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Abstract— This paper develops an adaptive digital controller
for sampled-data systems with unknown dynamics. The adap-
tive digital PID controller is based on data-driven retrospective
cost adaptive control (DDRCAC) with online closed-loop system
identification. Online system identification is based on recursive
least squares (RLS) with variable-rate forgetting (VRF), which
is used to construct a target model that provides the controller
based on retrospective cost adaptive control (RCAC) with the
required modeling information. For SISO plants, this modeling
information includes the sign of the leading numerator coeffi-
cient as well as nonminimum-phase (NMP) zeros. The present
paper illustrates the performance of DDRCAC-based digital
PID control on a first-order linear plant with unknown gain
sign, a NMP second-order linear plant, and a multicopter with
unknown dynamics.

I. INTRODUCTION
PID control provides a simple technique for following

setpoint commands and rejecting step disturbances, and thus
is the most widely used feedback control algorithm [1], [2].
Despite its simplicity, a PID controller must be tuned to
ensure closed-loop stability and respect actuator magnitude
constraints [3], [4]. Not surprisingly, numerous techniques
have been proposed for online PID controller tuning for
continuous-time [5]–[10] and discrete-time [11]–[14].

The present paper develops an adaptive PID controller as
a special case of a more general adaptive control technique.
In particular, we consider retrospective cost adaptive control
(RCAC), which re-optimizes the coefficients of the feedback
controller at each step [15]. For SISO plants, RCAC re-
quires limited modeling information, specifically, the leading
numerator coefficient and nonminimum-phase zeros. RCAC
was specialized to PID control in [16], where it was applied
to first-order-lag plants with deadtime as well as monotonic
input and output nonlinearities. Furthermore, adaptive au-
topilots based on RCAC/PID controllers were implemented
in multicopters [17], [18] and fixed-wing aircraft [19] for
adaptive trajectory tracking.

More recently, the need for modeling information by
RCAC was further mitigated by data-driven RCAC (DDR-
CAC), which uses online, closed-loop system identification
to construct a plant model [20]. For system identification,
DDRCAC uses recursive least squares (RLS) [21]. By in-
cluding variable-rate forgetting (VRF), RLS/VRF can more
quickly update the plant model when the plant is subjected
to unexpected and unknown changes [22], [23].

The contribution of the present paper is to apply the
data-driven approach of [21] to the PID controller structure
assumed in [16]. By combining these techniques, the goal is
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to implement PID controllers for setpoint command follow-
ing and constant disturbance rejection without the need for
manual tuning of the controller gains when the plant changes.

The contents of the paper are as follows. Section II
provides a statement of the control problem, which involves
continuous-time dynamics under sampled-data feedback con-
trol. Section III provides a review of the adaptive digital
PID controller based on RCAC, and Section IV introduces
the DDRCAC-based PID controller, in which online system
identification based on VRF-RLS provides a target model
to RCAC. Section V presents numerical examples illustrates
the performance of DDRCAC-based digital PID control, in
particular, a first-order linear plant with unknown gain sign,
a NMP second-order linear plant, and a multicopter with
unknown dynamics. Finally, Section VI presents conclusions.

Notation: q ∈ C denotes the forward-shift operator. For
all x ∈ Rn, diag(x) yields a n×n diagonal matrix with the
elements of x on the main diagonal. In is the n×n identity
matrix, 0n×m is the n × m zeros matrix, and 1n×m is the
n×m ones matrix. For all r ∈ R, er △

= 10r.

II. PROBLEM STATEMENT

To reflect the practical implementation of digital con-
trollers for physical systems, we consider continuous-time
dynamics under sampled-data control using discrete-time
adaptive (time-variant) controllers. In particular, we consider
the control architecture shown in Figure 1, where M is the
target SISO continuous-time system, t ≥ 0, r(t) ∈ R is
the command, u(t) ∈ R is the control, d(t) ∈ R is the
disturbance, v(t)

△
= u(t) + d(t) is the input of M, and

y(t) ∈ R is the output of M. In particular, r and y are
sampled to produce the sampled command rk ∈ R, and the
measurement yk ∈ R, respectively, which, for all k ≥ 0, are

rk
△
= r(kTs), (1)

yk
△
= y(kTs), (2)

where Ts > 0 is the sample time. The error ek
△
= rk − yk is

passed through the error-normalization function N : R → R
given by

N (e)
△
=

e

ν + |e|
, (3)

where ν ≥ 0, to yield the normalized error, which is used
as the performance variable zk, such that

zk
△
= N (ek). (4)

