=1
𝐷𝑗,𝑘𝐻𝑛−1−𝑗,𝑘−𝑗

)

𝑢𝑘−𝑛+1

+ ⋯ +
(

𝐻1,𝑘 +𝐷1,𝑘𝐻0,𝑘−1
)

𝑢𝑘−1 +𝐻0,𝑘𝑢𝑘. (A.5)

Then, substituting (A.3) and (A.1) into (A.5) yields, for all 𝑘 ≥ 𝑛,

𝑦ss,𝑘 +𝐷1,𝑘𝑦ss,𝑘−1 +⋯ +𝐷𝑛,𝑘𝑦ss,𝑘−𝑛 = 𝑁0,𝑘𝑢𝑘 +⋯ +𝑁𝑛,𝑘𝑢𝑘−𝑛. (A.6)

Since, for all 𝑘 ∈ [0, 𝑛 − 1], 𝑦io,𝑘 = 𝑦ss,𝑘, it follows from (1) and (A.6)
that, for all 𝑘 ≥ 𝑛, 𝑦io,𝑘 = 𝑦ss,𝑘. □

The following result provides a DTLTV state–space realization of a
DTLTV input–output model.

Proposition A.2. A completely observable DTLTV state–space realization
of the DTLTV input–output model in (1) is given by (6), (7), where, for all
𝑘 ≥ 0,

𝐴𝑘 ≜

⎡

⎢

⎢

⎢

⎢

⎣

0 ⋯ 0 −𝐷𝑛,𝑘+𝑛
𝐼 ⋯ 0 −𝐷𝑛−1,𝑘+𝑛−1
⋮ ⋯ ⋮ ⋮
0 ⋯ 𝐼 −𝐷1,𝑘+1

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑝𝑛×𝑝𝑛, (A.7)

𝐵𝑘 ≜

⎡

⎢

⎢

⎢

⎢

⎣

𝑁𝑛,𝑘+𝑛 −𝐷𝑛,𝑘+𝑛𝑁0,𝑘
𝑁𝑛−1,𝑘+𝑛−1 −𝐷𝑛−1,𝑘+𝑛−1𝑁0,𝑘

⋮
𝑁1,𝑘+1 −𝐷1,𝑘+1𝑁0,𝑘

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑝𝑛×𝑚, (A.8)

𝐶𝑘 ≜
[

0𝑝×𝑝(𝑛−1) 𝐼𝑝
]

∈ R𝑝×𝑝𝑛, 𝐸𝑘 ≜ 𝑁0,𝑘 ∈ R𝑝×𝑚. (A.9)

Furthermore, for all 𝑘 ≥ 0, 𝑥𝑘 ≜
[

𝑥𝖳1,𝑘 𝑥𝖳2,𝑘 ⋯ 𝑥𝖳𝑛,𝑘
]𝖳

, where, for all
𝑖 ∈ [0, 𝑛 − 1],

𝑥𝑛−𝑖,𝑘 ≜
𝑛
∑

𝑗=𝑖+1
𝑁𝑗,𝑘+𝑖𝑢𝑘−𝑗+𝑖 −

𝑛
∑

𝑗=𝑖+1
𝐷𝑗,𝑘+𝑖𝑦io,𝑘−𝑗+𝑖. (A.10)

Proof. Rearranging terms in (1) yields

𝑦io,𝑘 =
𝑛
∑

𝑗=1
𝑁𝑗,𝑘𝑢𝑘−𝑗 −

𝑛
∑

𝑗=1
𝐷𝑗,𝑘𝑦io,𝑘−𝑗 +𝑁0,𝑘𝑢𝑘. (A.11)

Setting 𝑖 = 0 in (A.10) yields

𝑥𝑛,𝑘 =
𝑛
∑

𝑁𝑗,𝑘𝑢𝑘−𝑗 −
𝑛
∑

𝐷𝑗,𝑘𝑦io,𝑘−𝑗 ,
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which, along with (A.11), implies that

𝑥𝑛,𝑘 = 𝑦io,𝑘 −𝑁0,𝑘𝑢𝑘. (A.12)

Next, setting 𝑖 = 𝑛 − 1 in (A.10) yields

𝑥1,𝑘 = 𝑁𝑛,𝑘+𝑛−1𝑢𝑘−1 −𝐷𝑛,𝑘+𝑛−1𝑦io,𝑘−1. (A.13)

