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Active bleed actuation integrated within an airfoil facilitates aerodynamic control. The
present study investigates the ability of predictive cost adaptive control (PCAC) to use active
bleed actuation with variable-channel width for flow control and compares its performance
with PI control as well as with PCACi, which is an extension of PCAC that incorporates
integral action. The fluid dynamics of the airfoil and variable-width channel are modeled
using computational fluid dynamics (CFD). As an extension of model predictive control, PCAC
leverages recursive least squares (RLS) with variable-rate forgetting (VRF) to facilitate real-time,
closed-loop system identification without the need for analytical modeling or offline learning.
The proposed approach uses flow control enabled by active bleed actuation to follow pressure
setpoint commands at a specified location on the airfoil.

I. Introduction
Bleeding air through a channel in a body causes pressure redistribution, while varying the flow through the channel

provides a means for actively controlling the aerodynamics of the body [1–4]. The present paper uses active bleed
actuation with variable channel width to regulate pressure distribution around an airfoil. The control technique used in
this work is predictive cost adaptive control (PCAC). PCAC was developed in [5, 6], and it was used for active flow
control in [7], where the control objective is to achieve flow separation at a specified location on an airfoil.

As an indirect adaptive control extension of model predictive control (MPC), PCAC uses recursive least squares
(RLS) with variable-rate forgetting (VRF) for online, closed-loop system identification [8–12]. At each time step,
RLS-based system identification updates the coefficients of an input-output model whose order is specified by the user.
To determine control inputs within the framework of MPC, PCAC uses quadratic programming for receding-horizon
optimization, which enforces magnitude- and rate-saturation constraints as well as output constraints. To enable
output-feedback control with physically realistic sensors, PCAC uses the block-observable canonical form (BOCF)
realization, which provides an exact state estimation at each step [13]. PCAC can be used with a reference model,
and unknown disturbances may be either matched or unmatched. During operation, PCAC uses sampled sensor data
(e.g., flow state and altitude) and requests system inputs, such as mesh motion, surface deflections, and fluidic-jet
velocities. Other than specification of the model order, optimization horizon, and forgetting parameters, PCAC operates
under cold-start conditions without the need for analytical modeling or offline learning. The effectiveness of PCAC is
compared to that of PI control and PCACi, an extension of PCAC with integral action.

The contribution of the present paper is a numerical investigation of the ability of PCAC to use active bleed actuation
with variable channel width. In particular, PCAC is used to enable active flow control, where the objective is to regulate
the pressure around an airfoil under high-Reynolds-number flight conditions. PCAC is distinct from active flow control
methods that depend on detailed modeling of the fluid dynamics, either analytically or experimentally, often followed by
model reduction. [14–24]. Controller-synthesis techniques for flow control include optimal control [25, 26], robust
control [27], and machine-learning methods [23, 28]. In contrast, PCAC relies entirely on a model that is identified
online, and thus requires no reduced-order model of any kind, either extracted from offline data or a high-order analytical
model.

In the present paper, bleed actuation is realized by a CFD model that captures the fluid dynamics of a variable-width
bleed channel through the airfoil. The CFD simulations are implemented in xflow, which is a high-order, mesh-adaptive
CFD code [29], efficient for obtaining high-accuracy results for practical aerodynamic simulations. Using this actuation

∗Master’s Student, Department of Aerospace Engineering, kharsh@umich.edu.
†Ph.D. Candidate, Department of Aerospace Engineering, jacobcvs@umich.edu.
‡Research Fellow, Department of Aerospace Engineering, aseemisl@umich.edu.
§Professor, Department of Aerospace Engineering, kfid@umich.edu.
¶Professor, Department of Aerospace Engineering, dsbaero@umich.edu.

1

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
on

 J
an

ua
ry

 1
7,

 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
5-

02
61

 

 AIAA SCITECH 2025 Forum 

 6-10 January 2025, Orlando, FL 

 10.2514/6.2025-0261 

 Copyright © 2025 by the American Institute of Aeronautics and Astronautics, Inc. 

 The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner. 