The adaptive digital PID controller, which is updated at each
step k, is denoted by Gc,k. The inputs to Gc,k are yk and
zk, and its output at each step k is the discrete-time control
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uk ∈ Rm. The continuous-time control signal u(t) applied
to the structure is generated by applying a zero-order-hold
operation to uk, that is, for all k ≥ 0, and, for all t ∈
[kTs, (k + 1)Ts),

u(t) = uk. (5)

The objective of the adaptive controller is to yield an input
signal that minimizes the difference between the command
and the output of the continuous-time system, that is, for
all t ≥ 0, yield u(t) such that |r(t) − y(t)| is minimized.
Note that, error-normalization is implemented to improve
robustness and command tracking, as shown in [16], and,
in the case where M is a MIMO continuous-time system,
multiple PID blocks can be used, as shown in Example 5.3.

+ N Gc,k ZOH + M
uk u v

d
Ts

Ts

yr rk

yk

-
ek zk

Fig. 1: Sampled-data implementation of adaptive PID controller for control
of the SISO continuous-time system M. All sample-and-hold operations
are synchronous. The error ek

△
= rk − yk is passed through the error-

normalization function N shown in (3) to generate the normalized error,
which is used as the performance variable zk of the adaptive controller. The
adaptive controller Gc,k generates the discrete-time control uk at each step
k. The resulting continuous-time control u(t) is generated by applying a
zero-order-hold operation to uk .

III. REVIEW OF ADAPTIVE DIGITAL PID CONTROLLER

This section reviews RCAC/PID. The discrete-time re-
quested control uk, which is determined by the adaptive
digital PID controller, has the form

uk = κp,kzk−1 + κi,kζk−1 + κd,k(zk−1 − zk−2), (6)

where κp,k, κi,k, and κd,k are time-varying PID gains and
ζk is given by the anti-windup integrator

ζk
△
=

k∑
j=0

zj −


(
sign

∑k
j=0 zj

)
(u− uk), uk < u,

0, u ≤ uk ≤ u,(
sign

∑k
j=0 zj

)
(uk − u), uk > u,

(7)

where u < u are the respective lower and upper anti-windup
thresholds. In this paper, u = −u = 50 since the effects of
saturation are not considered in this work. A related anti-
windup technique is given in [24, p. 310–311]. The control
(6) can be expressed as

uk = ϕc,kθc,k, (8)

where

ϕc,k
△
=
[
zk−1 ζk−1 zk−1 − zk−2

]
∈ R1×3, (9)

θc,k
△
=
[
κp,k κi,k κd,k

]T ∈ R3. (10)

Note that the regressor ϕc,k is constructed from the past
values of zk and ζk, and the controller coefficient vector
θc,k contains the time-dependent proportional, integral, and
derivative gains κp,k, κi,k, and κd,k. Furthermore, note that
the adaptive digital PID control can be specialized to adaptive
digital PI, PD, ID, P, I, and D control by omitting the
corresponding components of ϕc,k and θc,k.

Next, define the retrospective cost variable

z̃k(θ̃)
△
= zk −Gf(q)(uk − ϕc,kθ̃c), (11)

where Gf is a SISO asymptotically stable, strictly proper
transfer function, and θ̃c ∈ R3 is the controller coefficient
vector determined by optimization below. The rationale un-
derlying (11) is to replace the applied past control inputs with
the re-optimized control input ϕc,kθ̃c so that the closed-loop
transfer function from uk−ϕc,kθc,k+1 to zk matches Gf [15],
[20]. Consequently, Gf serves as a closed-loop target model
for adaptation.

In the present paper, Gf is chosen to be a finite-impulse-
response transfer function of window length nf of the form

Gf(q)
△
=

nf∑
i=1

Niq−i, (12)

where N1, . . . , Nnf
∈ R. We can thus rewrite (11) as

z̃k(θ̃) = zk −N(Ūk − ϕ̄c,kθ̃c), (13)

where

ϕ̄c,k
△
=

 ϕc,k−1

...
ϕc,k−nf

 ∈ Rnf×3, Ūk
△
=

 uk−1

...
uk−nf

 ∈ Rnf , (14)

N
△
= [ N1 · · · Nnf

] ∈ R1×nf . (15)

The choice of N includes all required modeling informa-
tion. Since the plant is SISO in this work, this information
consists of the sign of the leading numerator coefficient,
the relative degree of the sampled-data system, and all
nonminimum-phase (NMP) zeros [15], [20]. Since zeros are
invariant under feedback, omission of a NMP zero from Gf

may entail unstable pole-zero cancellation. Cancellation can
be prevented, however, by using the control weighting Ru

introduced below, as discussed in [15], [25]. In [16], N = σ,
where σ ∈ {−1, 1}. Note that N can be constructed and
updated online using data, as shown in Section IV.

