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We apply predictive cost adaptive control (PCAC) to CFD-simulated ight of an airfoil.
PCAC is a discrete-time, indirect adaptive control technique based on model predictive control.
Unlike model-based control, PCAC uses no prior model, and, unlike deep and reinforcement
learning, PCAC uses no preight data or oine learning. For rapid online multiple-input,
multiple-output (MIMO) system identication, PCAC uses recursive least squares (RLS) with
variable-rate forgetting. To determine control inputs, PCAC uses quadratic programming for
receding horizon optimization, which allows PCAC to enforce physically meaningful magnitude
and rate-saturation constraints. PCAC is an output-feedback control technique that can be
used with a reference model, and unknown disturbances may be either matched or unmatched.
The present paper applies PCAC to a high-order nite-element simulation of an airfoil in
free ight, where the rigid-body motion of the airfoil is subjected to aerodynamic forces and
moments computed from the unsteady computational uid dynamics (CFD) simulation. To
follow a commanded altitude, PCAC requests the ap deection, which modulates the force and
moment on the airfoil. The eect of the ap deection on the pitch and plunge motion of the
airfoil is modeled using an arbitrary Lagrangian-Eulerian formulation. Results demonstrate
the ability of PCAC to follow a commanded altitude and horizontal position of the airfoil using
the ap actuator for ight with one, two, and three degrees of freedom. With online system
identication, PCAC improves its ability to follow position commands as additional commands
are given. The results demonstrate the applicability of PCAC to function as a real-time adaptive
autopilot, without prior knowledge of the airfoil aerodynamics and ight dynamics.

I. Introduction
Advances in computational power have made computational uid dynamics (CFD) simulations increasingly more

accurate and ecient. It is now possible to design, analyze, and simulate aircraft using numerical techniques that greatly
reduce the need for wind tunnel experiments. High-order, mesh-adaptive CFD [1, 2] is particularly ecient in yielding
high-accuracy results for practical aerodynamic simulations.

Combined with wind-tunnel data collection, CFD can enhance the ability to develop stability augmentation
systems (SAS) and autopilots. These design processes rely on aerodynamic databases at various ight conditions and
control-surface deections. CFD can be used to rene these databases to build lookup tables. These tables assume that
the forces and moments satisfy superposition, and thus, for example, angle of attack and sideslip angle perturbations
can be considered separately. The models based on the resulting lookup tables are thus approximate. Standard control
methods, such as gain scheduling and loop shaping, rely on these models, and the development of aircraft control
systems is a tedious process that relies on experience and judgment.

In this work, we present an alternative control strategy, called predictive cost adaptive control (PCAC), which does
not require the construction of an aerodynamic database and obviates the need for standard control-design techniques,
such as loop shaping, dynamic inversion, and gain scheduling. Instead, PCAC identies a model of the system online
during simulated ight of the vehicle. The simulation consists of an unsteady CFD analysis with control surfaces and
sensors, coupled with rigid-body dynamics of the vehicle. Following a short learning phase, PCAC responds rapidly and
eectively to user-specied commands. Although outside the scope of this paper, PCAC can be implemented onboard a
vehicle for real-time adaptive ight control.

The present work is motivated by the fact that simulation studies of this type can be used to quickly evaluate the ight
performance of a proposed or modied vehicle design. Since the controller learns directly from the CFD simulation,

∗Undergraduate Research Assistant, Department of Aerospace Engineering, dserbin@umich.edu.
†Professor, Department of Aerospace Engineering, kfid@umich.edu.
‡Professor, Department of Aerospace Engineering, dsbaero@umich.edu.

1

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
on

 J
an

ua
ry

 1
7,

 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
5-

24
66

 

 AIAA SCITECH 2025 Forum 

 6-10 January 2025, Orlando, FL 

 10.2514/6.2025-2466 

 Copyright © 2025 by Dennis Serbin, Krzysztof J. 

 Fidkowski, and Dennis S. Bernstein. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 AIAA SciTech Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2025-2466&domain=pdf&date_stamp=2025-01-03


the eort needed to develop an appropriate SAS and autopilot is eliminated, thereby allowing the vehicle designer to
quickly evaluate the performance of the vehicle. In addition, for a vehicle that is designed and built, these studies can
provide condence that PCAC can be applied directly to the physical vehicle, with potential savings in time and eort,
the ability to facilitate vehicle customization, and reliability in the event of damage and failure.

PCAC is a discrete-time, indirect adaptive control technique based on model predictive control (MPC) [3]. Unlike
model-based control, PCAC uses no prior model, and, unlike deep and reinforcement learning, PCAC uses no
control-oriented model and no preight data for oine learning. For rapid online multiple-input, multiple-output
(MIMO) system identication, PCAC uses recursive least squares (RLS) with variable-rate forgetting [4–8]. To specify
control inputs, PCAC uses quadratic programming for receding horizon optimization, which enforces magnitude and
rate-saturation constraints. PCAC is an output-feedback control technique that can be used with a reference model, and
unknown disturbances may be either matched or unmatched. During operation, PCAC uses sampled sensor data (e.g.,
ow state and altitude) and requests system inputs (e.g., surface deections and jet velocities). Other than specication
of the model order, optimization horizon, and forgetting hyperparameters, PCAC operates under cold-start conditions.
If a prior control-oriented model is available, PCAC can be implemented under warm-start conditions.

For the CFD simulation in the present paper, we use a high-order discontinuous-nite element method, discontinuous
Galerkin (DG) [9, 10], for its accuracy and ecient use of degrees of freedom. The high approximation order 
reduces errors associated with approximating the state, and, for smooth states and high accuracy requirements, high  is
generally more ecient than mesh renement. Prospects of output-error estimation and mesh adaptation also motivate
the choice of DG, although the calculations in the present paper do not take advantage of these capabilities. The eect
of the control surfaces and the vehicle aerodynamics rely on an arbitrary Lagrangian-Eulerian formulation [11, 12],
which has been extensively developed for high-order methods [13, 14].