 AIAA SciTech Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2025-0261&domain=pdf&date_stamp=2025-01-03


method, PCAC is shown to regulate the pressure measured at a sensor location on the airfoil with no prior model
available to the controller.

II. Review of Predictive Cost Adaptive Control
As shown in Figure 1, PCAC combines online identification with output-feedback MPC. The PCAC algorithm is

presented in this section. Subsection II.A describes the technique used for online identification, namely, recursive least
squares. Subsection II.B reviews the output-feedback MPC technique for receding-horizon optimization based on [30].
Note that the model identified by PCAC is generally only good enough to facilitate control objectives. That is, in general
the model identified by PCAC is unsuitable for model-based control design. Subsection II.C reviews PCACi, which is a
variation of PCAC with integral action.

Predictive Cost Adaptive Control

Model Predictive Control
QP for output feedback

with control and output constraints

Online System Identification
RLS/VRF for online identification

with variable-rate forgetting

Fluid Dynamics
xflow CFD

Measurement 𝑦𝑘

Estimated Model Coefficients 𝜃𝑘

Control 𝑢𝑘
Command 𝑟𝑘

Disturbance 𝑤𝑘

Fig. 1 PCAC block diagram. The online, closed-loop system identification is based on recursive least squares
(RLS) with variable-rate forgetting (VRF). The model predictive control (MPC) algorithm, which is based on
quadratic programming (QP), uses the estimated model coefficients 𝜃𝑘 to predictive function model, which is
used by QP to determine the control input 𝑢𝑘 .

A. Online Identification Using Recursive Least Squares
Let 𝑛̂ ≥ 0 and, for all 𝑘 ≥ 0, let 𝐹̂1,𝑘 , . . . , 𝐹̂𝑛̂,𝑘 ∈ R𝑝×𝑝 and 𝐺̂0,𝑘 , . . . , 𝐺̂ 𝑛̂,𝑘 ∈ R𝑝×𝑚 be the coefficient matrices to

be estimated using RLS. Furthermore, let 𝑦̂𝑘 ∈ R𝑝 be an estimate of 𝑦𝑘 defined by

𝑦̂𝑘 = −
𝑛̂∑︁
𝑖=1

𝐹̂𝑖,𝑘𝑦𝑘−𝑖 +
𝑛̂∑︁
𝑖=0

𝐺̂𝑖,𝑘𝑢𝑘−𝑖 , (1)

where

𝑦−𝑛̂ = · · · = 𝑦−1 = 0, (2)
𝑢−𝑛̂ = · · · = 𝑢−1 = 𝑢0 = 0. (3)

For online identification, RLS is used to estimate the coefficients of the input-output model (1). To do this, RLS
minimizes the cumulative cost

𝐽𝑘 (𝜃) =
𝑘∑︁
𝑖=0

𝜌𝑖

𝜌𝑘
𝑧T
𝑖 (𝜃)𝑧𝑖 (𝜃) +

1
𝜌𝑘

(𝜃 − 𝜃0)T𝑃−1
0 (𝜃 − 𝜃0), (4)

where, for all 𝑘 ≥ 0, 𝜌𝑘
△
=
∏𝑘

𝑗=0 𝜆
−1
𝑗

∈ R, 𝜆𝑘 ∈ (0, 1] is the forgetting factor, 𝑃0 ∈ R[𝑛̂𝑝 (𝑚+𝑝)+𝑚𝑝]×[𝑛̂𝑝 (𝑚+𝑝)+𝑚𝑝] is
positive definite, and 𝜃0 ∈ R𝑛̂𝑝 (𝑚+𝑝)+𝑚𝑝 is the initial estimate of the coefficient vector. The performance variable
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𝑧𝑘 (𝜃𝑘) ∈ R𝑝 is defined by

