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Abstract— A crucial challenge in the safe operation of adap-
tive controllers is the problem of parameter drift, where an
underlying optimization problem, if ill-conditioned, may lead
to parameter drift. This paper presents a Wiener adaptive
autopilot for multicopters to mitigate instabilities caused by
adaptive parameter drift and presents simulation and experi-
mental results to validate the modified autopilot. The modified
adaptive controller is obtained by including a static nonlinearity
in the adaptive loop, updated by the retrospective cost adaptive
control algorithm. It is shown in simulation and physical
test experiments that the adaptive autopilot with proposed
modifications can continually improve the fixed-gain autopilot
as well as prevent the drift of the adaptive parameters, thus
improving the robustness of the adaptive autopilot.

I. INTRODUCTION

Why do parameters drift? In practice, error is small after
convergence, which causes the internal optimization problem
to become ill conditioned due to accumulative lack of persis-
tency. Parameters therefore may drift due to nonuniqueness
of the minimizing solution.

Multicopters have found significant success in several
engineering applications such as precision agriculture [1],
environmental survey [2], [3], construction management [4]
and load transportation [5]. However, for several reasons,
including nonlinear and uncertain dynamics, unknown and
uncertain operating environments, and ease of reconfigurabil-
ity, control of multicopters remains a challenging engineering
problem.

Several control techniques have been applied to construct
stabilizing controllers for multicopters [6]–[9]. However,
these techniques often require an accurate plant model and,
thus, are susceptible to unmodeled dynamics and physical
model parameter uncertainty [10], [11]. Several adaptive
control techniques have been applied to address the problem
of unmodeled, unknown, and uncertain dynamics such as
model reference adaptive control [12], [13], L1 adaptive
control [14], and adaptive sliding mode control [15]. In our
previous work, we developed an adaptive autopilot based
on the retrospective cost adaptive control (RCAC) algorithm
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[16], [17]. RCAC is described in [18], and is extended to
digital PID control in [19].

When the sensor measurements are affected by an un-
known bounded disturbance of sufficient amplitude, the
parameters updated by the adaptation laws of adaptive
controllers may diverge and yield an unstable controller
behavior. This phenomenon is called parameter drift [20],
[21]. To remedy the parameter drift problem in adaptive
control techniques, several extensions have been proposed,
such as deadzone nonlinearities, projection operator, and
e-modification and σ−modification techniques [22]–[24],
controller output filtering [25], [26], and controller output
averaging [27], [28]. As expected, these modifications entail
a tradeoff between robustness to measurement disturbances
and tracking performance.

The present paper extends the adaptive autopilot presented
in [16]. In this work, it is shown that, in some circumstances,
the controller gains optimized by the RCAC algorithm may
diverge, eventually leading to the failure of the control sys-
tem. To mitigate the instability of the control system due to
adaptive parameter drift, we extend the adaptive autopilot by
including a static nonlinearity before the adaptive controller
updated by RCAC. The contribution of this paper is thus
the extension of the adaptive autopilot to mitigate parameter
drift, the investigation of the effectiveness of three deadzone
nonlinearities to reduce the sensitivity of the adaptive con-
troller to sensor noise, and experimental demonstration of
the improved robustness of the modified adaptive autopilot.

The paper is organized as follows. Section II briefly
reviews the architecture of the adaptive autopilot used in this
work. Section III introduces the three deadzone-augmented
adaptive autopilots. Section IV describes the simulation and
physical flight results to validate the proposed modifications
of the adaptive autopilot. Finally, Section V concludes the
paper with a discussion of the results.

II. ADAPTIVE AUTOPILOT

This section briefly reviews the adaptive autopilot used in
this work. The adaptive autopilot is constructed by modifying
the fixed-gain autopilot implemented in the PX4 flight stack
[29]. The adaptive autopilot’s architecture and notation is
described in detail in [16], [17]. The augmentation used
for parameter drift mitigation and its implementation is
presented in Section III.