In the present paper, we use PCAC to control the altitude of an airfoil in free-ight. Section II presents the CFD
model and DG discretization, Section III presents the PCAC controller, and Section IV presents the results of free-ight
airfoil tests.

II. CFD Model and Discretization

A. Governing Equations
We assume that the uid is governed by the compressible Reynolds-Averaged Navier-Stokes (RANS) equations with

the Spalart-Allmaras (SA) closure [15]. In conservative form, this system of partial dierential equations is given by

u


+ ∇ · F(u,∇u) + S(u,∇u) = 0, (1)

where u ∈ R is the -component state vector containing the conserved quantities, F ∈ Rdim × is the ux vector, dim is
the spatial dimension, and S is the source term arising from the turbulence model. A detailed exposition of the equations
and closure relations of this model is given in [16, 17].

B. Finite-Element Discretization
We use a discontinuous Galerkin (DG) nite-element spatial discretization [10], with the Roe [18] convective

ux and the second form of Bassi and Rebay (BR2) [19] for the viscous treatment. The state is approximated on
an unstructured mesh of non-overlapping elements using polynomials of order . The semi-discretized form of the
equations is

MU


+ R(U) = 0, (2)

where U ∈ R is the discrete state vector,  is the total number of unknowns including the state rank, R(·) ∈ R× is
the nonlinear spatial residual, and M ∈ R× is the block-element sparse mass matrix. For steady simulations, the
time-derivative term drops out, although pseudo-time continuation remains in the solver to drive the steady residual to
zero [20]. The solver consists of a Newton-Raphson method with the generalized minimum residual (GMRES) [21]
linear solver, preconditioned by an element-line Jacobi smoother with a coarse-level ( = 1) correction [22, 23].
For unsteady simulations, we use a third-order modied extended backward dierence formula [24] applied to the
semi-discrete form.
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Reference domain:  , u, F

~NdA

∂uX

∂t

∣∣∣
~X
+∇X · ~FX(uX,∇XuX) = 0

Mapping

⇒

~X, t ⇒ ~x( ~X, t)

G = ∂~x

∂ ~X

g = det(G)
uX = gu

~vG = ∂~x
∂t

~FX = gG−1~F− uXG−1~vG

~nda = gG−T ~NdA

~NdA = g−1GT~nda

⇒

Physical domain: , u, F

~nda

∂u
∂t

∣∣∣
~x
+∇ · ~F(u,∇u) = 0

Fig. 1 Arbitrary Lagrangian-Eulerian formulation (ALE). ALE uses a map between the deforming physical
domain and a static reference domain, while solving the transformed equations on the reference domain.

C. Arbitrary Lagrangian-Eulerian Formulation
In an arbitrary Lagrangian-Eulerian (ALE) method, the mesh can move at a velocity dierent from that of the ow,

which is useful when objects move or deform. ALE uses a map between the deforming physical domain and a static
reference domain, while solving the transformed equations on the reference domain [11, 12, 25]. This transformation is
illustrated in Figure 1.

rigid body

blended

static

reference domain

Fig. 2 Rigid-body motion blending.

The subscript () denotes reference-space quantities, and / 
are the physical/reference coordinates. The mapping  (  , ) is
analytical, obtained by blending rigid-body motion in the vicinity
of the moving object to zero far away from the object [11], as
illustrated in Figure 2. The rigid-body motion consists of pitch
and plunge, as determined by the dynamics of the airfoil. The
blending is a cubic function of the radius with continuous value and
rst derivative at the edges of the blending region. The resultant
mapping Jacobian determinant  may not be polynomial in  ,
so that a constant physical state may not be representable with
polynomial trial functions in reference space. This leads to slight
conservation errors, which can be mitigated with a geometric
conservation law [11]. However, as these errors decrease with
higher-order approximation and adaptation, in this work we forgo
a GCL.

III. Predictive Cost-Adaptive Control

A. Overview
As shown in Figure 3, predictive cost adaptive control (PCAC) combines online identication with output-feedback

model predictive control (MPC) based on quadratic programming. PCAC uses no prior modeling information aside
from a model order for system identication, nor does it use probing signals [3].

B. Online Identication
The online identication takes the form of the MIMO input-output model

ŷ = −
̂∑
=1

F̂y− +
̂∑
=1

Ĝu− , (3)

where  ≥ 0 is the step, ̂ ≥ 1 is the identication data window, F̂ ∈ R× and Ĝ ∈ R× are the estimated model
coecients, and u ∈ R, y ∈ R , and ŷ ∈ R are the inputs, outputs, and predicted outputs, respectively. We
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Predictive Cost Adaptive Control

Model Predictive Control
QP/BOCF for output feedback

with control and output constraints

Online System Identication
RLS/VRF for online identication

with variable-rate forgetting

Vehicle Kinematics,
Dynamics, and Aerodynamics
xow CFD with Matlab interface

Measurement 

Estimated Model Coecients 

Control 
Command 

Disturbance 

Fig. 3 PCAC block diagram. The online closed-loop system identication is based on recursive least squares
(RLS) with variable-rate forgetting (VRF). The model predictive control (MPC) algorithm, which is based on
quadratic programming (QP), uses the estimated model coecients  to form the block-observable canonical
form (BOCF) state-space model, which is used by QP to determine the control input u .

estimate F̂ and Ĝ online using recursive least squares with variable-rate forgetting (RLS/VRF), by minimizing the
cost function [26]

 (̂) =
∑
=0




zT (̂)z (̂) +
1


(̂ − 0)TP−1
0 (̂ − 0), (4)

where  ≡ 
=0 

−1
 ∈ R,  ∈ (0, 1] is the forgetting factor, P0 ∈ R[̂ (+) ]×[̂ (+) ] is positive denite,

0 ∈ R[̂ (+) ] is the initial estimate of the coecient vector, and the performance variable z (̂) ∈ R is dened as

z (̂) = y −  ̂ . (5)

