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The present paper investigates the feasibility of adaptive feedback control for controlling
shock-boundary-layer interaction (SBLI) physics by modulating the thickness of the boundary
layer. The approach taken in this paper is predictive cost adaptive control (PCAC). PCAC
uses recursive least squares (RLS) with variable-rate forgetting for online, closed-loop system
identification. At each time step, RLS-based system identification updates the coefficients of an
input-output model whose order is specified by the user. To determine control inputs, PCAC
uses quadratic programming for receding-horizon optimization, which enforces magnitude-
and rate-saturation constraints on the control input as well as constraints on measured outputs.
To enable output-feedback control, PCAC uses the block-observable canonical form realization,
which provides exact state estimation at each step. PCAC can be used with a reference model,
and unknown disturbances may be either matched or unmatched. During operation, PCAC
uses sampled pressure data and requests a bleed mass-flow rate. Other than specifying the
model order, optimization horizon, and forgetting parameters, PCAC operates under cold-start
conditions without the need for any prior control-oriented model. Closed-loop simulations
consider a pressure command specified at the location of a pressure sensor situated near the wall
and bleed port, whose mass-flow rate is specified by PCAC. Numerical examples demonstrate
the ability to control the pressure at the sensor location and thus the means for modifying the
SBLI and boundary-layer thickness.

I. Introduction
The complex flow field in a scramjet flowpath has been the subject of intense interest and study for several decades

[1–5]. Many features of the flow field also occur in supersonic wind tunnel nozzles and diffusers. Shock-boundary-layer
interaction (SBLI) is a major contributor to the formation of the pseudo-shock train in the scramjet flowpath, especially
the inlet and isolator. This interaction can also be seen at the start of the shock train in Figure 1.

Fig. 1 Schematic of shock wave boundary-layer interaction [6]
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Impingement of a shock wave on the boundary layer increases the static pressure in the boundary layer, resulting
in an adverse pressure gradient. A strong adverse pressure gradient can result in reverse flow near the surface if the
boundary layer is thick, resulting in a phenomenon known as boundary-layer separation. Flow reversal and separation in
the boundary layer initiates a nonlinear progression of events, including increased turbulence production, generation of
expansion fans, and loss of total pressure due to the separation, resulting in detrimental effects on scramjet efficiency
and operability.

Because of these undesirable effects, controlling the negative consequences of SBLI to prevent flow separation in
the boundary layer has many benefits. There are several methods for controlling SBLI including boundary-layer suction,
also known as bleed. Boundary-layer suction attempts to reduce the boundary layer thickness so that it can sustain an
adverse pressure gradient due to shock impingement on the boundary layer. Boundary-layer suction has been shown by
Sethuraman et al. [7] to reduce shock-train oscillations and the length of the shock train. Boundary-layer suction is the
process of removing fluid near the wall where the boundary layer is formed. This method is used in the present paper
to mitigate the increase of boundary-layer thickness due to shock-wave impingement on the turbulent boundary layer,
thereby stabilizing the boundary layer and preventing flow separation near the foot of the shock as well as the ensuing
total pressure loss and potential loss of scramjet operation.

Numerous studies have focused on determining the physical implementation of boundary-layer suction, including
rectangular suction slots located on the spanwise length and side-walls of the scramjet flowpath. Research has focused
on assessing the bleed-mass flow rate as well as the size of the bleed slots to ensure that flow is not choked in the bleed
slots. Considering that these physical quantities depend on local Mach number, total pressure, and total temperature
near the slot, it is difficult to find a universally applicable value for the bleed-mass flow rate. This significant challenge
has been addressed in the present research by coupling an adaptive control algorithm with the SBLI physics so that the
bleed-mass flow rate can be determined during operation rather than as a pre-determined value.

The present paper investigates the feasibility of using feedback control to influence the SBLI physics by controlling
the thickness of the boundary layer. The technical approach utilized in this paper is based on predictive cost adaptive
control (PCAC). As an indirect adaptive control extension of model predictive control (MPC), PCAC uses recursive
least squares (RLS) with variable-rate forgetting (VRF) for online, closed-loop system identification [8–12]. At each
time step, RLS-based system identification updates the coefficients of an input-output model whose order is specified by
the user. To determine control inputs, PCAC uses quadratic programming for receding-horizon optimization, which
enforces magnitude- and rate-saturation constraints on the control input as well as constraints on measured outputs. To
enable output-feedback control, PCAC uses the block-observable canonical form (BOCF) realization, which provides
exact state estimation at each step [13].