The autopilot consists of a mission planner and two nested
loops, as shown in Figure 1. The mission planner generates
the position, velocity, azimuth, and azimuth rate setpoints

2024 American Control Conference (ACC)
July 8-12, 2024. Toronto, Canada

979-8-3503-8264-8/$31.00 ©2024 AACC 1554



from the user-defined waypoints. The outer loop consists of
the position controller whose inputs are the position setpoint
and velocity setpoints as well as the measured position and
measured velocity of the multicopter. The output of the
position controller is the thrust vector command. Note that
the thrust vector output of the position controller is expressed
in the Earth fixed coordinate system. The inner loop consists
of the attitude controller whose inputs are the thrust vector
setpoint, the azimuth setpoint, and azimuth rate setpoints,
as well as the measured attitude and the angular velocity
measured in the body-fixed frame. The output of the attitude
controller is the moment command. The magnitude of the
thrust vector and the moment vector uniquely determine the
rotation rate of the four propellers.

Mission
Planner

Position
Controller

Attitude
Controller

Multicopter

Fig. 1. Multicopter autopilot architecture.

The position controller consists of two cascaded linear
controllers. The first controller Gr consists of three de-
coupled proportional controllers. The second controller Gv

consists of three decoupled PID controllers. As shown in
Figure 2, the two controllers are augmented with adaptive
controllers based on the RCAC algorithm.
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Fig. 2. The position controller in the adaptive autopilot.

Similarly, the attitude controller consists of two cascaded
controllers. The first controller Gq is a nonlinear almost
globally stabilizing controller [30], and the second controller
Gω consists of three decoupled PI controllers. As shown in
Figure 3, the two controllers are augmented with adaptive
controllers based on the RCAC algorithm.
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Fig. 3. The attitude controller in the adaptive autopilot.

Our prior works in [16], [17], [31] observed that some
controller gains updated by RCAC in the adaptive autopilot
drifted and eventually caused the adaptive autopilot to fail.
Numerical investigations showed that the PI gains of the
rate controller diverged even after an acceptable tracking

performance was achieved. Thus, we introduce a deadzone in
the Gω controller of the inner loop to reduce the sensitivity of
the adaptive rate controller. The next section describes three
nonlinear functions that are used to implement the deadzone
in this work.

III. DEADZONE-AUGMENTED ADAPTIVE AUTOPILOT

This section describes the nonlinear functions used to
implement a deadzone in the adaptive autopilot in order
to improve noise robustness and prevent the onset of in-
stabilities. To avoid undesirable updates due to noisy or
small signals, the performance variable z used to define
the retrospective cost minimized by the RCAC algorithm is
modified, as shown below.

The performance variable z used to optimize the adaptive
controller Gω is replaced by N (z), where N is an element-
wise nonlinear function. The nonlinear function N is chosen
to implement a deadzone in the adaptive rate controller, thus
suppressing the effect of small values of rate errors zω on
the update of the rate controller gains θω. Note that θω has
six components, that is, two PI gains for each direction. As
a result, the inner loop controller in the adaptive autopilot
is augmented with the deadzone, as shown in Figure 4.
This work investigates the effectiveness of three choices of
nonlinear functions to implement a deadzone, as described
below.

+ Gq + + Gω +
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−

Angular rate
setpoint Moment

vector
setpoint

Adaptive
Gq

N

zω

Adaptive
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N (zω)

Fig. 4. The attitude controller augmented with the deadzone in the adaptive
autopilot.

The first nonlinearity is given by

N1(x)
△
=


x x < −s,

0 x ∈ [−s, s],

x x > s,

(1)

where s > 0. Note that N1 is a discontinuous nonlinear
function whose output is zero if the input magnitude is less
than s and is equal to the input if the input magnitude is
greater than s. Figure 5(a) shows the output of N1 for several
values of s.

The second nonlinearity is given by

N2(x)
△
=



−α(s2 − s1)
3 + 3α(s2 − s1)

2(x+ s2) x < s2,

α(x+ s1)
3 x ∈ [−s2,−s1),

0 x ∈ [−s1, s1],

α(x− s1)
3 x ∈ (s1, s2],

α(s2 − s1)
3 + 3α(s2 − s1)

2(x− s2) x > s2,

(2)

where s1, α > 0, and s2 = s1 +

√
1

3α
. The parameter s1

is the width of the deadzone and α affects the transition to
the linear section. In particular, a large value of s1 implies
a wide deadzone, and a large value of α implies a quicker
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transition to the linear section. Note that N2 introduces a bias
to its output after the transition to the linear section. Figure
5(b) shows the output of N2 for s1 = 0.02 and several values
of α. Finally, note that N2 is a continuously differentiable
nonlinear function.