Using (11), we define the retrospective cost function

Jc,k(θ̃c)
△
=

k∑
i=0

[z̃2i (θ̃c) +Ru(ϕc,kθ̃c)
2]

+ (θ̃c − θc,0)
TP−1

c,0 (θ̃c − θc,0), (16)

where θc,0 ∈ R3 is the initial vector of PID gains, Pc,0 ∈
R3×3 is positive definite, and Ru ≥ 0. As can be seen from
(8), Ru serves as a control weighting, which prevents RCAC
from cancelling unmodeled NMP zeros, and the matrix P−1

c,0

defines the regularization term and initializes the recursion
for Pc,k defined below.

Next, it follows from recursive least squares (RLS) mini-
mization [21] that, for all k ≥ 0, the unique global minimizer
θc,k+1 of (16) is given by

Pc,k+1 = Pc,k − Pc,k

[
Nϕ̄c,k
ϕc,k

]T
Γc,k

[
Nϕ̄c,k
ϕc,k

]
Pc,k, (17)

θc,k+1 = θc,k − Pc,k+1

[
Nϕ̄c,k
ϕc,k

]T
R̄

[
zk −N(Ūk − ϕ̄c,kθc,k)

ϕc,kθc,k

]
,

(18)
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where

Γc,k
△
= R̄− R̄

[
Nϕ̄c,k
ϕc,k

]
Ξ−1
c,k

[
Nϕ̄c,k
ϕc,k

]T
R̄ ∈ R2×2, (19)

Ξc,k
△
= P−1

c,k +

[
Nϕ̄c,k
ϕc,k

]T
R̄

[
Nϕ̄c,k
ϕc,k

]
∈ R2×2, (20)

R̄
△
= diag(1, Ru) ∈ R2×2. (21)

To update (17) and (18), let the initial conditions be z−3 =

z−2 = z−1
△
= 0, ζ−1

△
= 0, and u−1

△
= 0. The RCAC-based

adaptive digital PID controller is thus given by (7), (8), (9),
(10), (17), and (18). Note that this choice of initial conditions
implies that ϕc,−1 = 0. It thus follows that Pc,1 = Pc,0

and θc,1 = θc,0. Consequently, if θc,0 = 03×1, then the first
possibly nonzero control input is u2. For all of the numerical
simulations in this paper, θc,k is initialized as θc,0 = 03×1 to
reflect the absence of additional prior modeling information.
For convenience, we set Pc,0 = pc,0I3, where the scalar
pc,0 > 0 determines the initial rate of adaptation.

IV. DATA-DRIVEN ADAPTIVE DIGITAL PID
CONTROLLER

This section introduces DDRCAC/PID, in which system
identification is used to update N in (17) and (18) at
each time step k. First, the RLS/VRF system identification
technique is introduced.

Let n̂ ≥ 0 and, for all k ≥ 0, let Fm,1,k, . . . , Fm,n̂,k ∈ R
and Gm,1,k, . . . , Gm,n̂,k ∈ R be the coefficient matrices to
be estimated using RLS. Furthermore, let ŷk ∈ Rp be an
estimate of yk defined by

ŷk
△
= −

n̂∑
i=1

Fm,i,kyk−i +

n̂∑
i=1

Gm,i,kuk−i, (22)

where
y−n̂ = · · · = y−1 = 0, (23)
u−n̂ = · · · = u−1 = 0. (24)

It follows from (22) that, for all k ≥ 0,

ŷk = ϕm,kθm,k, (25)

where
θm,k

△
=
[
Fm,1,k · · · Fm,n̂,k Gm,1,k · · · Gm,n̂,k

]T
∈ R2n̂, (26)

ϕm,k
△
=
[
−yk−1 · · · −yk−n̂ uk−1 · · · uk−n̂

]
∈ R1×2n̂. (27)

