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Abstract
This paper presents a novel approach to model reference adaptive control
inspired by the adaptive pole-placement controller (APPC) of Elliot and based
on retrospective cost optimization. Retrospective cost model reference adap-
tive control (RC-MRAC) is applicable to nonminimum-phase (NMP) systems
assuming that the NMP zeros are known. Under this assumption, the advan-
tage of RC-MRAC is a reduced need for persistency. The present paper com-
pares APPC and RC-MRAC under various levels of persistency in the com-
mand for minimum-phase and NMP systems. It is shown numerically that
the model-following performance of RC-MRAC is less sensitive to the persis-
tency of the command compared to APPC at the cost of knowledge of the NMP
zeros. RC-MRAC is also shown to be applicable for disturbance rejection under
unknown harmonic disturbances.
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1 INTRODUCTION

The objective of model reference adaptive control (MRAC) is to have the output of an uncertain system follow the response
of a given reference system. The literature on MRAC and its applications is vast and varied, for example, References 1–3.
MRAC methods can be divided into two categories, namely, indirect and direct. Indirect MRAC uses system identifi-
cation followed by controller adaptation using the identified model, whereas direct MRAC adapts the controller using
limited modeling information. Both types of methods typically use either gradient descent or recursive least squares for
the adaptation.4–7 MRAC methods have been extensively developed, including extensions to nonminimum-phase (NMP)
and nonlinear systems.8–14

In the context of direct adaptive control, NMP systems are an important class of systems. These systems contain zeros
outside of the unit disk and limit the achievable controller performance.15 NMP systems also make development of direct
adaptive control methods difficult since these methods tend to cancel unknown NMP zeros with a controller pole, leading
to instability. Additionally, sampling a minimum-phase continuous-time system with relative degree greater than 2 leads
to NMP discrete-time dynamics.16

A relevant method is the adaptive pole placement controller (APPC) developed in References 8,9,17, which can
be applied to NMP systems with unknown NMP zeros. This is accomplished by overparameterizing the 2n parameter
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controller identification problem as a 4n parameter problem using a Bezout identity. The drawback of this approach is
the need for sufficient persistency in order to achieve model-following, even for step commands. Although this require-
ment was alleviated in Reference 18 through the use of dynamic regressor extension and mixing (DREM), the need for
persistency is nontrivial.

The present paper develops a novel MRAC technique based on retrospective cost adaptive control (RCAC) and com-
pares it with APPC. RCAC is a direct adaptive control method for command following and disturbance rejection for
systems with uncertain dynamics and disturbance spectra.19 For SISO discrete-time or sampled-data systems, RCAC
requires knowledge of the sign of the leading numerator coefficient, relative degree, and NMP zeros. RCAC minimizes a
retrospective performance measure based on the difference between filtered past control inputs and filtered, re-optimized
past control inputs. To further reduce the dependence on prior modeling, an indirect adaptive control extension of RCAC
was developed in Reference 20.

An early version of retrospective cost model reference adaptive control (RC-MRAC) was developed in Reference 21
with stability analysis given in Reference 22. A related technique was developed in Reference 23. Similarly to APPC,
RC-MRAC uses recursive least squares for the adaptation law, which has a computational complexity of O(n2). As
in the case of RCAC, RC-MRAC is applicable to discrete-time and sampled-data systems with known NMP zeros;
minimum-phase zeros need not be known.

The goal and contribution of the present paper is to develop a new RC-MRAC method and assess its performance
from the perspective of both command following and adaptive pole placement in comparison to APPC. Additionally,
we show that, with minor modifications, RC-MRAC can perform disturbance rejection for harmonic disturbances with
unknown spectra. The present paper significantly expands on the results in Reference 24. Numerical examples show that,
in contrast to Reference 18, RC-MRAC does not require persistency. The price paid for alleviating the need for persistency
is knowledge of the NMP zeros.

The structure of the paper is as follows, Section 2 gives an overview of the MRAC problem, Section 3 gives a derivation
of APPC, Section 4 gives a derivation of RC-MRAC, Section 5 shows the connection between APPC and RC-MRAC, and
Sections 6–8 provide examples and comparison of both algorithms for minimum- and NMP systems, as well as harmonic
disturbance rejection.

2 THE MODEL REFERENCE ADAPTIVE CONTROL PROBLEM

Consider the discrete-time SISO system

yk =
N(q−1)
D(q−1)

uk, (1)

where

N(q−1)
△
=

n∑

i=nr

Niq−i
, (2)

D(q−1)
△
= 1 +

n∑

i=1
Diq−i

, (3)

are coprime, Nnr ≠ 0, and nr is the relative degree of N(q−1)
D(q−1)

as a rational function of q. In the model reference adaptive
control (MRAC) problem, the goal is to find a controller Gc(q−1) such that the output yk follows the desired reference
response ym,k to a command rk given by

ym,k =
Nm(q−1)
Dm(q−1)

rk, (4)

where

Nm(q−1)
△
=

n∑

i=nr

Nm,iq−i
, (5)
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2406 MOHSENI and BERNSTEIN

F I G U R E 1 Block diagram of the direct model reference adaptive control problem.

Dm(q−1)
△
= 1 +

n∑

i=1
Dm,iq−i

. (6)

As shown in Figure 1, the error ek between the actual plant response yk and the reference model response ym,k is used
to update the controller. The direct MRAC problem differs from the indirect case in that the plant is not identified, but
knowledge of the NMP zeros of (1) is typically needed to prevent unstable pole-zero cancellation.