𝑧𝑘 (𝜃𝑘)
△
= 𝑦𝑘 +

𝑛̂∑︁
𝑖=1

𝐹̂𝑖,𝑘𝑦𝑘−𝑖 −
𝑛̂∑︁
𝑖=0

𝐺̂𝑖,𝑘𝑢𝑘−𝑖 , (5)

where the vector 𝜃𝑘 ∈ R𝑛̂𝑝 (𝑚+𝑝)+𝑚𝑝 of estimated coefficients is defined by

𝜃𝑘
△
= vec

[
𝐹̂1,𝑘 · · · 𝐹̂𝑛̂,𝑘 𝐺̂0,𝑘 · · · 𝐺̂ 𝑛̂,𝑘

]
. (6)

Defining the regressor matrix 𝜙𝑘 ∈ R𝑝×[𝑛̂𝑝 (𝑚+𝑝)+𝑚𝑝] by

𝜙𝑘
△
=

[
−𝑦T

𝑘−1 · · · −𝑦T
𝑘−𝑛̂ 𝑢T

𝑘
· · · 𝑢T

𝑘−𝑛̂

]T
⊗ 𝐼𝑝 , (7)

it follows that the performance variable (5) can be rewritten as

𝑧𝑘 (𝜃𝑘) = 𝑦𝑘 − 𝜙𝑘𝜃𝑘 . (8)

Note that, with (8), the cost function (4) is strictly convex and quadratic, and thus has a unique global minimizer. The
unique global minimizer is computed by RLS using

𝐿𝑘 = 𝜆−1
𝑘 𝑃𝑘 , (9)

𝑃𝑘+1 = 𝐿𝑘 − 𝐿𝑘𝜙
T
𝑘 (𝐼𝑝 + 𝜙𝑘𝐿𝑘𝜙

T
𝑘 )

−1𝜙𝑘𝐿𝑘 , (10)
𝜃𝑘+1 = 𝜃𝑘 + 𝑃𝑘+1𝜙

T
𝑘 (𝑦𝑘 − 𝜙𝑘𝜃𝑘). (11)

Note that 𝜃𝑘+1 computed using (11) is available at step 𝑘, and thus, 𝐹̂1,𝑘+1, . . . , 𝐹̂𝑛̂,𝑘+1, 𝐺̂0,𝑘+1, . . . , 𝐺̂ 𝑛̂,𝑘+1 are available
at step 𝑘 .

The step-dependent parameter 𝜆𝑘 is the forgetting factor. In the case where 𝜆𝑘 is constant, RLS uses constant-rate
forgetting (CRF); otherwise, RLS uses variable-rate forgetting (VRF) [31]. For VRF, 𝜆𝑘 is given by

𝜆𝑘 =
1

1 + 𝜂𝑔(𝑧𝑘−𝜏d , . . . , 𝑧𝑘)1[𝑔(𝑧𝑘−𝜏d , . . . , 𝑧𝑘)]
, (12)

where 1 : R→ {0, 1} is the unit step function, where 1(𝑥) = 0 for all 𝑥 < 0 and 1(𝑥) = 1 for 𝑥 ≥ 0, and

𝑔(𝑧𝑘−𝜏d , . . . , 𝑧𝑘)
△
=

√︃
1
𝜏n

∑𝑘
𝑖=𝑘−𝜏n

𝑧T
𝑖
𝑧𝑖√︃

1
𝜏d

∑𝑘
𝑖=𝑘−𝜏d

𝑧T
𝑖
𝑧𝑖

− 1. (13)

B. Model Predictive Control (MPC)
We define the tracking output 𝑦t,𝑘 ∈ R a

𝑦t,𝑘
△
= 𝐶t𝑦𝑘 . (14)

The performance objective is to have 𝑦t,𝑘 ∈ R𝑝t follow a commanded sequence of 𝑟𝑘 ∈ R𝑝t , whose future values may or
may not be known. In addition to the performance objective, the constrained output 𝑦c,𝑘 ∈ R𝑝c is defined by

𝑦c,𝑘
△
= 𝐶c𝑦𝑘 , (15)

where 𝐶c ∈ R𝑝c×𝑝 . The objective is to enforce the inequality constraint

C𝑦c,𝑘 + D ≤ 0𝑛c×1, (16)

where C ∈ R𝑛c×𝑝c and D ∈ R𝑛c . Note that (16), where “≤” is interpreted component-wise, defines a convex set.
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The control is constrained in both magnitude and rate. The magnitude control constraint has the form

