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Abstract— Extremum-seeking control (ESC) is a powerful
technique for online optimization that offers theoretical guar-
antees for convergence to the optimizer’s neighborhood under
well-understood conditions. However, ESC requires a noncon-
stant perturbation signal to provide persistent excitation to the
target system to yield convergent results, which usually results
in steady state oscillations. While certain techniques have been
proposed to eliminate perturbations once the neighborhood of
the minimizer is reached, system modifications and environ-
mental perturbations can suddenly change the minimizer, and
nonconstant perturbations would once more be required to
converge to the new minimizer. Hence, this paper develops a
retrospective cost-based ESC (RC/ESC) technique for online
output minimization with a vanishing perturbation, that is, a
perturbation that becomes zero as time increases independently
from the state of the controller or the controlled system.
The performance of the proposed algorithm is illustrated via
numerical examples.

I. INTRODUCTION

Extremum seeking control (ESC) is a powerful adaptive
control technique that leverages persistent system excitation
to search for extrema in order to either minimize or maximize
a user-defined metric [1]. The stability and convergence
properties of ESC and their conditions have been thoroughly
studied and are well understood [2]–[4]. ESC has been
applied in a wide arrange of fields, including robotics [5]–[8]
and energy management [9]–[12].

A feature of ESC is a persistent perturbation signal, which
enables gradient estimation algorithms to yield a search
direction that points towards local extrema, thus enabling
convergence. However, implementing this perturbation signal
results in steady-state oscillations, which may be prohibitive
in physical testing. Modifications to the ESC algorithm have
been proposed to address this issue, which include modifying
the perturbation signal to vanish depending on controller and
system values and implementing dynamics that suppress the
perturbation signal once a neighborhood of the minimizer
has been reached [13]–[17].

The contribution of this paper is thus an ESC algorithm
for online output minimization with a vanishing perturbation,
that is, a perturbation that becomes zero as time increases in-
dependently from the state of the controller or the controlled
system. Hence, the perturbation is independent from the rest
of the system and no extra dynamics are required to suppress
the perturbation. In particular, we consider retrospective cost
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adaptive control (RCAC), which re-optimizes the coefficients
of the feedback controller at each step [18]. A similar retro-
spective cost algorithm was proposed in [19], [20], in which a
fixed target model was used to issue a search direction in the
input space for optimization. In this work, a Kalman Filter
(KF) is used to estimate the gradient of the system output
which is encoded into the target model to provide a time-
varying search direction to RCAC. Hence, the combination of
the KF, the target model construction procedure, and RCAC
yields retrospective cost based ESC (RC/ESC). A prelim-
inary version of this algorithm was considered in [21], in
which gradient estimation was performed by using a simple
high-pass filter. Furthermore, the present work constitutes an
extension of the algorithm considered in [22] by allowing the
RCAC controller to have either an autoregressive-moving-
average (ARMA) or PID-based structure and not requiring
an initialization period for the KF.

The contents of the paper are as follows. Section II
provides a statement of the control problem, which involves
continuous-time dynamics under sampled-data feedback con-
trol. Section III provides a review of continuous-time ESC.
Section IV introduces RC/ESC, in which a KF estimates the
gradient of the system output and provides a target model to
RCAC. Section V presents numerical examples that illustrate
the performance of RC/ESC, including examples with static
maps and a example with a dynamic system. Finally, VI
presents conclusions.

Notation: q ∈ C denotes the forward-shift operator.
II. PROBLEM STATEMENT

We consider continuous-time dynamics under sampled-
data control using discrete-time adaptive controllers to re-
flect the practical implementation of digital controllers for
physical systems. In particular, we consider the control
architecture shown in Figure 1, where M is the target
continuous-time system, t ≥ 0, u(t) ∈ Rm is the control,
and J(t) ∈ Rp is the output of M, whose components are
all nonnegative; the nonnegativity of the components of J is
chosen to better accommodate output minimization problems
that appear in control applications, such as steady-state error
and nonlinear oscillation minimization.

The output J(t) is sampled to generate the measurement
Jk ∈ Rp, which, for all k ≥ 0, is given by

Jk
△
= J(kTs), (1)

where Ts > 0 is the sample time. The adaptive controller,
which is updated at each step k, is denoted by Gc,k. The input
to Gc,k is Jk, and its output at each step k is the discrete-
time control uk ∈ Rm. The continuous-time control signal
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u(t) applied to the structure is generated by applying a zero-
order-hold operation to uk, that is, for all k ≥ 0, and, for all
t ∈ [kTs, (k + 1)Ts),

u(t) = uk. (2)

The objective of the adaptive controller is to yield an input
signal that minimizes the output of the continuous-time
system, that is, yield u(t) such that limt→∞ J(t) = 0.