3 ADAPTIVE POLE PLACEMENT CONTROLLER

The adaptive pole placement controller (APPC) developed in References 8,9 addresses the MRAC problem in the case
where Nm(q−1) = N(q−1). Through the use of a Bezout identity, no knowledge of the NMP zeros of the plant is needed
and only the plant order n needs to be known. This comes at the cost of higher persistency of excitation requirements
which has been previously demonstrated.18 For reference, APPC is summarized below.

3.1 APPC derivation

Defining

xk
△
= 1

D(q−1)
uk, (7)

which satisfies

D(q−1)xk = uk, (8)

it follows that (1) can be written as

yk = N(q−1)xk. (9)

For the command rk, consider the controller

uk = Nc(q−1)yk + Dc(q−1)uk +H(q−1)rk, (10)

where

Nc(q−1)
△
=

n∑

i=1
Nc,iq−i

, (11)
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MOHSENI and BERNSTEIN 2407

Dc(q−1)
△
=

n∑

i=1
Dc,iq−i

, (12)

H(q−1)
△
= 1 +

n∑

i=1
Hiq−i

, (13)

and H(q−1) is an asymptotically stable monic polynomial as a function of q. Combining (8), (9), and (10) yields

D(q−1)xk = Nc(q−1)N(q−1)xk + Dc(q−1)D(q−1)xk +H(q−1)rk, (14)

which implies

xk =
H(q−1)
̃D(q−1)

rk, (15)

where

̃D(q−1)
△
= D(q−1) − Nc(q−1)N(q−1) − Dc(q−1)D(q−1). (16)

Proposition 1. Let the desired closed-loop poles be the roots of

Dm(q−1) = 1 +
n∑

i=1
Dm,iq−i

, (17)

and assume there exist N∗
c (q−1) and D∗

c (q−1) such that

Dm(q−1)H(q−1) = ̃D∗(q−1), (18)

where

̃D∗(q−1)
△
= D(q−1) − N∗

c (q−1)N(q−1) − D∗
c (q−1)D(q−1). (19)

Then, the closed-loop dynamics are given by

yk =
N(q−1)

Dm(q−1)
rk. (20)

Proof. Using (9), (15) with ̃D(q−1) = ̃D∗(q−1), and (18),

yk = N(q−1)xk =
N(q−1)H(q−1)

̃D∗(q−1)
rk =

N(q−1)H(q−1)
Dm(q−1)H(q−1)

rk =
N(q−1)

Dm(q−1)
rk. (21)

Note that, although the numerator of the closed loop dynamics (21) is N(q−1), Proposition 1 does not
require knowledge of N(q−1). ▪

Proposition 2. Let B∗(q−1) and C∗(q−1) satisfy the Bezout identity

1 = B∗(q−1)N(q−1) + C∗(q−1)D(q−1), (22)

where

B∗(q−1)
△
=

n∑

i=1
B∗i q−i

, (23)

C∗(q−1)
△
= 1 +

n∑

i=1
C∗

i q−i
. (24)
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2408 MOHSENI and BERNSTEIN

Then,

Dm(q−1)H(q−1)[ ̃B(q−1)yk + ̃C(q−1)uk] + [Ñc(q−1)yk + ̃Dc(q−1)uk]

= Dm(q−1)H(q−1)[ ̂B(q−1)yk + ̂C(q−1)uk] − [uk − ̂Nc(q−1)yk − ̂Dc(q−1)uk], (25)

where

̃B(q−1)
△
= ̂B(q−1) − B∗(q−1), (26)

̃C(q−1)
△
= ̂C(q−1) − C∗(q−1), (27)

Ñc(q−1)
△
= ̂Nc(q−1) − N∗

c (q−1), (28)

̃Dc(q−1)
△
= ̂Dc(q−1) − D∗

c (q−1). (29)

Proof. Multiplying both sides of (19) by xk, and using (8), (9), and (18) yields

Dm(q−1)H(q−1)xk = uk − N∗
c (q−1)yk − D∗

c (q−1)uk. (30)

Multiplying both sides of (22) by xk and using (8) and (9) yields

xk = B∗(q−1)yk + C∗(q−1)uk. (31)

Substituting (31) into (30) yields

Dm(q−1)H(q−1)[B∗(q−1)yk + C∗(q−1)uk] = uk − N∗
c (q−1)yk − D∗

c (q−1)uk. (32)

Finally, substituting (26)–(29) into (32) yields (25). ▪

Note that all the terms on the right-hand side of (25) are known, and thus the sum of terms on the left-hand side is
known despite the fact that Ñc(q−1), ̃Dc(q−1), ̃B(q−1) and ̃C(q−1) are individually unknown. Furthermore, if (26)–(29) are
all zero, then both sides of (25) are zero. We thus define the performance variable

zk
△
= Dm(q−1)H(q−1)[ ̂B(q−1)yk + ̂C(q−1)uk] − [uk − ̂Nc(q−1)yk − ̂Dc(q−1)uk] (33)
= Dm(q−1)H(q−1)[ ̃B(q−1)yk + ̃C(q−1)uk] + [Ñc(q−1)yk + ̃Dc(q−1)uk]. (34)

Note that, if Ñc(q−1), ̃Dc(q−1), ̃B(q−1), and ̃C(q−1) are all zero, then zk is zero. We thus seek estimates ̂Nc(q−1), ̂Dc(q−1),
̂B(q−1) and ̂C(q−1) of N∗

c (q−1), D∗
c (q−1), B∗(q−1) and C∗(q−1), respectively, that minimize the magnitude of zk.