PCAC can be used with a reference model, and unknown disturbances may be either matched or unmatched. During
operation, PCAC uses sampled pressure data and requests bleed mass-flow rate. Other than specifying the model order,
optimization horizon, and forgetting parameters, PCAC operates under cold-start conditions without the need for any
prior control-oriented model.

Detailed flowfield simulations were performed in the Viscous Upwind aLgorithm for Complex flow ANalysis
Navier-Stokes code (VULCAN) [14], which is a Navier-Stokes flow solver for structured and unstructured cell-centered,
multi-block grids. A structured multi-block grid system has been utilized with Reynolds-Averaged Navier-Stokes (RANS),
which utilized PDE-based turbulence models. A robust upwind-biased algorithm was used for the Reynolds-averaged
simulations, and a low-dissipation numerical framework has been used for the simulations.

The closed-loop VULCAN simulations consider a pressure command specified at the location of a pressure sensor
situated near the wall and bleed port, whose mass-flow rate is specified by PCAC. The numerical examples demonstrate
the ability to control the pressure at the sensor location and thus the means for modifying the SBLI and boundary-layer
thickness.

II. Review of Predictive Cost Adaptive Control
As shown in Figure 2, predictive cost adaptive control (PCAC) combines online identification with output-feedback

model predictive control (MPC). PCAC uses no a priori modeling information aside from a suitable model order for
system identification, nor does it use probing signals.
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Predictive Cost Adaptive Control

Model Predictive Control
QP/BOCF for output feedback

with control and output constraints

Online System Identification
RLS/VRF for online identification

with variable-rate forgetting

Fluid Dynamics
Vulcan CFD Solver

Measurement 𝑦𝑘

Model Estimate 𝜃𝑘

Control 𝑢𝑘
Command 𝑟𝑘

Disturbance 𝑤𝑘

Fig. 2 PCAC block diagram. The online, closed-loop system identification is based on recursive least squares
(RLS) with variable-rate forgetting (VRF). The quadratic programming algorithm uses the updated model
parameters 𝜃𝑘 to specify the control input 𝑢𝑘 .

A. Online Identification
To perform online identification, we first consider the MIMO input-output model

𝑦̂𝑘 = −
𝑛̂∑︁
𝑖=1

𝐹̂𝑖𝑦𝑘−𝑖 +
𝑛̂∑︁
𝑖=1

𝐺̂𝑖𝑢𝑘−𝑖 , (1)

where 𝑘 ≥ 0 is the step, 𝑛̂ ≥ 1 is the identification data window, 𝐹̂𝑖 ∈ R𝑝×𝑝 and 𝐺̂𝑖 ∈ R𝑝×𝑚 are the estimated model
coefficients, and 𝑢𝑘 ∈ R𝑚, 𝑦𝑘 ∈ R𝑝, and 𝑦̂𝑘 ∈ R𝑝 are the inputs, outputs, and predicted outputs. We estimate 𝐹̂𝑘 and
𝐺̂𝑘 online using recursive least squares with variable-rate forgetting (RLS/VRF), by minimizing the cost function [9]

𝐽𝑘 (𝜃) =
𝑘∑︁
𝑖=0

𝜌𝑖

𝜌𝑘
𝑧T
𝑖 (𝜃)𝑧𝑖 (𝜃) +

1
𝜌𝑘

(𝜃 − 𝜃0)T𝑃−1
0 (𝜃 − 𝜃0), (2)

where 𝜌𝑘 ≜
∏𝑘

𝑗=0 𝜆
−1
𝑗

∈ R, 𝜆𝑘 ∈ (0, 1] is the forgetting factor, 𝑃0 ∈ R[𝑛̂𝑝 (𝑚+𝑝) ]×[𝑛̂𝑝 (𝑚+𝑝) ] is positive definite,
𝜃0 ∈ R[𝑛̂𝑝 (𝑚+𝑝) ] is the initial estimate of the coefficient vector, and the performance variable 𝑧𝑖 (𝜃) ∈ R𝑝 is defined as