𝑢min ≤ 𝑢𝑘 ≤ 𝑢max, (17)

where 𝑢min ∈ R is the value of the minimum control magnitude and 𝑢max ∈ R is the value of maximum control magnitude.
In addition, the move-size control constraint has the form

Δ𝑢min ≤ 𝑢𝑘 − 𝑢𝑘−1 ≤ Δ𝑢max, (18)

where Δ𝑢min ∈ R is the value of minimum control move size and Δ𝑢max ∈ R is the value of maximum control move
sizes.

Next, let ℓ ≥ 1 be the horizon and, for all 𝑘 ≥ 0 and all 𝑖 = 1, . . . , ℓ, let 𝑦̂𝑘 |𝑖 ∈ R𝑝 be the 𝑖-step predicted output, and
𝑢𝑘 |𝑖 ∈ R𝑚 be the 𝑖-step predicted control. Then, the ℓ-step predicted output of (1) for a sequence of ℓ future controls is
given by

𝑌𝑘,ℓ = Γ𝑘 + 𝑇𝑘𝑈𝑘,ℓ . (19)

where

𝑌𝑘,ℓ
△
=


𝑦𝑘 |1
...

𝑦𝑘 |ℓ

 ∈ Rℓ 𝑝 , 𝑈𝑘,ℓ
△
=


𝑢𝑘 |1
...

𝑢𝑘 |ℓ

 ∈ Rℓ𝑚, 𝐷 𝑛̂,𝑘
△
=



𝑦𝑘−𝑛̂+1
...

𝑦𝑘

𝑢𝑘−𝑛̂+1
...

𝑢𝑘


∈ R𝑛̂(𝑝+𝑚) , (20)

Γ𝑘
△
=

[
−𝐹−1

p,𝑘𝐹d,𝑘 𝐹−1
p,𝑘𝐺d,𝑘

]
𝐷 𝑛̂,𝑘 , 𝑇𝑘

△
= 𝐹−1

p,𝑘𝐺p,𝑘 , (21)

𝐹d,𝑘
△
=



𝐹̂𝑛̂,𝑘 · · · 𝐹̂1,𝑘
...

. . .
...

0𝑝×𝑝 · · · 𝐹̂𝑛̂,𝑘

0𝑝×𝑝 · · · 0𝑝×𝑝

...
. . .

...

0𝑝×𝑝 · · · 0𝑝×𝑝


∈ Rℓ 𝑝×𝑛̂𝑝 , 𝐺d,𝑘

△
=



𝐹̂𝑛̂,𝑘 · · · 𝐺̂1,𝑘
...

. . .
...

0𝑝×𝑚 · · · 𝐺̂ 𝑛̂,𝑘

0𝑝×𝑚 · · · 0𝑝×𝑚
...

. . .
...

0𝑝×𝑚 · · · 0𝑝×𝑚


∈ Rℓ 𝑝×𝑛̂𝑚, (22)

𝐹p,𝑘
△
=



𝐼𝑝 · · · 0𝑝×𝑝 0𝑝×𝑝 · · · 0𝑝×𝑝

...
. . .

...
...

. . .
...

𝐹̂𝑛̂−1,𝑘 · · · 𝐼𝑝 0𝑝×𝑝 · · · 0𝑝×𝑝

𝐹̂𝑛̂,𝑘 · · · 𝐹̂1,𝑘 𝐼𝑝 · · · 0𝑝×𝑝

...
. . .

...
...

. . .
...

0𝑝×𝑝 · · · 𝐹̂𝑛̂,𝑘 𝐹̂𝑛̂−1,𝑘 · · · 𝐼𝑝


∈ Rℓ 𝑝×ℓ 𝑝 , (23)

𝐺p,𝑘
△
=



𝐺̂0,𝑘 · · · 0𝑝×𝑚 0𝑝×𝑚 · · · 0𝑝×𝑚
...