3.2 APPC algorithm

Proposition 3. Define

𝜃1
△
=
[

N∗
c,1 · · · N∗

c,n D∗
c,1 · · · D∗

c,n

]T
, (35)

𝜃2
△
=
[

B∗c,1 · · · B∗c,n C∗
c,1 · · · C∗

c,n

]T
. (36)

Then,

zk =
[
Φk Φf,k

][
𝜃1

𝜃2

]
+ uf,k, (37)
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MOHSENI and BERNSTEIN 2409

where

Φk
△
=
[

yk−1 · · · yk−n uk−1 · · · uk−n

]
, (38)

Φf,k
△
= Dm(q−1)H(q−1)Φk, (39)

uf,k
△
= [Dm(q−1)H(q−1) − 1]uk. (40)

Proof. Substituting (35), (36) and (38)–(40) into (33) yields (37). ▪

Since N∗
c (q−1), D∗

c (q−1), B∗(q−1) and C∗(q−1) are unknown, the goal is to solve the regression (37) at each step k to
obtain estimates ̂

𝜃1,k and ̂
𝜃2,k of the polynomial coefficients 𝜃1 and 𝜃2, respectively. The estimation error is thus given by

ẑk( ̂𝜃1,k, ̂𝜃2,k)
△
=
[
Φk Φf,k

][
̂
𝜃1,k

̂
𝜃2,k

]
+ uf,k. (41)

For regression at each step, recursive least squares (RLS) is used to minimize the cost function

Jk( ̂𝜃1,k, ̂𝜃2,k)
△
=

k∑

i=1
𝜆

k−i[ẑi( ̂𝜃1,i, ̂𝜃2,i)Tẑi( ̂𝜃1,i, ̂𝜃2,i)] + 𝜆

k

([
̂
𝜃1,k

̂
𝜃2,k

]
−

[
̂
𝜃1,0

̂
𝜃2,0

])T

R
𝜃

([
̂
𝜃1,k

̂
𝜃2,k

]
−

[
̂
𝜃1,0

̂
𝜃2,0

])
, (42)

where 𝜆 ∈ (0, 1] is the forgetting factor. Using the computed RLS solution and (10), the control input at step k + 1 is
given by

uk+1 = Φk+1 ̂𝜃1,k+1 +H(q−1)rk+1. (43)

Note that the identified Bezout coefficients ̂B(q−1) and ̂C(q−1) are available from the RLS solution. However, these esti-
mates are not used to determine the control input. In addition, ̂B(q−1) and ̂C(q−1) could be used to obtain estimates of
N(q−1) and D(q−1). However, these estimates are not needed for APPC.

4 RETROSPECTIVE COST MODEL REFERENCE ADAPTIVE CONTROL

4.1 RC-MRAC derivation

Let N(q−1) be factored as

N(q−1) = Nnr Nu(q−1)Ns(q−1)q−nr
, (44)

where Nu(q−1) and Ns(q−1) as a function of q are monic polynomials of order nu and ns whose roots have modulus at least
1 and less than 1, respectively. Next, consider the controller

uk = Nc(q−1)yk + Dc(q−1)uk + Rc(q−1)F(q−1)rk, (45)

where Nc(q−1) and Dc(q−1) are given by (11) and (12), and

Rc(q−1)
△
= Rc,0 +

ns∑

i=1
Rc,iq−i

, (46)

F(q−1)
△
= 1 +

n−ns∑

i=1
Fiq−i

, (47)

where F(q−1) is an arbitrary stable monic polynomial in q. Combining (8), (9), and (45) yields

D(q−1)xk = Nc(q−1)N(q−1)xk + Dc(q−1)D(q−1)xk + Rc(q−1)F(q−1)rk, (48)
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2410 MOHSENI and BERNSTEIN

which implies

xk =
Rc(q−1)F(q−1)

̃D(q−1)
rk, (49)

where

̃D(q−1)
△
= D(q−1) − Nc(q−1)N(q−1) − Dc(q−1)D(q−1). (50)

Proposition 4. Let the desired closed-loop poles be the roots of

Dm(q−1) = 1 +
n∑

i=1
Dm,iq−i

, (51)

and assume there exist N∗
c (q−1) and D∗

c (q−1) such that

Dm(q−1)Ns(q−1)F(q−1) = ̃D∗(q−1), (52)

where

̃D∗(q−1)
△
= D(q−1) − N∗

c (q−1)N(q−1) − D∗
c (q−1)D(q−1). (53)

Then, the closed-loop dynamics are given by

yk =
Nnr Nu(q−1)Rc(q−1)q−nr

Dm(q−1)
rk. (54)

Proof. Using (9), (49) with ̃D(q−1) = ̃D∗(q−1), and (52),

yk = N(q−1)xk =
N(q−1)Rc(q−1)F(q−1)

̃D∗(q−1)
rk =

N(q−1)Rc(q−1)F(q−1)
Dm(q−1)Ns(q−1)F(q−1)

rk =
Nnr Nu(q−1)Rc(q−1)q−nr

Dm(q−1)
rk.