𝑧𝑘 (𝜃) = 𝑦𝑘 − 𝜙𝑘𝜃. (3)

The vector 𝜃 ∈ R[𝑛̂𝑝 (𝑚+𝑝) ] of coefficients to be estimated is

𝜃 ≜ vec
[
𝐹̂1 · · · 𝐹̂𝑛̂ 𝐺̂1 · · · 𝐺̂ 𝑛̂

]
= vec

[
𝜃𝐹̂ 𝜃𝐺̂

]
,

where 𝜃𝐹̂ and 𝜃𝐺̂ are the estimates of the denominator and numerator coefficients, defined by

𝜃𝐹̂ ≜ vec
[
𝐹̂1 · · · 𝐹̂𝑛̂

]
, (4)

𝜃𝐺̂ ≜ vec
[
𝐺̂1 · · · 𝐺̂ 𝑛̂

]
. (5)

With the regressor matrix 𝜙𝑘 ∈ R𝑝×[𝑛̂𝑝 (𝑚+𝑝) ] defined by

𝜙𝑘 ≜
[
−𝑦T

𝑘−1 · · · −𝑦T
𝑘−𝑛̂ 𝑢T

𝑘−1 · · · 𝑢T
𝑘−𝑛̂

]
⊗ 𝐼𝑝 ,
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the global minimizer 𝜃𝑘+1 ≜ argmin𝜃 𝐽𝑘 (𝜃) of (2) is

𝐿𝑘 = 𝜆−1
𝑘 𝑃𝑘 , (6)

𝑃𝑘+1 = 𝐿𝑘 − 𝐿𝑘𝜙
T
𝑘 (𝐼𝑝 + 𝜙𝑘𝐿𝑘𝜙

T
𝑘 )

−1𝜙𝑘𝐿𝑘 , (7)

𝜃𝑘+1 = 𝜃𝑘 + 𝑃𝑘+1𝜙
T
𝑘 (𝑦𝑘 − 𝜙𝑘𝜃𝑘). (8)

The variable-rate forgetting factor 𝜆𝑘 is given by [12]

𝜆𝑘 =
1

1 + 𝜂𝑔(𝑧𝑘−𝜏d , . . . , 𝑧𝑘)1[𝑔(𝑧𝑘−𝜏d , . . . , 𝑧𝑘)]
, (9)

where 1 : R→ {0, 1} is the unit step function, and

𝑔(𝑧𝑘−𝜏d , . . . , 𝑧𝑘)

≜

√︄
𝜏n
𝜏d

(
Σ𝜏n (𝑧𝑘−𝜏n , . . . , 𝑧𝑘)Σ𝜏d (𝑧𝑘−𝜏d , . . . , 𝑧𝑘)−1)

𝑐
−
√︁
𝑓 ,

where 𝜂 > 0 and 𝑝 ≤ 𝜏n < 𝜏d represent numerator and denominator window lengths. Σ𝜏n and Σ𝜏d are the sample
variances of the respective window lengths, and the threshold constant 𝑓 is described in [15, 16]. The constant 𝑐,
based on the windows lengths is described in [15]. The estimator coefficients 𝜃 can be written in the block observable
canonical form with matrices 𝐴̂𝑘 , 𝐵̂𝑘 , and 𝐶̂𝑘 given by

𝐴̂𝑘 ≜



−𝐹̂1,𝑘 𝐼𝑝 · · · · · · 0𝑝×𝑝

... 0𝑝×𝑝

. . .
...

...
...

. . .
. . . 0𝑝×𝑝

...
...

. . . 𝐼𝑝

−𝐹̂𝑛̂,𝑘 0𝑝×𝑝 · · · · · · 0𝑝×𝑝


, 𝐵̂𝑘 ≜


𝐺̂1,𝑘

𝐺̂2,𝑘
...