The vector ̂ ∈ R[̂ (+) ] of coecients to be estimated is given by

̂ ≡ vec

̂1 · · · ̂̂ ̂1 · · · ̂ ̂


= vec


̂̂ ̂̂


,

where ̂̂ and ̂̂ are the estimates of the numerator and denominator coecients, dened by

̂̂ ≡ vec

̂1 · · · ̂̂


, (6)

̂̂ ≡ vec

̂1 · · · ̂ ̂


. (7)

With the regressor matrix  ∈ R×[̂ (+) ] dened by

 ≡

−T−1 · · · −T−̂ T

−1 · · · T
−̂


⊗  ,

the global minimizer +1 ≡ argmin ̂  (̂) of (4) is

L = −1 P , (8)

P+1 = L − L
T
 ( + L

T
 )−1L , (9)

+1 =  + P+1T
 ( − ). (10)
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The variable-rate forgetting factor  used in the present paper is given by [27]

 =
1

1 + (z−d , . . . , z)1[(z−d , . . . , z)]
, (11)

where 1 : R → {0, 1} is the unit step function, and

(z−d , . . . , z) ≡
√
n
d


Σn (z−n , . . . , z)Σd (z−d , . . . , z)−1




−

 ,

where  > 0 and  ≤ n < d represent numerator and denominator window lengths. Σn and Σd are the sample
variances of the respective window lengths, and the threshold constant  is described in [27, 28]. The constant , based
on the windows lengths is described in [27]. The estimated model coecients ̂ can be written in the block observable
canonical form with matrices Â , B̂ , and Ĉ given by

Â ≜



−F̂1, I · · · · · · 0×

... 0×
. . .

...
...

...
. . .

. . . 0×

...
...

. . . I
−F̂̂, 0× · · · · · · 0×



, B̂ ≜



Ĝ1,

Ĝ2,
...

Ĝ̂,


, Ĉ ≜


I 0× · · · 0×


. (12)

C. Model Predictive Control
Model predictive control (MPC) uses a model of the system to optimize its performance over a future nite interval

of time. The optimization yields a sequence of controls, the rst of which is implemented, and the procedure is repeated
at subsequent steps. By performing constrained optimization, MPC facilitates the enforcement of constraints on the
state and control input. At step  , PCAC uses the identied model Â , B̂ , and Ĉ . As in [29], the receding-horizon
optimization is performed using quadratic programming (QP), which is a convex optimization technique. This
optimization determines the control input u+1 at the next time step, while also attempting to satisfy constraints on the
state and control input.

Let R,ℓ ≡

rT+1 · · · rT+ℓ

T
∈ Rℓ t be the vector of future commands over the horizon ℓ, let Y1 |, be the

corresponding -step predicted output for a sequence of  future controls, U1 |, , and let Yt,1 |,ℓ ≡ Ct,ℓY1 |,ℓ be
the ℓ-step predicted output, where Ct,ℓ ≡ Iℓ ⊗ Ct ∈ Rℓ t×ℓ  , ⊗ is the Kronecker product, and Cty | computes the
commanded outputs from y | . Let Cℓ ≡ Iℓ ⊗ (CCc) ∈ Rℓc×ℓ  , where Ccy | creates the constrained outputs from
y | , let Dℓ ≡ 1ℓ ⊗ D ∈ Rℓc , and dene the sequence of dierences of control inputs as

ΔU1 |,ℓ ≡

(u1 | − u)T · · · (uℓ | − uℓ−1 |)T

T
∈ Rℓ. (13)

The QP-based MPC optimization problem is then given by

min
U1|,ℓ


Yt,1 |,ℓ − R,ℓ

T Q 
Yt,1 |,ℓ − R,ℓ

 + ΔUT
1 |,ℓRΔU1 |,ℓ , (14)

subject to

CℓY1 |,ℓ + Dℓ ≤ 0ℓc , (15)
Umin ≤ U1 |,ℓ ≤ Umax, (16)

ΔUmin ≤ ΔU1 |,ℓ ≤ ΔUmax, (17)

whereQ ≡


Q̄ 0t×t

0t×t P̄


∈ Rℓ t×ℓ t is the output weighting, Q̄ ∈ R(ℓ−1) t×(ℓ−1) t is the cost-to-go output weighting,

P̄ ∈ Rt×t is the terminal output weighting, R ∈ Rℓ×ℓ is the control-move-size weighting, Umin ≡ 1ℓ ⊗ umin ∈ Rℓ,
Umax ≡ 1ℓ ⊗ umax ∈ Rℓ, ΔUmin ≡ 1ℓ ⊗ Δumin ∈ Rℓ, and ΔUmax ≡ 1ℓ ⊗ Δumax ∈ Rℓ.
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D. Code Coupling
We use PCAC to control the xow CFD simulation. As such, the CFD and PCAC codes need to be coupled together

in a synchronous manner. This coupling is complicated by the fact that xow is written in C, and runs in parallel,
whereas PCAC is written in Matlab, and runs serially with updates at xed time steps. We use the Matlab engine API
to link the codes, with xow driving the simulation and calling PCAC at discrete time steps to obtain the requested
actuator settings. Figure 4 illustrates this integration.

xow: C code running in parallel

steady
solution 

Δ = time step
time block

PCAC: runs in Matlab
model order, optimization horizon, forgetting
hyperparameters, estimated model coecients

u()u
u+1
cubic control interpolation

y−1 u+1

Fig. 4 Integration of PCAC and xow. Both codes run concurrently and communicate via the Matlab Engine
API for C.