To determine the update equations for θm,k, for all k ≥ 0,
define em,k : R2n̂ → R by

em,k(θ̃m)
△
= yk − ϕm,kθ̃m, (28)

where θ̃m ∈ R2n̂. Using (25), the identification error at step
k is defined by

em,k(θm,k) = yk − ŷk. (29)

For all k ≥ 0, the RLS identification cumulative cost is
defined by

Jm,k(θ̃m)
△
=

k∑
i=0

ρi

ρk
e2m,i(θ̃m) +

1

ρk
(θ̃m − θm,0)

TP−1
m,0(θ̃m − θm,0),

(30)

where Pm,0 ∈ R2n̂×2n̂ is positive definite, θm,0 ∈ R2n̂ is the
initial estimate of the coefficient vector, and, for all i ≥ 0,

ρi
△
=

i∏
j=0

λ−1
j . (31)

For all j ≥ 0, the parameter λj ∈ (0, 1] is the forgetting
factor defined by λj

△
= β−1

j , where

βj
△
=

{
1, j < τd,

1 + ηβ̄j , j ≥ τd,
(32)

β̄j
△
= γτd,τn,j1

(
γτd,τn,j

)
, (33)

τd > τn >= 1, η > 0, 1 : R → {0, 1} is the unit step
function, such that

1(a) △
=

{
1, a ≥ 0,

0, otherwise,
(34)

and

γτd,τn,k
△
=

√
1
τn

∑k
i=k−τn

e2m,i(θm,i)√
1
τd

∑k
i=k−τd

e2m,i(θm,i)
− 1. (35)

Then, it follows from recursive least squares (RLS) mini-
mization [21] that, for all k ≥ 0, the unique global minimizer
θm,k+1 of (30) is given by

Pm,k+1 =βkPm,k

(
I2n̂ −

ϕT
m,kϕm,k

1
βk

+ ϕm,kPm,kϕT
m,k

Pm,k

)
,

(36)

θm,k+1 =θm,k + Pm,k+1ϕ
T
m,k(yk − ϕm,kθm,k), (37)

where Pm,0 is the performance-regularization weighting in
(30). Additional details concerning the VRF/RLS techniques
used in this work are given in [22].

Next, let n̂ = nf and, for all k ≥ 0, define Nk ∈ R1×nf

such that

Nk
△
=

{
[−1 01×nf−1], Gm,1,k = · · · = Gm,nf ,k = 0,

[Gm,1,k · · · Gm,nf ,k], otherwise.
(38)

Then, for all k ≥ 0, replacing N with Nk in (17), and (18)
yields the DDRCAC update equations

Pc,k+1 = Pc,k − Pc,k

[
Nkϕ̄c,k
ϕc,k

]T
Γc,k

[
Nkϕ̄c,k
ϕc,k

]
Pc,k, (39)

θc,k+1 = θc,k − Pc,k+1

[
Nkϕ̄c,k
ϕc,k

]T
R̄

[
zk −Nk(Ūk − ϕ̄c,kθc,k)

ϕc,kθc,k

]
,

(40)

where

Γc,k = R̄− R̄

[
Nkϕ̄c,k
ϕc,k

]
Ξ−1
c,k

[
Nkϕ̄c,k
ϕc,k

]T
R̄ ∈ R2×2, (41)

Ξc,k = P−1
c,k +

[
Nkϕ̄c,k
ϕc,k

]T
R̄

[
Nkϕ̄c,k
ϕc,k

]
∈ R2×2. (42)

The DDRCAC-based adaptive digital PID controller is thus
given by (7), (8), (9), (10), (26), (27), (32), (36), (37), (38),
(39), and (40). At each step k, Nk provides the numerator
coefficients of the identified system to RCAC, and thus
provides required modeling information such as the sign of
the leading numerator coefficient as well as NMP zeros.
The initial conditions for the RCAC states in DDRCAC
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are the same as the ones stated in Section III. For all of
the numerical simulations in this paper, θm,k is initialized
as θm,0 = 03×1 to reflect the absence of additional prior
modeling information. For convenience, we set Pm,0 =
pm,0I3, where the scalar pm,0 > 0 determines the initial
rate of identification.