. . .
...

...
. . .

...

𝐺̂ 𝑛̂−1,𝑘 · · · 𝐺̂0,𝑘 0𝑝×𝑚 · · · 0𝑝×𝑚
𝐺̂ 𝑛̂,𝑘 · · · 𝐺̂1,𝑘 𝐺̂0,𝑘 · · · 0𝑝×𝑚
...

. . .
...

...
. . .

...

0𝑝×𝑚 · · · 𝐺̂ 𝑛̂,𝑘 𝐺̂ 𝑛̂−1,𝑘 · · · 𝐺̂0,𝑘


∈ Rℓ 𝑝×ℓ𝑚. (24)
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Let R𝑘,ℓ
△
=

[
𝑟T
𝑘+1 · · · 𝑟T

𝑘+ℓ

]T
∈ Rℓ 𝑝t be a vector composed of ℓ future commands, let 𝑦t,𝑘 |𝑖

△
= 𝐶t𝑦𝑘 |𝑖 ∈ R𝑝t

be the 𝑖-step predicted command-following output, let 𝑌t,𝑘,ℓ
△
=

[
𝑦T

t,𝑘 |1 · · · 𝑦T
t,𝑘 |ℓ

]T
= 𝐶t,ℓ𝑌𝑘,ℓ ∈ Rℓ 𝑝t , where

𝐶t,ℓ
△
= 𝐼ℓ ⊗ 𝐶t ∈ Rℓ 𝑝t×ℓ 𝑝 , and define

Δ𝑈𝑘,ℓ
△
= [(𝑢𝑘 |1 − 𝑢𝑘)T (𝑢𝑘 |2 − 𝑢𝑘 |1)T · · · (𝑢𝑘 |ℓ − 𝑢𝑘 |ℓ−1)T]T ∈ Rℓ𝑚. (25)

Then, the receding horizon optimization problem is given by

min
𝑈𝑘,ℓ

(
𝑌t,𝑘,ℓ − R𝑘,ℓ

)T
𝑄

(
𝑌t,𝑘,ℓ − R𝑘,ℓ

)
+ Δ𝑈T

𝑘,ℓ𝑅Δ𝑈𝑘,ℓ + 𝜀T𝑆𝜀, (26)

subject to

Cℓ𝑌𝑘,ℓ + Dℓ ≤ 𝜀, (27)
𝑈min ≤ 𝑈𝑘,ℓ ≤ 𝑈max, (28)

Δ𝑈min ≤ Δ𝑈𝑘,ℓ ≤ Δ𝑈max, (29)
0ℓ𝑛c×1 ≤ 𝜀, (30)

where 𝑄 ∈ Rℓ 𝑝t×ℓ 𝑝t is the positive-definite output weighting, 𝑅 ∈ Rℓ𝑚×ℓ𝑚 is the positive definite control move-
size weight, 𝑆 ∈ Rℓ𝑛c×ℓ𝑛c is the positive-definite constraint relaxation weight, 𝑈min

△
= 1ℓ ⊗ 𝑢min ∈ Rℓ𝑚, 𝑈max

△
=

1ℓ ⊗ 𝑢max ∈ Rℓ𝑚, Δ𝑈min
△
= 1ℓ ⊗ Δ𝑢min ∈ Rℓ𝑚, Δ𝑈max

△
= 1ℓ ⊗ Δ𝑢max ∈ Rℓ𝑚, and Cℓ

△
= 𝐼ℓ ⊗ (C𝐶c) ∈ Rℓ𝑛c×ℓ 𝑝 and

Dℓ
△
= 1ℓ×1 ⊗ D ∈ Rℓ𝑛c . The quadratic program (QP) optimization (26)–(30) is solved using MATLAB’s quadprog

algorithm.
In summary, at each time step, online identification is performed to find input-output model coefficients 𝜃𝑘+1, which

are then used to create the matrices Γ𝑘 and 𝑇𝑘 . Then, the matrices Γ𝑘 and 𝑇𝑘 are used in a receding horizon optimization
problem to solve for the ℓ-step controls 𝑈𝑘,ℓ . The control input for the next step is then given by 𝑢𝑘 |1, and the rest of the
components of 𝑈𝑘,ℓ are discarded.