The starting point in most simulations is a steady-state xow solution with nominal actuation, e.g., zero ap
deection. Next, xow begins time integration using time steps of size Δ. These time steps are grouped into blocks of
tb time steps each, where in this work we use tb = 4. After each time block, indexed by  , xow determines simulated
sensor values y−1 and calls PCAC, which retains its own persistent internal state and returns the specied control inputs
u+1. The oset in the indices simulates the practical application of PCAC accounting for computational and actuation
time. Between blocks  − 1 and  , PCAC computes the required control input from knowledge of the sensor values at
 − 1, and at  it returns the control inputs, which must then be realized in the system through smooth actuation between
 and  + 1.

Whereas PCAC operates on sampled data in discrete time, the high-order xow simulation, like a real-world system
requires smooth variations of the parameters. For example, when the controlled parameter is a deformation of the
geometry, through the ALE formulation, that deformation must be a continuous function of space and time. Hence, the
discrete-time control outputs u must be smoothed in time in order for xow to compute the required derivatives. As
shown in Figure 4, this smoothing occurs over the subsequent time block after the controller call. A cubic interpolation
in time maps the previous controller outputs, u , to the requested values, u . This interpolation is clamped to have zero
slope at the ends, so that slope continuity is attained.

IV. Numerical Examples

A. Airfoil Case Setup
For the present results, we consider the ight of a NACA 0012 airfoil in subsonic ow. Figure 5 shows the setup

for this scenario. Sensors measure the altitude ℎ and horizontal position  of the center of gravity of the airfoil, and
these values are inputs to the controller. The output of the controller is the ap deection angle. The ap deection
is modeled as a continuous morphing of the trailing edge, rather than a hinged rotation of a ap. The morphing is
performed by specifying a vertical plunge mesh deformation behind the airfoil and blending it to zero over a range that
includes the extent of the ap. Figure 6 demonstrates this morphing.
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the controller

determined by

flap deflection

drag

lift

thrust

∞

 = pursuit position

 = altitude

CG

Fig. 5 Airfoil scenario. The objective of the controller is to achieve and maintain a position setpoint by
requesting the deection of the trailing-edge ap and setting the thrust.

(a) Undeformed (b) Flap down

Fig. 6 Continuous ap deection through a blended plunge mesh motion near the trailing edge of the airfoil.
This deformation avoids ALE mapping derivative discontinuities at the hinge location.

Aside from the ap deection, the airfoil is assumed to be rigid, so that the equations governing its dynamics are


2CG
2

= , (18)


2

2
= CG, (19)

where CG is the location of the center of gravity (CG),  is the pitch angle,  is the mass (per unit depth) of the airfoil,
 is the moment of inertia about the out-of-plane axis through the CG,  is the sectional force on the airfoil, and CG is
the moment on the airfoil about the CG. The airfoil is made statically stable by placing the center of gravity suciently
forward, at 0.15 from the leading edge, so that CG/ < 0 for the ight conditions encountered.

B. Control of 1DOF Airfoil Dynamics
We rst study 1DOF dynamics of the airfoil, where the airfoil can only move in the vertical direction as a result of

the lift force. The aerodynamic drag and moment on the airfoil are ignored. As a result, the pitch angle remains zero,
and only a blended vertical plunge motion is needed to model the motion of the airfoil.

The simulation is performed using a mesh that consists of 834 elements and  = 2 (quadratic) solution approximation.
The freestream Mach number is set to ∞ = 0.2, and the solved equations are Euler, so that viscous eects are ignored.
All length scales are given in units of the airfoil chord, and all time scales are given in units of airfoil chord divided by
free-stream speed; for convenience, we call these units seconds (s). The time step is set to 0.05 s.

We are interested in the ability of PCAC to attain and maintain a commanded altitude  by requesting the ap angle
. Following a steady-state solution at  = 0, the rst altitude command is  = 0.5. This command occurs at time  = 0
and lasts until  = 40. Next, the altitude command increases to  = 1 until  = 80, at which time it drops back to  = 0.5
for the remainder of the simulation.

Figure 7(a) shows the time history of the commanded and response altitudes, as well as the ap deection angle.
Without any knowledge of the system, PCAC rst requests a ap up deection (maximum constrained near 10 deg),
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which sends the airfoil to negative  values. Recognizing the impact of this control on the output, PCAC then requests a
ap down, again at maximum deection, followed by intermediate values of the ap before homing in on the correct
dynamics and reaching the commanded altitude. After the next command to a higher altitude, PCAC immediately moves
the ap down and quickly attains the altitude of  = 1.0, with some oscillation. On the last command, PCAC moves the
ap up to decrease altitude and reaches the  = 0.5 altitude with signicantly smaller oscillations.

(a) Control input, command, and response (b) Estimated model coecients and the forgetting factor

Fig. 7 PCAC response for the 1DOF scenario. The controller reaches the commanded setpoint more quickly
after the rst commanded setpoint due to the online closed-loop system identication.

Throughout the entire simulation, PCAC performs online system identication, as is evident in Figure 7(b), which
shows the estimated model coecients  and the forgetting factor  . The parameters keep changing, although not as
signicantly at the later times compared to the initial time, while the forgetting factor remains mostly at 1, indicating no
forgetting.

(a)  = 10 (b)  = 84

Fig. 8 Mach number contours (0–0.3) for the controlled 1DOF scenario. The noise is a numerical artifact of the
ALE mapping.

Overall, PCAC eectively pilots the airfoil to the commanded altitudes, with no prior knowledge of the system that
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it is controlling. This lack of knowledge is evident in the longer learning period needed to reach the rst command
compared to subsequent commands, for which the controller is more eective because it has already constructed a
representation of the system.

Figure 8 shows Mach-number contours for two snapshots of the unsteady simulation. The rst snapshot is at  = 10,
when the airfoil is on the way to the rst commanded altitude, after initially moving downward instead. The second
snapshot at  = 84 shows the quick response after the last altitude change: the immediate upward ap deection to drop
altitude indicates a correct identication of the system dynamics by PCAC. Animations of this and other simulations
will be presented at SciTech.

C. Control of 2DOF Airfoil Dynamics
The next scenario is 2DOF dynamics of the airfoil, in which the airfoil can pitch in addition to plunging vertically.