Gc,k ZOH M
uk u(t)

Ts

J(t)Jk

Fig. 1: Sampled-data implementation of adaptive controller for control
of the continuous-time system M. All sample-and-hold operations are
synchronous. The adaptive controller uses Jk as an input and generates
the discrete-time control uk at each step k. Note that all components of Jk
are nonnegative. The resulting continuous-time control u(t) is generated by
applying a zero-order-hold operation to uk . The objective of the controller
is to yield an input signal that minimizes the output of the continuous-time
system, that is, yield u(t) such that limt→∞ J(t) = 0.

III. OVERVIEW OF EXTREMUM SEEKING CONTROL

A. General Scheme

Consider the system M shown in first-order extremum
seeking scheme displayed in figure 2 to be

ẋ = f(x, u), (3)
J(t) = Q(x), (4)

where f : Rn×Rm → Rn and Q(x) : Rn → Rp are smooth
enough, x ∈ Rn is the measured vector state, u ∈ Rm is the
input vector and J(t) ∈ Rp is the output of the cost function
Q(x). Suppose that there exists x∗ such that J∗ = Q(x∗)
is the extremum of the map Q(.). Assume that both x∗ and
Q(.) are unknown. Thus, the main goal of extremum seeking
control is to drive the states of the closed loop to x∗ without
knowledge of x∗ or Q(.)

Gradient
Estimator I(t) Kesc + M

J̃u(t) δu(t) u(t) J(t)

d(t)

Fig. 2: Continuous-time extremum seeking control (ESC) of the continuous-
time system M. ESC uses J as an input and generates the control uk at
each step k. Note that all components of J are nonnegative. The objective
of the controller is yield an input signal that minimizes the output of the
continuous-time system, that is, yield u(t) such that limt→∞ J(t) = 0.

B. SISO case

Consider the case when J(x) ∈ R, and u ∈ R are scalar.
Next, consider the dither signal

d(t) = a sin(ω1 t), (5)

where a is the amplitude of the dither signal, and ω1 is the
dither frequency. Also, note that the gradient estimator used
in this work is based on the averaging technique as proven
in [23], such that

J̃u(t) =
2

a
J(t) sin(ω1 t). (6)

Finally, δu(t), computed as the output of I(t) shown in
figure 2, is obtained from the gradient-descent scheme given
by

δu(t) = Kesc

∫ t

0

J̃u dt. (7)

In this scheme, a, ω1 and Kesc are the tuning parameters.

C. MISO case

Now, consider the case when J(x) ∈ R, and
u ∈ Rm. Define the vector of dither signals D(t)

△
=[

d1(t) d2(t) · · · dm(t)
]T

given by

D(t) = a
[
sin(ω1 t) sin(ω2 t) . . . sin(ωm t)

]T
, (8)

where each ω1, ω2, · · · , ωm must be different. Note that
although different amplitudes can be chosen for each
dither signal, in the present work the same amplitude
has been used for all, as shown in (8). Define J̃u

△
=[

J̃u1 J̃u2 · · · J̃um

]T
. Then, the gradient estimator based

on the work done by [24] is given by

J̃u =
2

a
J(t)

[
sin(ω1 t) sin(ω2 t) . . . sin(ωm t)

]T
. (9)

Finally, define ∆u(t)
△
=

[
δu1(t) δu2(t) · · · δum(t)

]T
given by the expression

∆u(t) = Kesc

∫ t

0

J̃u dt. (10)

Note that although different Kesc can be chosen for
each component of J̃u, in the proposed scheme only
one is considered, as shown in (10). Thus, a, Kesc and[
ω1 ω2 · · · ωm

]
are the tuning parameters.

IV. OVERVIEW OF RETROSPECTIVE COST BASED
EXTREMUM SEEKING CONTROL

An overview of the RC/ESC algorithm is presented in this
section. Subsections IV-A and IV-B provide a brief review
of RCAC and its specialization to adaptive PID control,
respectively. Subsection IV-C describes an online gradient
estimator based on the KF 1 . Subsection IV-D expands
RCAC presented in Subsection IV-A to include gradient
estimates obtained via the technique presented in Subsection
IV-C, resulting in RC/ESC.