V. NUMERICAL EXAMPLES

In this section, DDRCAC/PID is implemented in numer-
ical simulations to illustrate its performance and compared
with RCAC/PID. Example 5.1 features a first-order linear
plant with unknown gain sign. Example 5.2 features a
second-order linear NMP plant. Example 5.3 features a
multicopter with unknown dynamics . In Examples 5.1 and
5.2, Ts = 0.1 s. In Example 5.3, Ts = 0.001 s. Tables I and
II show the RCAC and DDRCAC hyperparameters used in
the numerical examples. The same RCAC hyperparameters
are used by both RCAC/PID and DDRCAC/PID controllers.
In Example 5.3, a total of 6 controllers are implemented, 3
per position and velocity loop for each of the x, y, and z
axes. Details are provided in Example 5.3.
TABLE I: RCAC and DDRCAC hyperparameters in Examples 5.1 and 5.2

Example Control pc,0 Ru Gf (q) ν η τn τd n̂ pm,0

5.1
PID

0.5
0

{−1/q, 1/q}
50 0.1 40 200

3 5e-4

5.2 1
{−1/q,

−(q− 2)/q2,

−(q− 10)/q2}
2 5e-3

TABLE II: RCAC and DDRCAC hyperparameters in Example 5.3

Loop Control Axes pc,0 Ru Gf (q) ν η τn τd n̂ pm,0

Position P
x, y

0.1
0.01

−(5e−3)/q

1 0.1 15 20 1 1
z

Velocity PI
x, y

1
{−0.5/q, 0.5/q}

z −0.5/q

Example 5.1: First-order linear plant with unknown gain
sign. Let M be the first-order-lag-plus-dead-time dynamics

G(s) =
Ke−τdt

τcs + 1
, (43)

where K ∈ R is the DC gain, τdt > 0 is the dead time, and
τc > 0 is the time constant. In this example, let y(0) = 0,
K = 1, τdt = 1 s, and τc ∈ {0.2, 1, 5} s. Then, the control
objective is to follow the command

r(t) =


8, t ∈ [0, 80] s,

−9, t ∈ (80, 240] s,

4, t > 240 s,

(44)

in the presence of the disturbance

d(t) =

{
8, t ∈ [0, 160] s,

4, t > 160 s.
(45)

The results of the numerical simulations, where the control
is given by RCAC/PID with Gf(q) = −1/q, RCAC/PID
with Gf(q) = 1/q, and DDRCAC/PID, are shown in Figures
2, 3, and 4. Note that the closed-loop system is unstable
when RCAC/PID is implemented with Gf(q) = 1/q, since
an incorrect gain is specified in the target model. In contrast,
DDRCAC/PID does not require this information. ⋄
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Fig. 2: Example 5.1: Control of the first-order-lag-plus-dead-time dynamics
(43) with y(0) = 0, K = 1, τdt = 1 s, and τc = 0.2 s. The control is
given by RCAC/PID with Gf(q) = −1/q, RCAC/PID with Gf(q) = 1/q,
and DDRCAC/PID.
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Fig. 3: Example 5.1: Control of the first-order-lag-plus-dead-time dynamics
(43) with y(0) = 0, K = 1, τdt = 1 s and τc = 1 s. The control is given
by RCAC/PID with Gf(q) = −1/q, RCAC/PID with Gf(q) = 1/q, and
DDRCAC/PID.
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Fig. 4: Example 5.1: Control of the first-order-lag-plus-dead-time dynamics
(43) with y(0) = 0, K = 1, τdt = 1 s, and τc = 5 s. The control is given
by RCAC/PID with Gf(q) = −1/q, RCAC/PID with Gf(q) = 1/q, and
DDRCAC/PID.
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Example 5.2: Second-order linear NMP plant. Let M be
the second-order linear NMP dynamics

G(s) = K
s − b

s2 + 2ξs + 1
, (46)

where K ∈ R is the DC gain, b > 0 is the NMP zero, and
ξ is a damping coefficient. In this example, let y(0) = 0,
ẏ(0) = 0, K = 0.5, b = 2 s, and ξ ∈ {0.2, 1} s. Then,
the control objective is to follow the command (44) in the
presence of the disturbance (45)

The results of the numerical simulations, where the control
is given by RCAC/PID with Gf(q) = −1/q, RCAC/PID
with Gf(q) = −(q − 2)/q2, RCAC/PID with Gf(q) =
−(q − 10)/q2, and DDRCAC/PID, are shown in Figures 5
and 6. Note that the closed-loop response is unstable when
RCAC/PID is implemented with Gf(q) = −1/q since the
NMP zero is not included in the target model. This can be
mitigated by including a NMP zero in Gf to the right of the
true NMP zero, as shown in the cases in which RCAC/PID
is implemented with Gf(q) = −(q − 10)/q2. In contrast,
DDRCAC/PID does not require this information. ⋄
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Fig. 5: Example 5.2: Control of the second-order linear NMP plant dynamics
(46) with y(0) = 0, ẏ(0) = 0, K = 0.5, b = 2 s, and ξ = 1 s. The
control is given by RCAC/PID with Gf(q) = −1/q, RCAC/PID with
Gf(q) = −(q − 2)/q2, RCAC/PID with Gf(q) = −(q − 10)/q2, and
DDRCAC/PID.