▪

Proposition 5. Assume there exists R∗c (q−1) such that

Nm(q−1) = Nnr Nu(q−1)R∗c (q−1)q−nr
, (55)

and let

Ñc(q−1)
△
= ̂Nc(q−1) − N∗

c (q−1), (56)

̃Dc(q−1)
△
= ̂Dc(q−1) − D∗

c (q−1), (57)

̃Rc(q−1)
△
= ̂Rc(q−1) − R∗c (q−1). (58)

Then,

Nnr Nu(q−1)q−nr[Ñc(q−1)yk + ̃Dc(q−1)uk + ̃Rc(q−1)rk]

= Dm(q−1)F(q−1)(yk − ym,k) − Nnr Nu(q−1)q−nr[uk − ̂Nc(q−1)yk − ̂Dc(q−1)uk − ̂Rc(q−1)rk] (59)

Proof. Multiplying both sides of (53) by xk, and using (8), (9), and (52) yields

Dm(q−1)Ns(q−1)F(q−1)xk = uk − N∗
c (q−1)yk − D∗

c (q−1)uk. (60)
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MOHSENI and BERNSTEIN 2411

Then, multiplying both sides of (60) by Nnr Nu(q−1)q−nr and using (9) yields

Dm(q−1)F(q−1)yk = Nnr Nu(q−1)q−nr[uk − N∗
c (q−1)yk − D∗

c (q−1)uk]. (61)

Subtracting F(q−1)Nm(q−1)rk from both sides of (61) and using (4) yields

Dm(q−1)F(q−1)(yk − ym,k) = Nnr Nu(q−1)q−nr[uk − N∗
c (q−1)yk − D∗

c (q−1)uk] − F(q−1)Nm(q−1)rk. (62)

Then, combining (55) with (62) yields

Dm(q−1)F(q−1)(yk − ym,k) − Nnr Nu(q−1)q−nr[uk − N∗
c (q−1)yk − D∗

c (q−1)uk − R∗c (q−1)F(q−1)rk] = 0. (63)

Substituting (56)–(58) into (63) yields (59). ▪

Note that all the terms on the right-hand side of (59) are known, and thus the sum of terms on the left-hand side
is known despite the fact that Ñc(q−1), ̃Dc(q−1), and ̃Rc(q−1) are individually unknown. Furthermore, if (56)–(58) are all
zero, then both sides of (59) are zero. We thus define the performance variable

zk
△
= Dm(q−1)F(q−1)(yk − ym,k) − Nnr Nu(q−1)q−nr[uk − ̂Nc(q−1)yk − ̂Dc(q−1)uk − ̂Rc(q−1)F(q−1)rk] (64)
= Nnr Nu(q−1)q−nr[Ñc(q−1)yk + ̃Dc(q−1)uk + ̃Rc(q−1)F(q−1)rk]. (65)

Note that, if Ñc(q−1), ̃Dc(q−1), and ̃Rc(q−1) are all zero, then zk is zero. We thus seek estimates ̂Nc(q−1), ̂Dc(q−1), and ̂Rc(q−1)
of N∗

c (q−1), D∗
c (q−1), and R∗c (q−1), respectively, that minimize the magnitude of zk.

4.2 RC-MRAC algorithm

Proposition 6. Define

𝜃

△
=
[

N∗
c,1 · · · N∗

c,n D∗
c,1 · · · D∗

c,n R∗c,0 · · · R∗c,ns

]T
, (66)

Then,

zk = zf,k − uf,k + Φf,k𝜃, (67)

where

rf,k
△
= F(q−1)rk (68)

Φk
△
=
[

yk−1 · · · yk−n uk−1 · · · uk−n rf,k · · · rf,k−ns

]
, (69)

Φf,k
△
= Nnr Nu(q−1)q−nrΦk, (70)

uf,k
△
= Nnr Nu(q−1)q−nr uk. (71)

zf,k
△
= Dm(q−1)F(q−1)(yk − ym,k). (72)

Proof. Substituting (66), and (68)–(72) into (64) yields (67). ▪

Since N∗
c (q−1), D∗

c (q−1), and R∗c (q−1) are unknown, the goal is to solve the regression (67) at each step k to obtain the
estimate ̂

𝜃k. The estimation error is thus given by

ẑk( ̂𝜃k)
△
= zf,k − uf,k + Φf,k ̂𝜃k. (73)
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2412 MOHSENI and BERNSTEIN

Algorithm 1. RC-MRAC

Initialize: Nnr ,Nu(q−1),nr,ns,F(q−1), Nm(q−1),Dm(q−1), rf,0 = r0, P0 = R−1
𝜃

positive-definite, 𝜆 ∈ (0, 1], k = 0, controller
coefficients ̂

𝜃k initialized as 0, and the regressor Φk initialized as Φk =
[
01×2n rf,0 01×ns

]

function RC-MRAC(yk,uk, rk, rk+1)
Compute the reference model measurement
ym,k ←

Nm(q−1)
Dm(q−1)

rk

Filter command, regressor, control, and tracking error
rf,k+1 ← F(q−1)rk+1

Φf,k ← Nnr Nu(q−1)q−nrΦk

uf,k ← Nnr Nu(q−1)q−nr uk

zf,k ← Dm(q−1)F(q−1)(yk − ym,k)
Compute the performance variable
zk ← zf,k − uf,k + Φf,k ̂𝜃k

Update the controller coefficients using RLS
Pk+1 ←

1
𝜆

Pk − 1
𝜆

PkΦT
k (𝜆 + ΦkPkΦT

k )
−1ΦkPk

̂
𝜃k+1 ← ̂

𝜃k + Pk+1ΦT
k zk

Φk+1 ← Φk

Update the regressor Φk+1 with yk, uk, rf,k+1, where Φk =
[
yk−1 · · · yk−n uk−1 · · · uk−n rf,k · · · rf,k−ns