𝐺̂ 𝑛̂,𝑘


, (10)

𝐶̂𝑘 ≜
[
𝐼𝑝 0𝑝×𝑝 · · · 0𝑝×𝑝

]
. (11)

B. Model Predictive Control
Model predictive control (MPC) uses a model of the system to optimize its performance over a future finite interval

of time. The optimization yields a sequence of controls, the first of which is implemented, and the procedure is repeated
at subsequent steps. By performing constrained optimization, MPC enforces magnitude and rate constraints on the
control input as well as constraints on measureed outputs to the extent possible based on the current model and unknown
disturbances. At step 𝑘, PCAC uses the identified model 𝐴̂𝑘 , 𝐵̂𝑘 , and 𝐶̂𝑘 . As in [17], the receding-horizon optimization
is performed using quadratic programming (QP), which is a convex optimization technique. This optimization specifies
the control input 𝑢𝑘+1 at the next time step, while also attempting to satisfy constraints on the state and control input

To describe QP-based MPC, let R𝑘,ℓ ≜
[
𝑟T
𝑘+1 · · · 𝑟

T
𝑘+ℓ

]T
∈ Rℓ 𝑝t be the vector of future commands over the ℓ-step

horizon, let 𝑌1 |𝑘,𝑙 be the corresponding 𝑙-step predicted output for a sequence of 𝑙 future controls, 𝑈1 |𝑘,𝑙 , and let
𝑌t,1 |𝑘,ℓ ≜ 𝐶t,ℓ𝑌1 |𝑘,ℓ be the ℓ-step predicted output, where 𝐶t,ℓ ≜ 𝐼ℓ ⊗ 𝐶t ∈ Rℓ 𝑝t×ℓ 𝑝, ⊗ is the Kronecker product, and
𝐶t𝑦𝑖 |𝑘 computes the tracking outputs from 𝑦𝑖 |𝑘 . Let Cℓ ≜ 𝐼ℓ ⊗ (C𝐶c) ∈ Rℓ𝑛c×ℓ 𝑝 , where 𝐶c𝑦𝑖 |𝑘 creates the constrained
outputs from 𝑦𝑖 |𝑘 , let Dℓ ≜ 1ℓ ⊗ D ∈ Rℓ𝑛c , and define the sequence of differences of control inputs as

Δ𝑈1 |𝑘,ℓ ≜
[
(𝑢1 |𝑘 − 𝑢𝑘)T · · · (𝑢ℓ |𝑘 − 𝑢ℓ−1 |𝑘)T

]T
∈ Rℓ𝑚. (12)

The QP-based MPC optimization problem is then given by

min
𝑈1|𝑘,ℓ

(
𝑌t,1 |𝑘,ℓ − R𝑘,ℓ

)T
𝑄

(
𝑌t,1 |𝑘,ℓ − R𝑘,ℓ

)
+ Δ𝑈T

1 |𝑘,ℓ𝑅Δ𝑈1 |𝑘,ℓ , (13)
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subject to

Cℓ𝑌1 |𝑘,ℓ + Dℓ ≤ 0ℓ𝑛c , (14)
𝑈min ≤ 𝑈1 |𝑘,ℓ ≤ 𝑈max, (15)

Δ𝑈min ≤ Δ𝑈1 |𝑘,ℓ ≤ Δ𝑈max, (16)

where𝑄 ≜

[
𝑄̄ 0𝑝t×𝑝t

0𝑝t×𝑝t 𝑃̄

]
∈ Rℓ 𝑝t×ℓ 𝑝t is the output weighting, 𝑄̄ ∈ R(ℓ−1) 𝑝t×(ℓ−1) 𝑝t is the cost-to-go output weighting,

𝑃̄ ∈ R𝑝t×𝑝t is the terminal output weighting, 𝑅 ∈ Rℓ𝑚×ℓ𝑚 is the control-move-size weighting, 𝑈min ≜ 1ℓ ⊗ 𝑢min ∈ Rℓ𝑚,
𝑈max ≜ 1ℓ ⊗ 𝑢max ∈ Rℓ𝑚, Δ𝑈min ≜ 1ℓ ⊗ Δ𝑢min ∈ Rℓ𝑚, and Δ𝑈max ≜ 1ℓ ⊗ Δ𝑢max ∈ Rℓ𝑚.