C. PCACi: PCAC with Integral Action
In order to include integrators in the control loop using PCAC, we define the sequence 𝑣𝑘 to be the the backward

difference of 𝑢𝑘 . That is

𝑣𝑘
△
= 𝑢𝑘 − 𝑢𝑘−1, (31)

which implies

𝑢𝑘 = 𝑢𝑘−1 + 𝑣𝑘 . (32)

That is, 𝑢𝑘 is the integral of 𝑣𝑘 . We reformulate the model predictive problem in terms of predicted values of 𝑣𝑘 without
modifying the procedure for online identification, which is from 𝑢𝑘 to 𝑦𝑘 .

We define

𝑉𝑘,ℓ
△
=


𝑣𝑘 |1
𝑣𝑘 |2
...

𝑣𝑘 |ℓ


△
=


𝑢𝑘 |1 − 𝑢𝑘

𝑢𝑘 |2 − 𝑢𝑘 |1
...

𝑢𝑘 |ℓ − 𝑢𝑘 |ℓ−1


∈ Rℓ𝑚, 𝑦a,𝑘

△
=

[
𝑦𝑘

𝑢𝑘−1

]
∈ R𝑝+𝑚, 𝐹̂a,𝑖,𝑘

△
=

[
𝐹̂𝑖,𝑘 −𝐺̂𝑖,𝑘

0𝑚×𝑝 −𝐼𝑖

]
∈ R(𝑝+𝑚)×(𝑝+𝑚) , (33)

𝐺̂a,𝑖,𝑘
△
=

[
𝐺̂𝑖,𝑘

𝐼𝑖

]
∈ R(𝑝+𝑚)×𝑚, 𝐹̂a,0,𝑘

△
=

[
𝐼𝑝 −𝐺̂0,𝑘

0𝑚×𝑝 𝐼𝑚

]
∈ R(𝑝+𝑚)×(𝑝+𝑚) , 𝐼𝑖

△
=

{
𝐼𝑚, 𝑖 = 1,
0𝑚×𝑚 otherwise.

. (34)

Using these definitions the linear model (1) can be replaced with

𝐹̂a,0,𝑘 𝑦̂a,𝑘 = −
𝑛̂∑︁
𝑖=1

𝐹̂a,𝑖,𝑘𝑦a,𝑘−𝑖 +
𝑛̂∑︁
𝑖=0

𝐺̂a,𝑖,𝑘𝑣𝑘−𝑖 , (35)
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where 𝑦̂a,𝑘 =

[
𝑦̂T
𝑘

𝑢T
𝑘

]T
is the estimated model output. Furthermore, it can be shown that (19) can be replaced with

𝑌a,𝑘,ℓ = Γ𝑘 + 𝑇𝑘𝑉𝑘,ℓ , (36)

where

𝑌a,𝑘,ℓ
△
=

[
𝑦T

a,𝑘 |1 · · · 𝑦T
a,𝑘 |ℓ

]T
∈ Rℓ (𝑝+𝑚) , (37)

by replacing 𝐼𝑝 in (23) with 𝐹̂a,0,𝑘 , 𝐺̂0,𝑘 in (24) with 𝐺̂a,0,𝑘 , for all 𝑖 = 1, . . . , 𝑛̂, 𝐹̂𝑖,𝑘 and 𝐺̂𝑖,𝑘 in (22)–(24) with 𝐹̂a,𝑖,𝑘
and 𝐺̂a,𝑖,𝑘 , respectively, and for all 𝑖 = 0, . . . , 𝑛̂ − 1, 𝑦𝑘−𝑖 and 𝑢𝑘−1 in (20) with 𝑦a,𝑘−𝑖 and 𝑣𝑘−𝑖 . Finally, using (36) and
𝑌t,𝑘,ℓ =