]

Compute control input
uk+1 ← Φk+1 ̂𝜃k+1

k ← k + 1
end function

For regression at each step, RLS is used to minimize the cost function

Jk( ̂𝜃k)
△
=

k∑

i=1
𝜆

k−i[ẑi( ̂𝜃i)Tẑi( ̂𝜃i)] + 𝜆

k( ̂𝜃k − ̂
𝜃0)TR

𝜃
( ̂𝜃k − ̂

𝜃0), (74)

where 𝜆 ∈ (0, 1] is the forgetting factor. Using the computed RLS solution and (45), the control input at step k + 1 is
given by

uk+1 = Φk+1 ̂𝜃k+1. (75)

Note that Nnr , Nu(q−1), nr, and n are assumed to be known a priori. A pseudocode implementation of the algorithm is
given in Algorithm 1.

5 CONNECTION BETWEEN RC-MRAC AND APPC

In the following section, we show that in the special case where Nm(q−1) = N(q−1), and H(q−1) = Ns(q−1)F(q−1), APPC
and RC-MRAC are equivalent.

Proposition 7. Let H(q−1) = Ns(q−1)F(q−1), and Nm(q−1) = N(q−1) such that R∗c (q−1) = Ns(q−1). Then, (63)
is equivalent to (32).

Proof. Substituting R∗c (q−1) = Ns(q−1) into (63) yields

Dm(q−1)F(q−1)(yk − ym,k) − Nnr Nu(q−1)q−nr[uk − N∗
c (q−1)yk − D∗

c (q−1)uk − Ns(q−1)F(q−1)rk] = 0. (76)
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MOHSENI and BERNSTEIN 2413

Using (4) and (55) in (76),

Dm(q−1)F(q−1)yk − F(q−1)Nm(q−1)rk − Nnr Nu(q−1)q−nr[uk − N∗
c (q−1)yk − D∗

c (q−1)uk − Ns(q−1)F(q−1)rk]
= F(q−1)Dm(q−1)yk − F(q−1)Nm(q−1)rk − Nnr Nu(q−1)q−nr[uk − N∗

c (q−1)yk − D∗
c (q−1)uk]

+ Nnr Nu(q−1)Ns(q−1)q−nr F(q−1)rk = 0. (77)

Using (55) in (77),

Dm(q−1)F(q−1)yk − Nnr Nu(q−1)q−nr[uk − N∗
c (q−1)yk − D∗

c (q−1)uk] = 0. (78)

Then, substituting (9) into (78) and dividing by Nnr Nu(q−1)q−nr yields

Dm(q−1)F(q−1)N(q−1)xk − Nnr Nu(q−1)q−nr[uk − N∗
c (q−1)yk − D∗

c (q−1)uk]

= Dm(q−1)F(q−1)Ns(q−1)xk − [uk − N∗
c (q−1)yk − D∗

c (q−1)uk] = 0. (79)

Substituting Ns(q−1)F(q−1) = H(q−1), and using the Bezout identity (31) yields the result

Dm(q−1)H(q−1)[B∗(q−1)yk + C∗(q−1)uk] = uk − N∗
c (q−1)yk − D∗

c (q−1)uk. (80)
▪

6 EXAMPLE 1: STABLE MINIMUM-PHASE PLANT

Consider the plant

N(q−1)
D(q−1)

=
q−1 − 0.5q−2

(1 − 𝜌 exp(𝚥𝜈)q−1)(1 − 𝜌 exp(−𝚥𝜈)q−1)
, (81)

and the desired model

Nm(q−1)
Dm(q−1)

=
q−1 − 0.5q−2

(1 − 0.5 exp(𝚥 𝜋
2
)q−1)(1 − 0.5 exp(−𝚥 𝜋

2
)q−1)

. (82)

The following subsections demonstrate the model-following performance of APPC and RC-MRAC for various values of
𝜌 and 𝜈 for step and harmonic commands. It is assumed that N(q−1) is known in order to compare the two algorithms.
Each simulation is run for 200 steps, where the performance metric

||e|| △=

√√√√
200∑

k=101
e2

k, (83)

ek
△
= yk − ym,k, (84)

is used to compare the algorithms.

6.1 Example 1a: APPC for reference model following

For the APPC algorithm we choose

H(q−1) = Ns(q−1)F(q−1) = (1 − 0.5q−1)(1 + 0.5q−1) = 1 − 0.25q−2
, (85)

and initialize ̂
𝜃1,0 = 04×1 and ̂

𝜃2,0 = 04×1 with R
𝜃
= 10−5I8 and 𝜆 = 1.

Given a unit step command for rk, the model-following error versus the pole locations of the plant is shown in
Figure 2A for various values of 𝜌 and 𝜈. Each point on the plot represents the location of the positive imaginary eigenvalue
pole of the plant for its respective 𝜌 and 𝜈, and the color represents the model-following performance. Note that the
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2414 MOHSENI and BERNSTEIN

(A) (B)

F I G U R E 2 APPC for the minimum-phase plant (81) with a step command. (A) Log of the model-following error versus the pole
locations of the plant. (B) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
. Viewing clockwise from the top left: model-following error ek,

control input uk, Bezout coefficient estimates ̂
𝜃2, and controller coefficient estimates ̂

𝜃1.