A. Review of Retrospective Cost Adaptive Control

RCAC is described in detail in [18]. Consider the strictly
proper, discrete-time, input-output controller

δuk =

lc∑
i=1

Pi,kuk−i +

lc∑
i=1

Qi,kzk−i, (11)

where k ≥ 0 is the time step, δuk ∈ Rlu is the con-
troller output and thus the control input, uk ∈ Rlu is the
applied control input, zk ∈ Rlz is the measured performance
variable, lc is the controller-window length, and, for all
i ∈ {1, . . . , lc}, Pi,k ∈ Rlu×lu and Qi,k ∈ Rlu×lz are the
controller coefficient matrices. In particular, uk results from

1Subsections IV-A, IV-B and IV-C are described in more detail in
https://arxiv.org/abs/2402.03717.
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adding a vanishing perturbation signal to δuk, as defined in
Subsection IV-D. The controller shown in (11) can be written
as uk = ϕkθk, (12)

where
ϕk

△
=

[
uT
c,k−1 · · · uT

c,k−lc
zTk−1 · · · zTk−lc

]
⊗ Ilu ∈ Rlu×lθ ,

(13)

θk
△
= vec [P1,k · · · Plc,k Q1,k · · · Qlc,k ] ∈ Rlθ , (14)

lθ
△
= lclu(lu + lz), θk is the vector of controller coefficients,

which are updated at each time step k, and ⊗ is the
Kroenecker product.

Next, define the retrospective cost variable
ẑk(θ̂) = zk −Nk(Uk − Φkθ̂), (15)

where ẑk is the retrospective-cost variable, θ̂ ∈ Rlθ is the
controller coefficient vector determined by retrospective-cost
optimization,

Φk
△
=

[
ϕT
k−1 . . . ϕT

k−lf

]T ∈ Rlf lu×lθ , (16)

Uk
△
=

[
δuk−1 . . . δuk−lf

]T ∈ Rlf lu , (17)

Nk
△
= [ N1,k · · · Nlf ,k ] ∈ Rlz×lf lu . (18)

For the present work, Nk is updated online and is used to
determine a direction based on the estimated gradient of the
performance variable zk. The algorithm used to determine
Nk at each step k is given in Subsection IV-D.

The controller gain θk is updated by the retrospective
cost optimization, as described in detail in Subsection 3.1
in [22]. This update procedure requires the choice of cer-
tain hyperparameters, which include an initial convariance,
positive definite matrix P0 ∈ Rlθ×lθ , and a control input
weighting, positive semidefinite matrix Ru ∈ Rlu×lu . For all
of the numerical simulations and physical experiments in this
work, θk is initialized as θ0 = 0lθ×1 to reflect the absence
of additional prior modeling information. The matrices P0

and Ru have the form P0 = p0Ilθ and Ru = ruIm, where
the positive scalar p0 and nonnegative scalar ru determine
the rate of adaptation.

B. RCAC-based PID

Let δuk be given by

δuk = κp,kzk−1 + κi,kζk−1 + κd,k(zk−1 − zk−2), (19)

where κp,k, κi,k, and κd,k are time-varying PID gains and
ζk is given by the integrator ζk

△
=

∑k
j=0 zj . The control (19)

can be expressed as (12), where

ϕk
△
=
[
zk−1 ζk−1 zk−1 − zk−2

]
∈ R1×3, (20)

θk
△
=
[
κp,k κi,k κd,k

]T ∈ R3. (21)

Note that the regressor ϕk is constructed from the past
values of zk and ζk, and the controller coefficient vector
θk contains the time-dependent proportional, integral, and
derivative gains κp,k, κi,k, and κd,k. Furthermore, note that
the adaptive digital PID control can be specialized to adaptive
digital PI, PD, ID, P, I, and D control by omitting the
corresponding components of ϕk and θk. Then, RCAC-based
PID (RCAC/PID) is (12) with (20) and (21), respectively.

C. Online gradient estimator using a Kalman Filter

For all k ≥ 0, let Jk
△
= [J1,k · · · JlJ ,k]

T ∈ RlJ

be a cost function vector computed from system measure-
ments, where, for all i ∈ {1, . . . , lJ}, Ji,k ≥ 0 is the
ith component of Jk, let uk be the control input, and let
∇Jk

△
= [∇J1,k · · · ∇JlJ ,k]

T ∈ RlJ×m be the gradient of
Jk over uk, where, for all i ∈ {1, . . . , lJ}, the transpose of
∇Ji,k ∈ Rm corresponds to the ith row of ∇Jk.