The lift force dictates the plunging acceleration, whereas the CG moment dictates the pitch angular acceleration. The
aerodynamic drag on the airfoil is ignored. The computational mesh, solution approximation order, time step, and
freestream Mach number remain the same as in the previous example.

We again investigate the ability of PCAC to attain and maintain a commanded altitude  by actuating the ap angle .
Following a steady-state solution at  = 0, we increase both the amount of time between setpoint changes as well as the
setpoint heights themselves, although the pattern remains similar to the 1DOF scenario: the rst setpoint is at  = 0.8
until  = 128, the second setpoint is at  = 1.6 until  = 256, and the nal setpoint returns to  = 0.8 until the end of the
simulation at  = 400. Figure 9(a) shows the commanded altitude setpoints and responses, as well as the ap deection
state vs time in the unsteady xow simulation. As we can see, at the beginning of the simulation, PCAC deects the ap
back and forth while building up its model of the physical system. PCAC rst requests a positive ap deection, similar
to the 1DOF scenario; however, in the 1DOF scenario, the positive deection caused a negative camber, producing
negative lift and moving away from the setpoint, while in this 2DOF scenario, an upward ap deection causes a
pitch-up moment that increases angle of attack and therefore lift, producing positive lift after a short amount of time and
moving the airfoil towards the rst altitude setpoint.

As the model is built up, the number of oscillations decreases when the commanded altitude changes; the last
setpoint, although having a few oscillations of larger magnitude than at the start of the simulation, ultimately converges
to the setpoint faster and with fewer oscillations. We can also see that PCAC improves by looking at the control input
that PCAC requests in the same gure. For the rst two setpoints in particular, the frequency of ap oscillations is high,
and the magnitude is also high relative to the maximum allowed deection. For the last setpoint, PCAC learns how to
control this system using less oscillatory ap deections.

(a) Control input, command, and response (b) Estimated model coecients and the forgetting factor

Fig. 9 PCAC response for the 2DOF scenario. The altitude response is oscillatory during the rst setpoint
command due to the additional pitch dynamics, but these oscillations diminish with subsequent setpoint
commands, as do the ap-control input oscillations. Forgetting is active during command changes.

The increasingly more ecient responses are, as mentioned, due to PCAC updating its model through online
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identication while the simulation is running. In Figure 9(b), we can observe the model coecients denoted by  and
the forgetting factor  over time. The vertical green bars represent setpoint changes. We see that within the rst 50 s,
there is signicant change in the model coecients as the model is identied at the same time the airfoil is controlled,
and forgetting is not yet utilized (other than the small spike at about  = 25). However, once the altitude setpoint is
changed, we see that forgetting is activated and the model coecients update, allowing the airfoil to experience fewer
oscillations with each change in commanded altitude. The model coecients also update less with each setpoint change,
indicating that the model does not require as much improvement with subsequent commands even when the direction of
the setpoint values changes, that is, transition from a lower to higher altitude vs vice versa.

After having examined the states of the system over time, a visualization of the mach contours at dierent times is
shown in Figure 10. At time  = 136, which is less than 10 s after the rst altitude setpoint change is introduced, we see
that the ap deection sequence requested by PCAC caused the airfoil to pitch up, moving towards the setpoint at a
higher altitude due to the increased lift production. At time  = 264, however, which is less than 10 s after the second
altitude setpoint change, we see that the airfoil is pitching down, producing negative lift and therefore moving towards
the setpoint at a lower altitude.

(a)  = 136 (b)  = 264

Fig. 10 Mach contours (0–0.35) for the controlled 2DOF scenario. Deection of the ap excites the plunge and
pitch dynamics.

Although the airfoil did successfully follow the altitude setpoints, there are many oscillations and it took until the
3rd setpoint in order to reduce them signicantly. There are a few ways of increasing PCAC’s performance to reduce
this behavior–increasing model order can be eective, especially in a system where the number of degrees of freedom
exceeds the number of outputs (such as this one–a 2DOF simulation with only altitude as an output), as well as replacing
the step commands with ramps. Figure 11(a) shows that, compared to the previous setup, the number and strength of
oscillations is reduced signicantly. Although the initial transients increased in magnitude, the altitude response after
the rst segment improved overall.

When examining the model coecients in Figure 11(b), we see that, compared to the step command scenario, there
are fewer jumps since there are sudden setpoint changes and the physical conguration of the system is never altered (i.e.
the geometry or physics). The forgetting factor is also largely unactivated–this is again due to no jumps in setpoints and
no system conguration changes.

Although increasing the model order and adding ramps can improve the response, matching the number of degrees of
freedom with the number of outputs results in the most eective solution, also allowing the model order to be decreased.
Including angle of attack as an auxiliary (not commanded) output does increase the controller’s eectiveness, as shown
in Figure 12(a). First, we see that the ap deections bounce between the maximum deections only a few times per
setpoint change (and only once on the last setpoint), compared to ipping back and forth for about 10 periods per
setpoint change in the SISO scenario as shown in Figure 9(a). The amplitude of oscillation also decreases for the ap
deection as the airfoil approaches the commanded altitude, at least for the rst two setpoints. Settling time decreases as
well, as does percent overshoot for the last setpoint change; overall, the system is controlled more eectively.
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(a) Control input, command, and response (b) Estimated model coecients and the forgetting factor

Fig. 11 PCAC response for the 2DOF scenario with increased model order and ramp command transitions
between setpoints.

(a) Control input, angle of attack, command, and response (b) Estimated model coecients and the forgetting factor

Fig. 12 PCAC response for the 2DOF scenario with angle of attack as an auxiliary measurement. Compared to
the SISO scenario, the ap oscillations are greatly diminished while improving the ability of the airfoil to follow
the setpoint.
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We keep all other parameters constant between the step SISO scenario and this scenario in order to determine how
the eectiveness of the controller increases with an extra output state for the system identication. If we also take a look
at the model coecients and forgetting factor in Figure 12(b), we see that, compared to the step SISO scenario shown
in Figure 9(b), the process of model identication and forgetting is very similar. At the setpoint changes, we still see
forgetting occurring from the  subplot and a corresponding shift in the model coecients in the  subplot, although
the forgetting factor activates more uniformly in the second scenario.