Example 5.3: Multicopter with unknown dynamics. Let
M be given by the nonlinear multicopter dynamics (4)–
(9) and (11)–(16) in [26]. The control objective is to follow
a second-order Hilbert curve at a constant altitude in the
absence of a disturbance. The control architecture is given
by an inner-outer loop configuration in which multiple SISO
PID controllers are implemented. The inner-loop control
architecture is given by Figure 3 in [17] and the outer-loop
control architecture Figure 6 in [17]. The inner-loop archi-
tecture implements fixed-gain PID controllers. RCAC/PID
and DDRCAC/PID controllers are placed in parallel with
fixed-gain PID controllers in the outer-loop architecture to
adaptively improve command following performance, simi-
larly to [17]. Two controllers (P for the position loop and
PI for the velocity loop) are cascaded for each of the three
displacements, that is, along the x, y, and z axes. Hence,
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Fig. 6: Example 5.2: Control of the second-order linear NMP plant dynamics
(46) with y(0) = 0, ẏ(0) = 0, K = 0.5, b = 2 s, and ξ = 0.3 s. The
control is given by RCAC/PID with Gf(q) = −1/q, RCAC/PID with
Gf(q) = −(q − 2)/q2, RCAC/PID with Gf(q) = −(q − 10)/q2, and
DDRCAC/PID.

3 P and 3 PI controllers are required by the outer-loop
architecture. The D gain is not used in this application.

Let Gf,vxy be the target model corresponding to the adap-
tive RCAC PI controllers implemented in the velocity loop
for control over the x and y axes. The results of the numerical
simulations, where the control is given by RCAC/PID with
Gf,vxy(q) = −0.5/q, RCAC/PID with Gf,vxy(q) = 0.5/q,
and DDRCAC/PID, are shown in Figures 7, 8, and 9. Note
that the closed-loop system is unstable when RCAC/PID is
implemented with Gf,vxy(q) = 0.5/q, since an incorrect
gain is specified in the target model of a subset of all imple-
mented RCAC/PID controllers. In contrast, DDRCAC/PID
does not require this information. ⋄
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Fig. 7: Example 5.3: Position control of the nonlinear multicopter dynamics
(4)–(9) and (11)–(16) in [26]. The plot shows the projection of the trajectory
of the multicopter and the commanded trajectory over the x− y plane. The
control is given by RCAC/PID with Gf,vxy(q) = −0.5/q, RCAC/PID
with Gf,vxy(q) = 0.5/q, and DDRCAC/PID.

VI. CONCLUSIONS

This paper introduced an adaptive digital PID controller
for discrete-time output-feedback control of continuous-time
systems. The gains of the PID controller are updated at each
step by DDRCAC, which uses VRF-RLS to provide RCAC
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Fig. 8: Example 5.3: Position control of the nonlinear multicopter dynamics
(4)–(9) and (11)–(16) in [26]. The plot shows the trajectory of the multi-
copter along the x, y, and z axes and the commanded trajectory versus time.
The control is given by RCAC/PID with Gf,vxy(q) = −0.5/q, RCAC/PID
with Gf,vxy(q) = 0.5/q, and DDRCAC/PID.
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Fig. 9: Example 5.3: Root mean square (RMS) of the 3D position error
for the multicopter flights, where the control is given by RCAC/PID
with Gf,vxy(q) = −0.5/q, RCAC/PID with Gf,vxy(q) = 0.5/q, and
DDRCAC/PID.

with the required modeling information in the form of a
target model that is updated at each time step. Numerical
examples illustrate the performance of this technique and
provide a comparison with RCAC-based digital PID control
using a fixed target model. Future work will focus on exper-
imental implementation of this approach on a multicopter,
where the goal is to improve trajectory tracking with an
unknown suspended payload as well as under actuator failure
scenarios.
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