The third nonlinearity is given by

N3(x)
△
=



x x < −s2,

cl,3x
3 + cl,2x

2 + cl,1x+ cl,0 x ∈ [−s2,−s1),

0 x ∈ [−s1, s1],

cu,3x
3 + cu,2x

2 + cu,1x+ cu,0 x ∈ [s1, s2),

x x > s2,

(3)

where s2 > s1 > 0, and the parameters cl,i and cu,i are
determined such that N3 is continuously differentiable. The
parameter s1 is the width of the deadzone and s2 affects
the transition to the linear section. Unlike N2, the nonlinear
function N3 converges to the asymptote y = x. Thus, the
nonlinearity acts as an identity function for large input values
while zeros out the small values of the input. Finally, note
that cl

△
=

[
cl,0 cl,1 cl,2 cl,3

]T
= C(−s1,−s2) is given

by

C(ξ1, ξ2) =


1 ξ1 ξ21 ξ31
0 1 2ξ1 3ξ21
1 ξ2 ξ22 ξ32
0 1 2ξ2 3ξ22


−1 

0
0
ξ2
1

 . (4)

The parameter cu = C(s1, s2) is computed similarly. Note
that cl and cu are computed apriori. Figure 5(c) shows the
output of N3 for s1 = 0.02 and several values of s2.
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Fig. 5. Nonlinearities used to implement deadzone.

IV. FLIGHT TESTS

This section describes the numerical simulation and flight
test results investigating the effectiveness of the three dead-
zone nonlinearities described in the previous section on
mitigating the parameter drift and adaptive autopilot failure.
For these tests, a quadcopter platform is considered.

A. Numerical Simulation

We first investigate the effect of the nonlinearities to
mitigate the parameter drift in the adaptive autopilot with the
jMAVSim quadcopter simulation implemented in the PX4
flight stack. The three nonlinearities described in the previ-
ous section are implemented in the mc rate control 1

module in PX4.
To investigate and quantify the potential improvements

in the adaptive autopilot’s performance, we command the

1https://github.com/JAParedes/PX4-Autopilot/tree
/RCAC MC FW dev mavlink/src/modules/mc rate control

quadcopter to follow a trajectory generated using a second-
order Hilbert curve. The quadcopter is commanded to fly the
mission with a fixed-gain autopilot and four RCAC-based
adaptive autopilots. The first adaptive autopilot does not use
deadzone in the pitch rate controller. In contrast, the second,
third, and fourth adaptive autopilots use N1, N2, and N3

nonlinear functions to implement the deadzone in the pitch
rate controller, respectively.

Figure 6 shows the trajectory-following response of the
quadcopter with the fixed-gain autopilot and the four adaptive
autopilots. Note that all four adaptive autopilots have similar
tracking performance. Note that the trajectory-following re-
sponse of all four adaptive autopilots is better than the fixed-
gain autopilot. However, with the first adaptive autopilot,
that is, the adaptive autopilot without the deadzone, high-
frequency oscillations are observed in the pitch and pitch rate
response. Figures 7 and 8 show the pitch-rate error response
and the pitching moment in the adaptive autopilot. Note
the high-frequency oscillations between 20 and 50 seconds
in this case. In contrast, the three adaptive autopilots with
deadzones are able to suppress these oscillations as shown
in Figures 7 and 8.

Figure 9 shows the frequency content of the pitching
moment applied to the quadcopter. Note the large magnitude
of the frequency content at higher frequencies generated
by the first adaptive autopilot, whereas the high-frequency
content is suppressed with the deadzone nonlinearities in the
adaptive autopilot. Finally, Figure 10 shows the controller
gains updated by the RCAC algorithm in the four adaptive
autopilots. Note that without the deadzone nonlinearity, the
controller gains drift as shown in the first Figure 10a).
With the deadzone nonlinearity in the adaptive autopilot, the
controller gain drift is mitigated.