Next, let i ∈ {1, . . . , lJ}. Consider the measurement
model for Ji,k

Ji,k = Jb,i +∇JT
i,kuk, (22)

where Jb,i ∈ R is a bias variable. Note that (22) is an
extension of (17) from [25]. Furthermore, let ∇Ĵi,k ∈ Rm

be an estimate of ∇Ji,k, let Ĵb,i ∈ R be an estimate of

Jb,i, let x̂i,k
△
=

[
∇ĴT

i,k Ĵb,i

]T
∈ Rm+1 be an estimate of

xi,k
△
=

[
∇JT

i,k Jb,i
]T

, and let Pi,k ∈ R(m+1)×(m+1) be the
covariance of the estimate x̂i,k of xi,k. Then, as indicated
by (22) and Section 3.1 of [25], the estimate ∇Ĵi,k can be
obtained using a KF with state and measurement equations
given by

xi,k+1 = xi,k + wi,k, (23)

yi,k
△
=


Ji,k

Ji,k−k1

...
Ji,k−km

 =


uT
k−1 1

uT
k−1−k1

1
...

...
uT
k−1−km

1

xi,k + vi,k, (24)

where yi,k ∈ Rm+1 is the measurement vector and
wi,k, vi,k ∈ Rm+1 are Gaussian random variables. Hence,
it follows from (23), (24) that the estimate ∇Ĵi,k is given by
the recursive update of the KF, whose prediction and update
equations are given, for i ∈ {1, . . . , lJ}, by

x̂i,k = x̂i,k−1 +Ki,k−1 (Gi,k−1 −Hk−1x̂i,k−1) , (25)
Pi,k = (Im+1 −Ki,k−1Hk−1)(Pi,k−1 +Qi), (26)

∇Ĵi,k = [Im 0m×1] x̂i,k, (27)

where

Gi,k−1
△
=


Ji,k−1

Ji,k−1−k1

...
Ji,k−1−km

 ∈ Rm+1, Hk−1
△
=


uT
k−1 1

uT
k−1−k1

1

...
...

uT
k−1−km

1


∈ R(m+1)×(m+1),

Ki,k−1
△
= [(Pi,k−1 +Qi)H

T
k−1][Hk−1(Pi,k−1 +Qi)H

T
k−1 +Ri]

−1

∈ R(m+1)×(m+1),

Qi, Ri ∈ R(m+1)×(m+1) are the constant weighting matrices,
and 0 < k1 < · · · < km are indices. The matrices Qi and Ri

determine the rate of estimation, and k1, . . . , km are chosen
to enhance the accuracy of the estimate x̂i,k. Finally, the
estimate ∇Ĵk is given by

∇Ĵk
△
=

[
∇Ĵ1,k · · · ∇ĴlJ ,k

]T
∈ RlJ×m. (28)

For all of the numerical simulations in the present work,
x̂i,k is initialized as x̂i,0 = 0m×1. The matrices Pi,0, Qi,
and Ri have the form Pi,0 = pi,0Im+1, Qi = qiIm+1, and
Ri = riIm+1, where the positive scalars pi,0, qi, and ri
determine the rate of estimation.
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D. Retrospective Cost based Extremum Seeking Control

As shown in Figure 3, RC/ESC includes RCAC described
in Subsection IV-A, the KF gradient estimator described in
Subsection IV-C, a normalization function, and a gradient
conversion function. For RC/ESC, lJ = p and lf = m.
RC/ESC operates on the cost-function vector Jk ∈ Rp and
uk−1 ∈ Rm to produce the RC/ESC output vector uk ∈ Rm.
As mentioned in subsection IV-C, for all i ∈ {1, . . . , p},
Ji,k > 0. The objective of RC/ESC is to minimize the
components of Jk by modulating uk, that is,

min
(un)∞n=0

lim sup
k→∞

p∑
i=1

Ji,k. (29)

The performance variable zk used by RCAC is obtained
by normalizing Jk using

zk
△
= [Ip + ν diag (Jk)]

−1Jk, (30)

where ν ∈ [0,∞). Next, the gradient estimator block
operates on Jk and uk to produce ∇Ĵk+1 by using the KF-
based estimator described in Subsection IV-C. The gradient
conversion block yields Nk = [N1,k · · · Nm,k] , such that,
for all i ∈ {1, . . . ,m},

Ni,k =

 ∇Ĵ1,i,k+1

0p×(i−1)