(a) Control input, angle of attack, command, and response (b) Estimated model coecients and the forgetting factor

Fig. 13 PCAC response for the 2DOF scenario with an auxiliary angle of attack measurement and ramp
transitions.

Although the system is already controlled quite well, if ramps are used instead of step commands, the airfoil follows
altitude setpoints with almost no overshoot or settling time. The initial transients coming from the identication phase
at the beginning of the simulation are removed almost entirely, as shown in Figure 13(a).

As for the model coecients, the trends mostly follow the other ramp scenario without sudden jumps in model
coecients. However, they do still update slowly, owing to the gradual setpoint change due to the ramp transitions.
There is more forgetting than in the rst ramp scenario but still less than in the step scenarios, as shown in Figure 13(b).

D. Control of 2DOF Airfoil Dynamics in Transonic Flow
The next scenarios introduce a faster ow regime, going from subsonic, mostly incompressible ow to transonic,

compressible ow. This enables more nonlinear eects such as shocks to form, testing PCAC more thoroughly in
situations with more complicated physics. The airfoil mesh remains the same as in the rst two scenarios, but now the
Mach number has increased from ∞ = 0.2 to ∞ = 0.74. Since the Euler equations are still used, we are neglecting
viscosity for now. Although the Mach number is under 1, shocks are still able to form as the Mach number increases
while ow is accelerating around the airfoil, causing shocks to appear on both sides, as shown in Figure 15. Although
shocks cause drag, it is ignored in this 2DOF scenario. We have also decided to include gravity in the simulations
moving forward, computed from the physical value 9.81 m/s2 by assuming a 1m chord airfoil moving at 251.7m/s.

The model order and prediction horizon are kept the same as the previous 2DOF scenarios. The initial covariance is
increased by one order of magnitude, which makes the model coecients less resistant to change as the simulation is
started.

We once again investigate the ability of PCAC to follow an altitude setpoint with cold start, that is, with no prior
model. Following a steady-state solution at  = 0, the controller is given free reign in the transonic ow regime by
requesting ap deection while plunging and rotating due to the interaction of the airfoil with the ow stream. This
time, the airfoil starts with the altitude setpoint  = 0. Since gravity is now present, the airfoil cannot remain in steady
ight without ap deection, although PCAC deects control surfaces in order to start the system identication process
even with no command-following error. We see from Figure 14(a) that, after an initial ap deection, the pitch angle
and altitude of the airfoil oscillate for a short period of time until approaching a steady state at the altitude setpoint. At
the next two setpoints ( = 64 and  = 128), we see that PCAC has constructed an accurate model since there is not
much overshoot and the settling time is quick for the commanded altitudes. When the system encounters an altitude
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(a) Control input, angle of attack, command, and response (b) Estimated model coecients and the forgetting factor

Fig. 14 PCAC response for the 2DOF transonic scenario with gravity.

setpoint that is in the opposite direction at  = 256, the controller uses the identied model to quickly approach and
settle at the correct altitude.

Figure 14(b) shows us that at the rst setpoint change, although a high magnitude of forgetting is activated, the
model coecients change less that usual. However, at the second setpoint change, we observe a more expected update
in the PCAC parameters, along with a similar magnitude of activated forgetting. In this situation, excessive forgetting
can cause a slight momentary decrease in model accuracy; we see the higher overshoot as the airfoil approaches the
commanded altitude after the second setpoint change. This is not always the case, but since the physics of the system
and the nature of requested commands have not changed drastically, we do not see a huge benet from forgetting at this
point in the simulation. However, due to the forgetting factor causing the model coecients to update, PCAC is much
more eective at handling a negative altitude change.

Examining Figure 15, we can observe visualizations of the ow eld during pitch up, steady, and pitch down
maneuvers. Due to the presence of gravity, the shocks are not symmetric over the chord line for the symmetric airfoil
during steady ight in order to oset the gravity and remain at the same altitude. During pitch down and pitch up
maneuvers, this is shown more clearly, although this time the shocks are oset such that the airfoil is producing positive
and negative lift, respectively. There is also more of a shock location dierence between the upper and lower surfaces
during the pitch up maneuver than the pitch down maneuver as the airfoil is ghting gravity. We can also see that not
only do the shocks on the upper and lower surfaces move depending on pitch angle, expansion waves are created when
the ap is deected, further adding to the complexity of the physical system–yet PCAC handles the nonlinear dynamics
eectively.

Finally, a curious observation is that the steady state of the system is not unique–we see this especially by observing
the ap deection at the third and fourth setpoints once the system has stabilized (between  ≈ 175 to  = 264, and
 ≈ 300 to  = 400 in Figure 14(a)). The ap deections are very close, but the ap is deected more at the third setpoint
and the angle of attack is also dierent, allowing both combinations to result in steady ight. Another interesting
observation is that the steady solution with gravity is yielding a very slightly negative angle of attack, but this causes
positive lift due to the slightly negative ap deection which shifts the shock imbalance such that the shock forms earlier
on the bottom surface of the airfoil, providing a larger sectional area of higher pressure behind the shock than on the top
surface and contributing enough lift to counteract gravity.

Another feature of PCAC is the ability to impose constraints on outputs. For example, the angle of attack has been
an output that, up until this point, was used only for more eective model buildup, but if we constrain it by imposing
limits on the maximum and minimum angles of attack, it could be helpful for simulations that rely on reasonable angles
of attack for accuracy. We are introducing constraints in the 2DOF transonic scenario as these constraints will be used
in all later scenarios, as well as in order to show results for the scenario with the standard altitude command pattern that
has been used for previous tests, as shown in Figure 16.