III. Application of PCAC to Boundary-Layer Control
In this section, results are presented for the scenario where PCAC is applied to a supersonic internal flow to control

pressure at the sensor location. The geometry utilized in the following studies is a Mach 2.5 inflow internal compression
scramjet inlet. While this inlet is not associated with a specific vehicle geometry, it represents a typical geometry for
scramjet inlets, and can provide the physical phenomenon of SBLI as observed in a variety of scramjet inlets. The
lower surface of the inlet, excluding the bleed port, is set as adiabatic wall boundary condition. The right boundary is
an extrapolated boundary condition with first order extrapolation as the flow is supersonic at the outflow, and the left
boundary is a fixed inflow. The top boundary is a freestream boundary condition. A schematic of the scramjet inlet with
boundary conditions, showing the oblique shock pattern in the inlet and bleed surface location is shown in Figure 3.

Fig. 3 Schematic of Scramjet Inlet, Boundary Conditions, and Shock Pattern

As mentioned earlier, the flowfield solution was obtained by utilizing Reynolds Averaged Navier Stokes (RANS)
with Menter-SST for turbulence closure. Flow enters the domain with a fixed fully turbulent inflow profile and the
resulting flowfield includes oblique shocks in the inlet. Integration of VULCAN-CFD and the PCAC control code
(CFD-C) was performed with a Linux based code interface written in bash script, which allows for the in-situ information
exchange between the computational fluid dynamics (CFD) code and the active control code. The control algorithm
uses instantaneous (i.e., every 2 micro-second of physical time) aerothermal variables (e.g., static pressure values at
single location on the wall as if a “numerical” sensor is mounted there) as they are calculated by the CFD code. The
control code determines the amount of actuation (i.e., bleed-flow rate) required based upon this information, which is
transmitted to the CFD via the input file. Then, a new CFD state is calculated based upon the actuation.

The closed-loop CFD simulations consider a pressure command specified at the location of a pressure sensor situated
near the wall and bleed port, whose mass-flow rate is specified by PCAC. The "numerical" pressure sensor is placed at
the surface next to the location of an oblique shock impinging on the surface, and a rectangular slot bleed port is placed
between 𝑥 = 0 and 𝑥 = 0.1 m. An idealized pressure sensor is assumed, which provides a measurement 𝑦𝑘 at each time
step 𝑘 . These measurements are used to compute the performance variable 𝑧𝑘 , which PCAC uses to specify the next
control input 𝑢𝑘 . In this case, the static pressure is the measurement and bleed rate is the control input to the CFD
simulation. By controlling the local static pressure, boundary-layer thickness is controlled. The numerical examples
demonstrate the ability to control the pressure at the sensor location and thus the means for modifying the SBLI and
boundary-layer thickness.
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Example 1. Low-precision Distributed-Mass-Flux actuator. As mentioned earlier, PCAC is applied to reduce the
static pressure at a specified location within the boundary layer by specifying the bleed rate through a bleed-port actuator.
In this case, a distributed-mass-flux model was utilized for bleed. Under this model, a perforated plate separates the
computational domain from an effusion plenum and the mass flux at each surface cell interface is adjusted based on local
flow conditions. A negative mass-flow rate indicates that fluid is flowing out of the computational domain. With this
model, the mass-flow rate is distributed over the bleed port and is determined by the local fluid density and temperature.
PCAC specifies the mass-flux rate, defined as the mass-flow rate per unit area. The bleed-port actuator is constrained to
only allow flow out of the domain, and is precise to the nearest 0.01 kg/m2-s.

Without active control, the static pressure at the sensor location increases to a steady-state static pressure of
approximately 17 kPa. Once this steady state is obtained from the CFD solution, PCAC is invoked via the CFD-C
interface with static-pressure command of 12 kPa at the sensor location. PCAC begins immediately at step 1, and
the static pressure at the sensor location is reduced to the setpoint in 15 steps, where each step is 12 𝜇𝑠. In physical
time, the pressure reduction was achieved in 150 ms. However, the pressure does not converge to the setpoint, and
the CFD solution diverges after step 42. It was found that, while the largest mass-flux rate commanded by PCAC was
-0.05 kg/m2-s, the mass-flow rate exceeded -1 kg/s, causing the solution to diverge. Figure 4 shows the static-pressure
measurements, the control inputs (mass-flux rate), the RLS-estimated model coefficients, and the RLS forgetting factor.
Figure 5 shows pressure contours of the flow field at step 1 and 42. At step 42, the pressure decrease near the bleed port
is evident along with additional downstream effects. ⋄

Fig. 4 Example 1: (a) shows that the static pressure at the sensor location is reduced but does not converge to
the setpoint. (b) shows the PCAC-commanded bleed mass-flux rate, where negative values indicate flow out of the
domain. These values are precise to the nearest 0.01 kg/m2-s. (c) shows the time histories of the numerator (blue)
and denominator (red) coefficients of the identified model. (d) shows the variable-rate forgetting factor. Since
𝜆𝑘 ≡ 1, it follows that forgetting is inactive.