... 0p×(m−i)

∇Ĵp,i,k+1

 , (31)

where, for all j ∈ {1, . . . , p},

∇Ĵj,i,k+1
△
=

{
∇Ĵj,i,k+1/

∣∣∣∣∣∣∇Ĵj,k+1

∣∣∣∣∣∣ , ∣∣∣∣∣∣∇Ĵj,k+1

∣∣∣∣∣∣ ≥ ε

∇Ĵj,i,k+1/ε, otherwise,
(32)

∇Ĵj,i,k+1 is the ith component of ∇Ĵj,k+1, and ε > 0. We
fix ε = 10−4 throughout the present work. The RCAC block
then uses zk, Nk, and uk−1 to produce δuk ∈ Rm by using
the operations described in Subsection IV-A.

Finally, define uk
△
= δuk + dk, where dk ∈ Rm is a

vanishing perturbation signal. Note that, while [25] uses only
∇Ĵk+1, RC/ESC uses Jk and ∇Ĵk+1 in the form of zk and
Nk, respectively.

Controller Gc,k given by RC/ESC

Gradient
Estimator

(25), (26), (27)

Gradient
Conversion
to Nk (31)

Normalization
Function (30)

RCAC
(12) or (19)

1−Step
Delay

+

Jk
∇Ĵk+1 Nk δuk uk

zk dk

uk−1

Fig. 3: RC/ESC block diagram.

V. NUMERICAL EXAMPLES

In this section, RC/ESC is implemented in numerical
simulations to illustrate its performance and compare it with
the continuous-time ESC algorithms presented in Section
III. Example 5.1 features a static optimization problem in
a SISO system. Example 5.2 features a static optimization

problem in a MISO system. Example 5.3 features a dynamic
optimization problem in a SISO system. In Examples 5.1 and
5.2, Ts = 1 s. In Example 5.3, Ts = 5 s. Tables I and II show
the RC/ESC and ESC hyperparameters, respectively, used in
the numerical examples. Note that in Example 5.1 a RCAC/I
controller is implemented, that is an RCAC-based integrator
controller, as mentioned in Subsection IV-B. Examples 5.2
and 5.3 implement the general case RCAC introduced in
Subsection IV-A.

TABLE I: RC/ESC hyperparameters in numerical examples

RCAC KF
Example Type lc ru p0 p1,0, p2,0 q1, q2 r1, r2 k1 k2 ν

5.1 RCAC/I -
0.05

0.9 10−3

0.1
10 3 - 0.9

5.2
RCAC 5 0.1 10−4 0.1

2 6 0.2
5.3 0.01 0.01 1

TABLE II: ESC hyperparameters in numerical examples

Example a Kesc ω1 ω2

5.1 0.2
0.05

6 -
5.2 0.3 30 50
5.3 0.2 5 3 5

Example 5.1: Static optimization in SISO system. Con-
sider the static system

J(t) = (u(t)− r(t))2 (33)

where u ∈ R, for t ∈ [0, 500], r(t) = 1, and for t > 500,
r(t) = 5. As mentioned in Section II, the objective is to
minimize J. Furthermore, the dither signals are shown in
6. The results of the numerical simulations are shown in
Figures 4 and 5. While the response of RC/ESC converges
to the minimizer in a slow manner, note that the response
of RC/ESC does not oscillate around the minimizer since
the dither is close to zero throughout the operation and
eventually vanishes. ⋄

0 200 400 600 800 1000

0

1

2

3

4

5
ESC

RCAC ESC

Fig. 4: Example 5.1: SISO Static map. Controller output u for the static
map given by (33) with ESC and RC/ESC. Note that the ESC response is
shown in blue and the RC/ESC response is shown in red.

Example 5.2: Static optimization in MISO system. Con-
sider the static system

J(t) = (u(t)− r(t))T(u(t)− r(t)) (34)

where, u
△
=

[
u1 u2

]T ∈ R2, for t ∈ [0, 500], r(t) =[
1 2

]T
, and for t > 500, r(t) =

[
−1 −2

]T
. As

mentioned in Section II, the objective is to minimize J.
Furthermore, the dither signals are shown in 9. The results
of the numerical simulations are shown in Figures 7 and 8.
While the response of RC/ESC converges to the minimizer
in a slow manner, note that the response of RC/ESC does not
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0 200 400 600 800 1000
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

ESC RCAC ESC

Fig. 5: Example 5.1: SISO Static map. Output error with respect to the
optimal value J = 0 in log scale with ESC and RC/ESC. Note that the
error by ESC is shown in blue and the error by RC/ESC is shown in red.