As Figure 16(a) shows, PCAC satises the constraint imposed on the angle of attack at ±0.12 rad. PCAC quickly
learns and is able to follow commands on the altitude, especially at the third setpoint. The model coecients and the
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(a)  = 70.4 (pitching up) (b)  = 192 (steady)

(c)  = 257.6 (close-up of ap expansion wave) (d)  = 262.4 (pitching down)

Fig. 15 Density contours (0.5484–1.36) for the controlled 2DOF transonic scenario. Deection of the ap excites
the plunge and pitch dynamics, causing shocks to move along the upper and lower surfaces of the airfoil.

(a) Control input, angle of attack with constraints, command, and
response

(b) Estimated model coecients and the forgetting factor

Fig. 16 PCAC response for the 2DOF transonic scenario with angle-of-attack constraints and gravity.
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forgetting factor also follow the well-established pattern of approaching a steady value and updating at each setpoint
(with forgetting occurring at setpoints) as shown in Figure 16(b).

E. Control of 3DOF Airfoil Dynamics in Transonic Flow
After testing PCAC in nonlinear systems with a single controlled input (ap) and single commanded output

(altitude), we can move on to stressing the controller more by introducing the last degree of freedom possible in two
dimensions–horizontal position. We have implemented testing horizontal position by using a control volume that moves
at the same speed and direction as the freestream and measuring the airfoil’s displacement relative to this frame that is
stationary in the CFD simulation. This horizontal position can also be thought of as a pursuit metric–if there were an
aircraft moving at constant speed in front of the airfoil, “horizontal position" would be measured as the distance from
such an imaginary aircraft, with  = 0 dened as the starting position,  > 0 when the airfoil is farther away (moves to
the right) while pursuing the aircraft, and  < 0 when the airfoil is closer to the imaginary aircraft (moves to the left).

Since there is an added commanded output on top of the altitude and constrained angle of attack, we are now up
to three commanded outputs using only one control input. Furthermore, since the airfoil can now move horizontally
in a relative frame, it has no way to counteract the wave drag to control movement in the relative horizontal position,
specically to move to the left. This is why we have added a thrust input that acts as if it were placed collinear with the
chord, so the force due to thrust acts parallel to the chord in the direction of the vector pointing from the trailing to the
leading edge.

Now that there are two commanded outputs (altitude and pursuit position) and two inputs (ap and thrust), plus
a constrained output (angle of attack), the system can be controlled. In this scenario, we are stressing the ability of
PCAC to perform MIMO control in a nonlinear dynamics environment. Again, the model order and prediction horizon
are kept constant, but this time the initial covariance is decreased substantially. The reasoning is that at the start of
the simulation, the model is less resistant to change, and the controller has a tendency to maximize control inputs in
order to build up the model. This can be counteracted by changing some of the model predictive control optimization
weights–specically, decreasing the cost-to-go weight and increasing the controller output change weight.

These changes increase penalties during the optimization process to larger changes in control input deections,
which counteracts the eects of a high initial covariance (and also smooths out ap deections later in the simulation),
but we nd that decreasing the initial covariance in the scenarios going forward is preferable in conjunction with
modifying the optimization parameters. The forgetting factor is also decreased in order to avoid model changes that
can momentarily cause undesirable eects, such as the increased overshoot for one of the setpoints we saw in the
unconstrained 2DOF transonic scenario (Figure 14(a)).

Fig. 17 PCAC step transition response for the 3DOF transonic scenario with gravity.

As shown in Figure 17, there are constraints imposed on the angle of attack; however, in the rst segment (rst
setpoint, up until  ≈ 128 s), the airfoil exceeds the minimum and maximum angles of attack, although this is somewhat
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expected. The rst instance occurs at  ≈ 10 s, which is very early in the simulation, so the model, as shown in
Figure 19(a), has not yet approached an accurate representation of the system. However, because of the constraint,
even with an initially imperfect "awareness" of the physical system, PCAC quickly determines that reversing the ap
deection will allow the airfoil to return to the set angle of attack margin.

Fig. 18 PCAC ramp transition response for the 3DOF transonic scenario with gravity.

We also see that at  ≈ 27 s and  ≈ 42 s, the angle of attack of the airfoil barely exceeds the constraint, although
this is still within the initial identication phase and PCAC successfully keeps to both the minimum and maximum
constraints for the rest of the simulation.

(a) Step transition scenario (b) Ramp transition scenario

Fig. 19 Model coecients and forgetting factor for the 3DOF transonic scenario with gravity for step and ramp
command transitions.

Moving on to analyzing the behavior of the commanded outputs, PCAC prioritizes approaching the altitude setpoint
before attempting to converge to the horizontal position setpoint, although this is mostly a behavior for the rst segment.
For the second setpoint, PCAC has learned to juggle both requests, converging to both the altitude and horizontal pursuit
setpoints simultaneously. Something to note is that the airfoil does not have thrust reversing capability, which means
that it is limited in how quickly it can approach positive horizontal position setpoints by the amount of drag the airfoil
can experience, which is why we see faster convergence for the third setpoint than the second, where it can leverage the
available thrust.
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However, even though the airfoil does not have thrust reversing capability, it can still quickly converge to horizontal
pursuit setpoints in both directions, which is shown in the ramp transition scenario in Figure 18. Again, we see the
smoother command changes allowing PCAC to respond more eectively, cutting down on the initial transients and
almost completely removing overshoot. Settling time is also quick, and the angle of attack constraints are, similar to the
step transition scenario, only exceeded once at the beginning of the simulation when the model is not yet representative
of the physical system.

(a)  = 136 (b)  = 264

Fig. 20 Density contours (0.5–1.339) for the step response 3DOF transonic scenario. Snapshots of the airfoil in
the oweld chosen to highlight additional dynamics due to the 3rd degree of freedom.