Hence, it follows from (A.12) and (A.13) that

𝑥1,𝑘+1 = 𝑁𝑛,𝑘+𝑛𝑢𝑘 −𝐷𝑛,𝑘+𝑛𝑦io,𝑘
= −𝐷𝑛,𝑘+𝑛(𝑦io,𝑘 −𝑁0,𝑘𝑢𝑘) + (𝑁𝑛,𝑘+𝑛 −𝐷𝑛,𝑘+𝑛𝑁0,𝑘)𝑢𝑘

= −𝐷𝑛,𝑘+𝑛𝑥𝑛,𝑘 + (𝑁𝑛,𝑘+𝑛 −𝐷𝑛,𝑘+𝑛𝑁0,𝑘)𝑢𝑘. (A.14)

Furthermore, for all 𝑖 ∈ [0, 𝑛 − 2], (A.10) and (A.12) imply that

𝑥𝑛−𝑖,𝑘+1 =
𝑛
∑

𝑗=𝑖+1
𝑁𝑗,𝑘+𝑖+1𝑢𝑘−𝑗+𝑖+1 −

𝑛
∑

𝑗=𝑖+1
𝐷𝑗,𝑘+𝑖+1𝑦io,𝑘−𝑗+𝑖+1

=
𝑛
∑

𝑗=𝑖+2
𝑁𝑗,𝑘+𝑖+1𝑢𝑘−𝑗+𝑖+1 −

𝑛
∑

𝑗=𝑖+2
𝐷𝑗,𝑘+𝑖+1𝑦io,𝑘−𝑗+𝑖+1

+ 𝑁𝑖+1,𝑘+𝑖+1𝑢𝑘 −𝐷𝑖+1,𝑘+𝑖+1𝑦io,𝑘
= 𝑥𝑛−𝑖−1,𝑘 +𝑁𝑖+1,𝑘+𝑖+1𝑢𝑘 −𝐷𝑖+1,𝑘+𝑖+1𝑦io,𝑘
= 𝑥𝑛−𝑖−1,𝑘 −𝐷𝑖+1,𝑘+𝑖+1(𝑦io,𝑘 −𝑁0,𝑘𝑢𝑘)

+ (𝑁𝑖+1,𝑘+𝑖+1 −𝐷𝑖+1,𝑘+𝑖+1𝑁0,𝑘)𝑢𝑘
= 𝑥𝑛−𝑖−1,𝑘 −𝐷𝑖+1,𝑘+𝑖+1𝑥𝑛,𝑘 + (𝑁𝑖+1,𝑘+𝑖+1 −𝐷𝑖+1,𝑘+𝑖+1𝑁0,𝑘)𝑢𝑘.

(A.15)

Hence, it follows from (A.7), (A.8), (A.14), and (A.15) that

𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘

=

⎡

⎢

⎢

⎢

⎢

⎣

−𝐷𝑛,𝑘+𝑛𝑥𝑛,𝑘
𝑥1,𝑘 −𝐷𝑛−1,𝑘+𝑛−1𝑥𝑛,𝑘

⋮
𝑥𝑛−1,𝑘 −𝐷1,𝑘+1𝑥𝑛,𝑘

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

𝑁𝑛,𝑘+𝑛 −𝐷𝑛,𝑘+𝑛𝑁0,𝑘
𝑁𝑛−1,𝑘+𝑛−1 −𝐷𝑛−1,𝑘+𝑛−1𝑁0,𝑘

⋮
𝑁1,𝑘+1 −𝐷1,𝑘+1𝑁0,𝑘

⎤

⎥

⎥

⎥

⎥

⎦

𝑢𝑘

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1,𝑘+1
𝑥2,𝑘+1
⋮

𝑥𝑛,𝑘+1

⎤

⎥

⎥

⎥

⎥

⎦

= 𝑥𝑘+1.

Finally, (A.9) and (A.12) imply that

𝐶𝑘𝑥𝑘 + 𝐸𝑘𝑢𝑘 = 𝑥𝑛,𝑘 +𝑁0,𝑘𝑢𝑘 = 𝑦io,𝑘. (A.16)

Comparing (7) and (A.16) implies that, for all 𝑘 ≥ 0, 𝑦ss,𝑘 = 𝑦io,𝑘.
Since, for all 𝑘 ≥ 0, rank 𝑘 = 𝑝𝑛, it follows that (,) is completely
observable. □
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