0 5 10 15 20

-0.5

-0.2

0

0.2

0.5
ESC

RCAC ESC

Fig. 6: Example 5.1: SISO Static map. Dither signal with ESC and
RC/ESC. Note that the ESC dither signal is shown in blue and the RC/ESC
dither signal is shown in red.

-10

0

10

ESC

RCAC ESC295 300

1

1.2

995 1000

-1

-0.8

0 200 400 600 800 1000

-10

-5

0

5 ESC

RCAC ESC

295 300

1.8
2

995 1000
-2

-1.2

Fig. 7: Example 5.2: MISO Static map. Controller output components u(1)
and u(2) for the static map given by (34) with ESC and RC/ESC. Note that
the ESC response is shown in blue and the RC/ESC response is shown in
red.

0 200 400 600 800 1000

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Fig. 8: Example 5.2: MISO Static map. Output error with respect to the
optimal value J = 0 in log scale with ESC and RC/ESC. Note that the
error by ESC is shown in blue and the error by RC/ESC is shown in red.

oscillate around the minimizer since the dither quickly goes
to zero throughout the operation and eventually vanishes. ⋄

Example 5.3: Dynamic optimization in MISO system
(control gain tuning for stabilization).

-0.1

-0.03

0.03

0.1

ESC RCAC ESC

999 1000

0

0 200 400 600 800 1000
-0.1

-0.03

0.03

0.1

ESC RCAC ESC

999 1000

0

Fig. 9: Example 5.2: MISO Static map. Dither signals with ESC and
RC/ESC. Note that the ESC dither signals are shown in blue and the
RC/ESC dither signals are shown in red.

Consider the Van Der Pol system

ẍ+ x+ (ẋ2 − 1)ẋ = u, (35)

where x1 = x and x2 = ẋ. Also, consider the full-state
feedback controller structure given by

u =
[
K1 K2

] [x1

x2

]
. (36)

Also, an amplitude detector scheme is considered using
moving standard deviation for each state and adding them
along the entire horizon. Thus, the cost function J is the
amplitude of the oscillations of the states and ESC and
RCAC-ESC are used to find suitable values of

[
K1 K2

]
in such a way that J = 0 and thus, the system could be
asymptotically stabilized. As mentioned in Section II, the
objective is to minimize J. Furthermore, the dither signals
are shown in 13. The results of the numerical simulations are
shown in Figures 10, 11 and 12. Both ESC and RC/ESC yield
values of K1 and K2 that stabilize the response of the Van
Der Pol system While the response of RC/ESC converges
to the minimizer in a slow manner, note that the response
of RC/ESC does not oscillate around the minimizer since
the dither quickly goes to zero throughout the operation and
eventually vanishes. ⋄

-5

0

5
RCAC-ESC

ESC

0 500 1000 1500 2000

-2

0

2

RCAC-ESC

ESC

Fig. 10: Example 5.3: MISO Dynamic map. Components of the Van Der
Pol system state x versus time with ESC and RC/ESC. Note that the ESC
result is shown in blue and the RC/ESC result is shown in red.

VI. CONCLUSIONS

This paper introduced a retrospective cost-based ESC
controller for online output minimization with a vanishing
perturbation. A KF is used to estimate the gradient of the
system output at each step, which is then used to construct a
target model that provides RCAC with a search direction to
obtain a control input that minimizes the system output. Nu-
merical examples illustrate the performance of this technique
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Fig. 11: Example 5.3: MISO Dynamic map. Controller gains K1 and K2

versus time with ESC and RC/ESC. Note that the ESC response is shown
in blue and the RC/ESC response is shown in red.
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Fig. 12: Example 5.3: MISO Dynamic map. Output error with respect to
the optimal value J = 0 in regular and log scale with ESC and RC/ESC.
Note that the error by ESC is shown in blue and the error by RC/ESC is
shown in red.
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Fig. 13: Example 5.3: MISO Dynamic map. Dither signals with ESC
and RC/ESC. Note that the ESC dither signals are shown in blue and the
RC/ESC dither signals are shown in red.

and provide a comparison with a regular continuous-time
ESC scheme. Future work will focus on modifications for
faster convergence and implementation in physical systems
with time-varying minimizers.
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[1] K. B. Ariyur and M. Krstić, Real-Time Optimization by Extremum-
Seeking Control. John Wiley & Sons, 2003.
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