From the model coecient and forgetting parameter plots in Figure 19, we see that the trends in behavior follow what
we have seen for previous scenarios–forgetting and model coecient updates after the setpoints, with model coecients
approaching steady values in each segment. For the step transition scenario, we see larger changes in model coecients
and the forgetting parameters due to the setpoint jumps, with more gradual transitions for the ramp transition scenario.

Figure 20 shows that the extra degree of freedom signicantly changes the dynamics of the system. We see that,
when the airfoil is falling back and ascending, e.g. at  = 136 s, the shocks move closer to the leading edge, since
the airfoil is eectively decelerating. At time  = 264 s, however, the airfoil is descending and using thrust, so it is
accelerating and we see the shock has moved back and increased in size and strength. Overall, PCAC is successful in
controlling this system throughout the simulation, especially after the model has been identied near the end of the rst
segment.

F. Control of 3DOF Airfoil Dynamics in Transonic Flow with Turbulence
Our nal scenario for testing a 2D airfoil is with all 3 possible degrees of freedom in the transonic ow regime with

viscosity turned on in the form of turbulence. We have chosen a very high Reynolds number of  = 1.7 × 107 for this
scenario, as it is representative of cruise conditions for most aircraft–for this scenario specically, the Reynolds number
is calculated from sea level conditions with a 1m chord at  = 0.74; however, at a similar Mach number and cruise
altitude of ≈ 35000 ft, the Reynolds number is also around 20 million.

The Reynolds-averaged Navier-Stokes turbulence model is the Spalart-Allmaras (SA-neg) closure. This is a relatively
simple model that allows for fairly accurate simulation within reasonable angles of attack, something we can enforce
using pitch constraints with PCAC.

Because this is now a viscous simulation with a high Reynolds number, we needed to update the mesh to be much
more resolved close to the surface of the airfoil to accurately capture the boundary layer. To achieve this, we use
xow’s steady adjoint-based adaptive capability that minimized the eect of the discretization error on the drag, and we
increased the number of elements in the mesh to 2544, while keeping the solution approximation order at  = 2. The
updated mesh is shown in Figure 21, where contours of -momentum are shown–it is dicult to see the boundary layer
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near the leading edge without zooming in substantially since it is very thin, but closer to the trailing edge we see how the
increased element density close to the airfoil surface allows the boundary layer to be resolved.

(a) Full View (b) Boundary Layer Closeup

Fig. 21 X-Momentum Contours on rened airfoil mesh for the turbulent scenario.

This time, the model order is marginally increased from 16 to 18, as is the prediction horizon to about 1/4 of
the total simulation time from 1/5. This is done in order to give PCAC more “foresight” for the more physically
demanding viscous scenario. The initial covariance is slightly increased, and the optimization cost-to-go weight is
decreased substantially–too rapid of control deections threatened to stall the airfoil, which would be unrecoverable in
our simulations. The forgetting factor is kept the same as for the inviscid 3DOF scenario.

Fig. 22 PCAC response for the 3DOF transonic scenario with turbulence and gravity.

Testing PCAC using the same setpoint pattern yields favorable results from a high-delity model in Figure 22. Again,
we see similar behavior with slight encroachment over the limits on the angle of attack in the rst segment. However,
in the later segments, with the second and third setpoints, we see that the angle of attack is successfully constrained
within expanded bounds. In PCAC, we can change the constraint boundaries while the simulation is running–this is
useful in scenarios such as this one, as it puts more pressure on PCAC to stay within reasonable bounds sooner when the
model is not yet converged, forcing the controller to act sooner in the beginning to counteract what would otherwise
be more serious infringements on the constraints that could or could not be recoverable. With this approach, we can
keep the system stable at all times as well as allowing more leniency during the later stages once the model is close to
convergence in order to improve command-following performance.

Otherwise, we see that, apart from the rst setpoint, where PCAC is rapidly constructing the model, the airfoil
follows the commands for both horizontal pursuit as well as altitude while keeping to the angle of attack constraint and
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using reasonable control surface deections. The model coecients and forgetting factor, as shown in Figure 23, keep
to the same pattern, although something to note is that there is slightly more deviation after the rst setpoint than we saw
in the inviscid scenario, likely because of the more complex physics and change of constraint limits.

Fig. 23 Model coecients and forgetting factor for the 3DOF transonic scenario with turbulence and gravity.

V. Conclusions
This paper used predictive cost adaptive control (PCAC) to control an airfoil in two-dimensional ight. PCAC is a

discrete-time (sampled-data) controller that requires only online sensor measurements to learn the vehicle dynamics. In
particular, PCAC requires no prior knowledge of the system being controlled and instead identies the system dynamics
online during ight. In the present scenarios, the system is a high-order nite-element simulation of an airfoil in free
ight, and the sensors measure the altitude, angle of attack, and horizontal pursuit position of the airfoil. The controller
actuates a ap and turns on thrust, which change the force and moment on the airfoil, with both quantities predicted
by the simultaneously running uid simulation. The vertical motion of the ap and the pitch and plunge motion of
the airfoil are implemented via an arbitrary Lagrangian-Eulerian formulation, which consists of rigid-body motion
surrounded by cubic blending.

These results demonstrate the ability of PCAC to follow commanded altitudes and horizontal pursuit positions
as well as to keep within angle of attack constraints for one, two, and three degree-of-freedom ight in subsonic and
transonic ight regimes in both inviscid and turbulent ows. With online closed-loop system identication, PCAC
improves its ability to follow the commanded altitude as the setpoint command changes. Ramp commands instead of
setpoint commands can improve the eectiveness of PCAC, reducing overshoot and initial transients, as well as matching
the number of degrees of freedom with the number of outputs. Dierent parameters can be adjusted to modify the
behavior of the controller, allowing users to impose constraints on both inputs and outputs and tune its aggressiveness.
Current and future tests using PCAC include a three-dimensional wing with up to six degrees of freedom in its ight
dynamics.
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