0 2 4 6 8 10 12

-20

-15

-10

-5

0

Fig. 6. Simulation results. Trajectory-following response of the quadcopter
with the fixed-gain autopilot and the four adaptive autopilots.

B. Physical Flight Tests
Next, we repeat the experiment described in the previous

subsection in a physical flight environment using a Holybro
X500 quadcopter frame with a Pixhawk 6C flight computer
running the PX4 flight software. The flight tests are con-
ducted in the M-air facility at the University of Michigan,
Ann Arbor.
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Fig. 7. Simulation results. Pitch-rate error response of the quadcopter
with the fixed-gain autopilot and the four adaptive autopilots.
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Fig. 8. Simulation results. The pitching moment applied to the quadcopter
with the four adaptive autopilots.

Figure 11 shows the trajectory-following response of the
quadcopter with the fixed-gain autopilot and adaptive autopi-
lot. Like the simulation experiments, the trajectory-following
response is similar for all adaptive autopilots. Moreover, the
trajectory-following response of all four adaptive autopilots
is better than the fixed-gain autopilot. Furthermore, similar to
the simulation experiments, with the adaptive autopilot with-
out the deadzone, high-frequency oscillations are observed in
the pitch and pitch rate response. Figures 12 and 13 show
the pitch-rate error response and the pitching moment in
the adaptive autopilot. Note the high-frequency oscillations
between 20 and 50 seconds in this case. In contrast, the three
adaptive autopilots with deadzones are able to suppress these
oscillations as shown in Figures 12 and 13.

Figure 14 shows the frequency content of the pitching
moment applied to the quadcopter. Note the large magnitude
of the frequency content at higher frequencies generated
by the first adaptive autopilot, whereas the high-frequency
content is suppressed with the deadzone nonlinearities in the
adaptive autopilot. Finally, Figure 15 shows the controller
gains updated by the RCAC algorithm in the four adaptive
autopilots. Note that without the deadzone nonlinearity, the
controller gains drift as shown in the first Figure 15a).
With the deadzone nonlinearity in the adaptive autopilot, the
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Fig. 9. Simulation results. The frequency content of the pitching moment
applied to the quadcopter with the four adaptive autopilots.
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Fig. 10. Simulation results. The pitch rate controller gains updated by
the RCAC algorithms in the four adaptive autopilots.

controller gain drift is mitigated.
To quantify the improvements with the deadzone-

augmented adaptive autopilots, we compute the cost metrics
Jr defined as the root mean square (RMS) value of the
position error and Jω defined as the RMS value of the pitch
rate error in the mission. Note that the metrics Jr and Jω
are computed offline after completing the mission. Figure
16 shows the cost metrics comparing the performance of the
four adaptive autopilots in both simulation and flight tests.
Note that the position-tracking performance improves with
all four adaptive autopilots in both simulation and flight tests.
However, without the deadzone nonlinearity, the adaptive
autopilot suffers from large pitch rate errors. The deadzone
nonlinearities in the adaptive autopilot mitigate the parameter
drift and thus improve the pitch rate error response, as shown
by the sharp drop in Jω .

V. CONCLUSIONS

This paper presented three deadzone-augumented adaptive
autopilots to increase robustness to adaptive parameter drift
caused by noise and small amplitude signals. The dead-
zones are implemented by three static nonlinear functions.
The modified adaptive autopilots were implemented in the
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Fig. 11. Physical flight results. Trajectory-following response of the
quadcopter with the fixed-gain autopilot and the four adaptive autopilots.
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Fig. 12. Physical flight results. Pitch-rate error response of the quadcopter
with the fixed-gain autopilot and the four adaptive autopilots.

PX4 flight stack and their performance was compared in
numerical simulation as well as physical flight tests. It was
shown that the deadzone nonlinearities can mitigate the
high-frequency oscillations that appear in the angular rate
response due to adaptive parameter drift without significantly
affecting the trajectory-following performance of the adap-
tive controller. Furthermore, it was shown that, out of the
three considered nonlinearities, augmenting RCAC with the
simplest discontinuous static function, resulted in the least
amount of parameter drift and the most stable flight.
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