(A) (B)

F I G U R E 3 APPC for the minimum-phase plant (81) with a two-harmonic command. (A) Log of the model-following error versus the
pole locations of the plant. (B) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
. Viewing clockwise from the top left: model-following error ek,

control input uk, Bezout coefficient estimates ̂
𝜃2, and controller coefficient estimates ̂

𝜃1.

model-following performance degrades as the plant poles move closer to the plant zero due to the system nearing a
decrease in order. The response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
is given in Figure 2B.

Given the two-harmonic command rk = cos(k) + cos( 1
8

k), the model-following error versus the pole locations of the
plant is shown in Figure 3A for various values of 𝜌 and 𝜈. Each point on the plot represents the location of the positive
imaginary eigenvalue pole of the plant for its respective 𝜌 and 𝜈, and the color represents the model-following perfor-
mance. Note that the model-following performance degrades as the plant poles move closer to the plant zero. The overall
model-following error is improved compared to the step command. The response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
is

given in Figure 3B.
Given the four-harmonic command rk = cos(k) + cos( 1

2
k) + cos( 1

4
k) + cos( 1

8
k), the model-following error versus

the pole locations of the plant is shown in Figure 4A for various values of 𝜌 and 𝜈. Each point on the plot represents
the location of the positive imaginary eigenvalue pole of the plant for its respective 𝜌 and 𝜈, and the color represents the
model-following performance. Note that the model-following performance degrades as the plant poles move closer to the
plant zero. Due to the increased persistency of the command, the model-following error is improved over both the step
command and the two-harmonic command. The response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
is given in Figure 4B.
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MOHSENI and BERNSTEIN 2415

(A) (B)

F I G U R E 4 APPC for the minimum-phase plant (81) with a four-harmonic command. (A) Log of the model-following error versus the
pole locations of the plant. (B) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
. Viewing clockwise from the top left: model-following error ek,

control input uk, Bezout coefficient estimates ̂
𝜃2, and controller coefficient estimates ̂

𝜃1.

(A) (B)

F I G U R E 5 RC-MRAC for the minimum-phase plant (81) with a step command. (A) Log of the model-following error versus the pole
locations of the plant. (B) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
. Viewing clockwise from the top left: model-following error ek,

control input uk, controller coefficients ̂
𝜃 associated with rk, and controller coefficients ̂

𝜃 associated with yk and uk.

6.2 Example 1b: RC-MRAC for reference model following

For RC-MRAC, we choose

F(q−1) = (1 + 0.5q−1), (86)

and initialize ̂
𝜃0 = 06×1, with R

𝜃
= 10−5I6 and 𝜆 = 1.

Given a unit step command for rk, the model-following error versus the pole locations of the plant is shown in
Figure 5A for various values of 𝜌 and 𝜈. Each point on the plot represents the location of the positive imaginary eigen-
value pole of the plant for its respective 𝜌 and 𝜈, and the color represents the model-following performance. Note that the
model-following performance degrades as the plant poles move closer to the plant zero. The response of the system for
𝜌 = 0.5 and 𝜈 = 𝜋

4
is given in Figure 5B.
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2416 MOHSENI and BERNSTEIN

(A) (B)

F I G U R E 6 RC-MRAC for the minimum-phase plant (81) with a two-harmonic command. (A) Log of the model-following error versus
the pole locations of the plant. (B) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
. Viewing clockwise from the top left: model-following error

ek, control input uk, controller coefficients ̂
𝜃 associated with rk, and controller coefficients ̂

𝜃 associated with yk and uk.

(A) (B)

F I G U R E 7 RC-MRAC for the minimum-phase plant (81) with a four-harmonic command. (A) Log of the model-following error versus
the pole locations of the plant. (B) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
. Viewing clockwise from the top left: model-following error

ek, control input uk, controller coefficients ̂
𝜃 associated with rk, and controller coefficients ̂

𝜃 associated with yk and uk.

Given the two-harmonic command rk = cos(k) + cos
(

1
8

k
)

, the model-following error versus the pole locations of the
plant is shown in Figure 6A for various values of 𝜌 and 𝜈. Each point on the plot represents the location of the positive
imaginary eigenvalue pole of the plant for its respective 𝜌 and 𝜈, and the color represents the model-following perfor-
mance. Note that the model-following performance degrades as the plant poles move closer to the plant zero. The overall
model-following error is similar to the step command. The response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
is given in

Figure 6B.
Given the four-harmonic command rk = cos(k) + cos

(
1
2

k
)
+ cos

(
1
4

k
)
+ cos

(
1
8

k
)

, the model-following error versus
the pole locations of the plant is shown in Figure 7A for various values of 𝜌 and 𝜈. Each point on the plot represents
the location of the positive imaginary eigenvalue pole of the plant for its respective 𝜌 and 𝜈, and the color represents the
model-following performance. Note that the model-following performance degrades as the plant poles move closer to the
plant zero. The response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
is given in Figure 7B.
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MOHSENI and BERNSTEIN 2417

(A) (B)

F I G U R E 8 APPC for the NMP plant (87) with a step command. (A) Log of the model-following error versus the pole locations of the
plant. Empty squares represent regions where the system became unstable. (B) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
. Viewing

clockwise from the top left: model-following error ek, control input uk, Bezout coefficient estimates ̂
𝜃2, and controller coefficient estimates ̂

𝜃1.