[
𝐶t,ℓ 0𝑝t×𝑚

]
𝑌a,𝑘,ℓ , a modified receding horizon optimization problem can be stated as

min
𝑉𝑘,ℓ

(
𝑌t,𝑘,ℓ − R𝑘,ℓ

)T
𝑄

(
𝑌t,𝑘,ℓ − R𝑘,ℓ

)
+ Δ𝑉T

𝑘,ℓ𝑅Δ𝑉𝑘,ℓ + 𝜀T𝑆𝜀, (38)

subject to

Cℓ𝑌𝑘,ℓ + Dℓ ≤ 𝜀, (39)
𝑈min ≤ 𝑈𝑘,ℓ ≤ 𝑈max, (40)
Δ𝑈min ≤ 𝑉𝑘,ℓ ≤ Δ𝑈max, (41)

0ℓ𝑛c×1 ≤ 𝜀, (42)

where 𝑅 ∈ Rℓ𝑚×ℓ𝑚 is now the positive definite control-move, move-size weight. Note that the optimization variable for
the cost (38) is 𝑉𝑘,ℓ . Thus, the control input for the next step is then given by 𝑢𝑘 |1 = 𝑢𝑘 + 𝑣𝑘 |1, where 𝑣𝑘 |1 is the first
component of 𝑉𝑘,ℓ and the rest of the components of 𝑉𝑘,ℓ are discarded.

III. Simulation Setup
We consider a 2D NACA 4412 airfoil at a 15 degree angle of attack with a variable-width bleed channel through

the airfoil geometry. The bleed channel allows the flow to pass through the airfoil from the leading edge to the upper
surface, where the flow exits the channel approximately normal to the upper surface. The left and right boundaries of
the domain are velocity inlets and outlets, respectively. The top and bottom boundaries are freestream conditions, and
the airfoil boundaries are no-slip walls. The freestream velocity is non-dimensionalized, and the flow Reynolds number
based on the chord length and viscosity is 105. The units for this problem are convenient O(1) quantities in which one
time unit corresponds to the time taken by flow moving at freestream speed to traverse the airfoil chord. Figure 2 shows
the mesh and boundary conditions along with the location of the bleed channel, and Figure 3 shows the bleed channel
partially constricted.

The fluid dynamics are simulated in xflow, which uses a discontinuous finite-element method to discretize the
governing equation in space, and implicit multi-stage time integration for unsteady problems. The flow state is advanced
using a time step of 0.03 s. The physical model consists of the Reynolds-Averaged Navier-Stokes equations with the
Spalart-Allmaras closure. To vary the width of the bleed channel, an arbitrary Lagrangian-Eulerian (ALE) formulation
is used [32, 33]. The relevant motion for this case is a blended rigid-body plunge, in which which the plunging region
is centered at a point next to the channel, and in which a cubic radial blending function attenuates the plunge to zero
deformation at a certain distance away from the center. The channel is in the blending region, and the disparity in
deformation of the two sides of the channel allows for a variations in the channel width.

xflow is directly interfaced with MATLAB-based control codes using the MATLAB Engine API. At each controller
timestep 𝑘 , the interface obtains pressure measurements 𝑦𝑘 from a location the flow field upstream of the bleed channel
as indicated in Figure 3. This measurement is provided to the controller, which computes the control inputs 𝑢𝑘+1. The
interface then sends 𝑢𝑘+1 to xflow, which applies the control input by specifying the mesh motion of the channel to vary
its width.

IV. Numerical Results
In this section, the flow control objective is to vary the bleed-channel width to achieve a pressure setpoint at the

sensor location. Three controllers are tested: PI, PCAC, and PCACi. In each example, the controller specifies the width
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Fig. 2 Full case mesh (left) and mesh zoomed to airfoil region showing the bleed channel (right). PCAC specifies
the width of this channel to vary the amount of bleed flow.