7 EXAMPLE 2: NONMINIMUM-PHASE PLANT

Consider the plant

N(q−1)
D(q−1)

=
q−1 − 1.5q−2

(1 − 𝜌 exp(𝚥𝜈)q−1)(1 − 𝜌 exp((−𝚥𝜈)q−1)
, (87)

and the desired model

Nm(q−1)
Dm(q−1)

=
q−1 − 1.5q−2

(1 − 0.5 exp(𝚥 𝜋
2
)q−1)(1 − 0.5 exp(−𝚥 𝜋

2
)q−1)

. (88)

The following subsections demonstrate the model-following performance of RC-MRAC and APPC for various values of
𝜌 and 𝜈 for step and harmonic commands. It is assumed that N(q−1) is known in order to compare the two algorithms.
The same performance metric (83) as in Example 1 is used.

7.1 Example 2a: APPC for reference model following

For the APPC algorithm we choose

H(q−1) = 1 − 0.25q−2
, (89)

and initialize ̂
𝜃1,0 = 04×1 and ̂

𝜃2,0 = 04×1 with R
𝜃
= 10−5I8 and 𝜆 = 1.

Given a unit step command for rk, the model-following error versus the pole locations of the plant is shown in
Figure 8A for various values of 𝜌 and 𝜈. Each point on the plot represents the location of the positive imaginary eigen-
value pole of the plant for its respective 𝜌 and 𝜈, and the color represents the model-following performance. Note that the
model-following performance degrades as the plant poles move closer to the plant zero. The response of the system for
𝜌 = 0.5 and 𝜈 = 𝜋

4
is given in Figure 8B.

Given the two-harmonic command rk = cos(k) + cos
(

1
8

k
)

, the model-following error versus the pole locations of the
plant is shown in Figure 9A for various values of 𝜌 and 𝜈. Each point on the plot represents the location of the pos-
itive imaginary eigenvalue pole of the plant for its respective 𝜌 and 𝜈, and the color represents the model-following
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2418 MOHSENI and BERNSTEIN

(A) (B)

F I G U R E 9 APPC for the NMP plant (87) with a two-harmonic command. (A) Log of the model-following error versus the pole locations
of the plant. Empty squares represent regions where the system became unstable. (B) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
. Viewing

clockwise from the top left: model-following error ek, control input uk, Bezout coefficient estimates ̂
𝜃2, and controller coefficient estimates ̂

𝜃1.

(A) (B)

F I G U R E 10 APPC for the NMP plant (87) with a four-harmonic command. (A) Log of the model-following error versus the pole
locations of the plant. Empty squares represent regions where the system became unstable. (B) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
.

Viewing clockwise from the top left: model-following error ek, control input uk, Bezout coefficient estimates ̂
𝜃2, and controller coefficient

estimates ̂
𝜃1.

performance. Note that the model-following performance degrades as the plant poles move closer to the plant zero. The
overall model-following error is improved compared to the step command. The response of the system for 𝜌 = 0.5 and
𝜈 = 𝜋

4
is given in Figure 9B.

Given the four-harmonic command rk = cos(k) + cos
(

1
2

k
)
+ cos

(
1
4

k
)
+ cos

(
1
8

k
)

, the model-following error versus
the pole locations of the plant is shown in Figure 10A for various values of 𝜌 and 𝜈. Each point on the plot represents
the location of the positive imaginary eigenvalue pole of the plant for its respective 𝜌 and 𝜈, and the color repre-
sents the model-following performance. Note that the model-following performance degrades as the plant poles move
closer to the plant zero. Due to the increased persistency of the command, the model-following error is improved over
both the step command and the two-harmonic command. The response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
is given

in Figure 10B.
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MOHSENI and BERNSTEIN 2419

(A) (B)

F I G U R E 11 RC-MRAC for the NMP plant (87) with step command. (A) Log of the model-following error versus the pole locations of
the plant. (B) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
. Viewing clockwise from the top left: model-following error ek, control input uk,

controller coefficients ̂
𝜃 associated with rk, and controller coefficients ̂

𝜃 associated with yk and uk.

7.2 Example 2b: RC-MRAC for reference model following

For RC-MRAC, we choose

F(q−1) = 1 − 0.25q−2
, (90)

and initialize ̂
𝜃0 = 05×1, with R

𝜃
= 10−5I5 and 𝜆 = 1. Given a unit step command for rk, the model-following error versus

the pole locations of the plant is shown in Figure 11A for various values of 𝜌 and 𝜈. Each point on the plot represents
the location of the positive imaginary eigenvalue pole of the plant for its respective 𝜌 and 𝜈, and the color represents the
model-following performance. Note that the model-following performance degrades as the plant poles move closer to the
plant zero and that the convergence is much slower than in the minimum-phase case. The response of the system for
𝜌 = 0.5 and 𝜈 = 𝜋

4
is given in Figure 11B.

Given the two-harmonic command rk = cos(k) + cos
(

1
8

k
)

, the model-following error versus the pole locations of the
plant is shown in Figure 12A for various values of 𝜌 and 𝜈. Each point on the plot represents the location of the positive
imaginary eigenvalue pole of the plant for its respective 𝜌 and 𝜈, and the color represents the model-following perfor-
mance. Note that the model-following performance degrades as the plant poles move closer to the plant zero. The overall
model-following error is improved compared to the step command, but the controller convergence is still slower than the
minimum-phase case. The response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
is given in Figure 12B.

Given the four-harmonic command rk = cos(k) + cos
(

1
2

k
)
+ cos

(
1
4

k
)
+ cos

(
1
8

k
)

, the model-following error versus
the pole locations of the plant is shown in Figure 13A for various values of 𝜌 and 𝜈. Each point on the plot represents
the location of the positive imaginary eigenvalue pole of the plant for its respective 𝜌 and 𝜈, and the color represents
the model-following performance. Note that the model-following performance degrades as the plant poles move closer
to the plant zero. Due to the increased persistency of the command, the model-following error is improved over both
the step command and the two-harmonic command. The convergence of the controller is much slower than in the
minimum-phase case. The response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
is given in Figure 13B.

8 EXAMPLE 3: UNKNOWN HARMONIC DISTURBANCE REJECTION
USING RC-MRAC

Consider the same system (81), and reference model (82), as in Example 1. We now place an unknown single harmonic
disturbance at the frequency 0.35 radians per step at the input of the system. In this section we show that, unlike APPC,
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(A) (B)

F I G U R E 12 RC-MRAC for the NMP plant (87) with a two-harmonic command. (A) Log of the model-following error versus the pole
locations of the plant. (B) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
. Viewing clockwise from the top left: model-following error ek,

control input uk, controller coefficients ̂
𝜃 associated with rk, and controller coefficients ̂

𝜃 associated with yk and uk.

(A) (B)

F I G U R E 13 RC-MRAC for the NMP plant (87) with a four-harmonic command. (A) Log of the model-following error versus the pole
locations of the plant. (B) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
. Viewing clockwise from the top left: model-following error ek,

control input uk, controller coefficients ̂
𝜃 associated with rk, and controller coefficients ̂

𝜃 associated with yk and uk.

RC-MRAC can be used for disturbance rejection of unknown harmonic disturbances with a small modification. The
disturbance rejection capability is tested for various values of 𝜌 and 𝜈 for a step command on the reference model. It is
assumed that N(q−1) is known. The same performance metric (83) as in Example 1 is used.

To accomplish harmonic disturbance rejection and model-following, we increase the order of the controller to n = 4,
and set ns = 3 to match the desired closed-loop model relative degree. The order must be incremented by 2 for each
expected harmonic disturbance. The order can be larger than required at the cost of perfect model tracking. RLS is
initialized with ̂

𝜃0 = 012×1, R
𝜃
= 10−5I12 and 𝜆 = 1. F(q−1) is chosen to be (86), the same as in Example 1b.

Given a unit step command for rk, the model-following error versus the pole locations of the plant is shown in
Figure 14A for various values of 𝜌 and 𝜈. Each point on the plot represents the location of the positive imaginary eigen-
value pole of the plant for its respective 𝜌 and 𝜈, and the color represents the model-following performance. Note that the
model-following performance degrades as the plant poles move closer to the plant zero, but the algorithm is able to per-
form the model-following task while rejecting the disturbance for all tested poles. The response of the system for 𝜌 = 0.5
and 𝜈 = 𝜋

4
is given in Figure 14B.
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(A) (B)

F I G U R E 14 RC-MRAC for harmonic disturbance rejection on the plant (81) with a step command. (A) Log of the model-following
error versus the pole locations of the plant. (B) Response of the system for 𝜌 = 0.5 and 𝜈 = 𝜋

4
. Viewing clockwise from the top left:

model-following error ek, control input uk, controller coefficients ̂
𝜃 associated with rk, and controller coefficients ̂

𝜃 associated with yk and uk.

9 SUMMARY OF EXAMPLES

In Sections 6 and 7, we demonstrate the reference model following performance of APPC and RC-MRAC under step com-
mands and harmonic commands for various minimum- and nonminimum-phase systems. For minimum-phase systems,
it is shown that as the persistency of the command increased, RC-MRAC is able to more closely follow the desired refer-
ence trajectory and performs similarly regardless of the persistency of the command whereas the performance of APPC
depended on the persistency of the command. For NMP systems, RC-MRAC converges to a smaller model following error
than APPC at lower persistency levels but has slower convergence times. Additionally, RC-MRAC’s performance is consis-
tent over the tested plant poles while APPC’s performance is heavily dependent on the plant. For systems with harmonic
disturbances, RC-MRAC is modified to treat the disturbance as a part of the plant, allowing for reference model following
and disturbance rejection.

10 CONCLUSIONS AND FUTURE RESEARCH

Retrospective cost model reference adaptive control (RC-MRAC) was developed and compared to Elliot’s adaptive pole
placement controller (APPC). This controller places the closed-loop poles of the system to match the desired closed-loop
poles given by a reference model provided that the leading numerator coefficient, relative degree, system order, and NMP
zeros are known. RC-MRAC was shown numerically to be stable over a wide range of systems. Unlike APPC, the perfor-
mance of RC-MRAC is not as sensitive to the persistency of the desired command. Additionally, it was shown that, with a
slight modification, RC-MRAC can reject harmonic disturbances. For minimum-phase systems, RC-MRAC outperforms
APPC without the need for persistency. For NMP systems, RC-MRAC performs better than APPC at lower persistency
levels at the price of knowledge of the NMP zeros and slower convergence times.

Future work will extend RC-MRAC to the MIMO case following a similar development for RCAC given in Reference
19. A key challenge is the development of stability results for RC-MRAC. Given the development of stability results for
similar algorithms,7,8 a stability result for RC-MRAC will closely follow established arguments.
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