Fig. 3 Mesh zoomed to airfoil region. The mesh motion constricts the width of the bleed channel in the region
indicated by the red circle. The red arrow indicates the location of the pressure sensor.

of the bleed-channel to vary the amount of bleed flow. Since the flow is injected normally to the wall, the bleed induces
flow separation and redistributes the pressure around the airfoil. By varying this bleed, we can control the pressure at
the sensor location. A control-input constraint 0 ≤ 𝑢𝑘 ≤ 0.5 is enforced, where 𝑢𝑘 = 0 represents the bleed channel
fully open and 𝑢𝑘 = 0.5 represents the bleed channel partially closed. We consider the pressure setpoint commands at a
forward location on the airfoil. The bleed channel is initially fully open, and the resulting non-dimensionalized pressure
measured at the sensor location is 17.205, and a pressure setpoint of 17.195 is commanded.

Example 1. PI control of pressure. In this example, a discrete-time PI controller uses samples of the pressure
measurement provided at the rate of 0.06 s/sample. Figure 4 shows the pressure measurements 𝑦𝑘 , the requested channel
width 𝑢𝑘 , and the error 𝑒𝑘 . After approximately 20 s, the pressure approaches the setpoint.

Example 2. PCAC control of pressure. We reconsider Example 1 using PCAC. Figure 5 shows the sensor
measurements, error, requested channel width, model coefficients estimated by RLSID, and RLS forgetting factor.
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Fig. 4 Example 1: PI control is enabled at 0.6 s. (a) shows that pressure measurement approaches the setpoint
and that the initial transient damps out in approximately 20 s. (b) shows the PI control requested channel width
and (c) shows the error.

Although the pressure approaches the setpoint, Figure 5 (b) shows that the rate of convergence with PCAC is slower
than with PI control. Additionally, a large transient response is present over the first 10 s as PCAC identifies the system
dynamics.

Fig. 5 Example 2: PCAC is enabled at 0.6 s (indicated by the green line). After the initial transient, (a) shows
that the pressure measurement approaches the setpoint. (b) shows the error between the measurement and
setpoint for both PCAC and PI, (c) shows the PCAC requested bleed channel-width, (d) shows the time histories
of the numerator of the identified model, (e) shows the time histories of the denominator of the identified model,
and (f) shows the variable rate forgetting factor, which is inactive.

Example 3. PCACi control of pressure. We reconsider Example 2 using PCACi. Figure 6 shows the pressure
measurements, error, requested channel width, model coefficients estimated by RLSID, and RLS forgetting factor. The
pressure measurements approaches the setpoint and have a smaller transient over the first 10 s than in Example 2.
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Furthermore, Figure 6 b shows the error between the pressure measurement and setpoint along with the error from
Examples 1 and 2. PCACi has a convergence rate between that of PI and PCAC.

Fig. 6 Example 3: PCACi is enabled at 0.6 s (indicated by the green line). After the initial transient, (a) shows
that the pressure measurement approaches the setpoint. (b) shows the error of PCACi with PCAC and PI
controller, (c) shows the PCACi requested channel width, the inset shows the effect on channel width due to the
forgetting being active, (d) shows the time histories of the numerator of the identified model, (e) shows the time
histories of the denominator of the identified model , and (f) shows the variable rate forgetting factor, which is
active between approximately 11 and 14 s.

V. Conclusions
This paper used predictive cost adaptive control (PCAC) for bleed- actuated control of the pressure on an airfoil. A

CFD simulation of a variable-width channel was use to assess the effect of active flow control. Without prior modeling,
PCAC followed the commanded pressure setpoints at the sensor location by modifying the bleed channel thickness.
Furthermore, the inclusion of integral action within PCAC provided better transient response and faster convergence to
the pressure setpoint. Though PI control resulted in a better rate of convergence, it required more effort to to tune since
the gains must be adjusted for the case. Additionally, the PI gains must be retuned if the airfoil angle of attack or flow
Reynolds number were to change. PCAC requires the selections of weights and can adapt to changing angles of attack
and Reynolds numbers. Future work will explore the effect of external disturbances as well as the ability of PCAC to
adapt to changing angles of attack and Reynolds numbers as compared to PI control. Finally, rigid-body dynamics will
be included to simulate the use of PCAC and bleed actuation to control the plunge, pitch, and surge motion of the airfoil.
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