Fig. 5 Example 1: Static pressure contours of the flow at step 1 (left) and step 42 (right). Once the bleed mass
flow rate exceeds 1.0 kg/s, the CFD solution diverges.

Example 2. Low-precision Distributed-Mass-Flux actuator.. Reconsider Example 1 with a lower static pressure
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setpoint of 10 kPa and a modified actuator allowing the bleed mass flux-rate to be specified to the nearest 0.001 kg/m2-s.
PCAC begins immediately at step 1 and reduces the pressure in approximately 15 steps, however the oscillations in the
requested bleed introduce instability to the CFD, ultimately causing the solution to diverge after 35 steps. This case
provides an insight into the maximum allowable bleed mass-flow rate. In this case, the bleed mass-flow rate increased to
-1.03 kg/s, resulting in a destabilizing pressure wave in the boundary layer upstream of the bleed port. This caused the
CFD solution to diverge.

Figure 6 shows the sensor measurements, the requested control input, the RLS estimated model coefficients, and
the RLS forgetting factor. Figure 7 shows pressure contours of the flowfield at steps 1 and 35, where the effect of the
oscillating bleed is evident. ⋄

Fig. 6 Example 2: (a) shows that the static pressure at the sensor location is reduced but does not converge to
the setpoint. (b) shows the PCAC-commanded bleed mass-flux rate. These values are precise to the nearest 0.001
kg/m2-s. (c) shows the time histories of the numerator (blue) and denominator (red) coefficients of the identified
model. (d) shows the variable-rate forgetting factor, which is inactive.

Fig. 7 Example 2: Static pressure contours of the flow at step 1 (left) and step 35 (right). The excessive bleed
causes the CFD solver to diverge.

Example 3. Uniform Mass-Flux Bleed Model. Since the distributed mass-flux model did not provide a direct
control of mass-flow rate (i.e., the mass flux was specified, which used the local density and temperature values to
determine the mass-flow rate) as shown in Examples 1 and 2, an alternative model for bleed mass-flow rate is utilized.
This model is called the "uniform mass-flux model," in which the a constant mass-flow rate can be specified over the
entire bleed region. A negative mass-flow rate indicates that the fluid is to be effused out of the domain (with the
composition and thermal properties of gas in the bleed region).

PCAC begins immediately at step 1 and is able to reduce the measured local pressure near the setpoint pressure in
approximately 100 steps (0.12 ms) as shown in Figure 8. The measured pressure approaches the setpoint and is 11.85
kPa at step 266. Oscillations in the requested bleed are present over the first 75 steps as PCAC identifies the system.
Despite the oscillations in the requested bleed, the computational solution continues to converge for the duration of the
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simulation. Figure 9 shows pressure contours of the flowfield at steps 1 and 266, where the pressure is reduced near the
bleed port. In addition, the pressure unsteadiness has reduced, which is an advantage for this application. ⋄

Fig. 8 Example 3: (a) shows that the static pressure at the sensor location approaches the setpoint. (b) shows
the PCAC-commanded bleed mass-flow rate, which oscillates over the first 75 steps. These values are precise to
the nearest 0.001 kg/s. (c) shows the time histories of the numerator (blue) and denominator (red) coefficients of
the identified model. (d) shows the variable-rate forgetting factor, which is inactive.

Fig. 9 Example 3: Static pressure contours of the flow at step 1 (left) and step 266 (right).

Example 4. Lower Pressure Setpoint. We repeat Example 3 with the static-pressure setpoint reduced to 7.5 kPa.
PCAC begins immediately at step 1 brings the measured static pressure to a slow oscillation around the setpoint in 200
steps, as shown in Figure 10. Figure 11 shows static pressure contours of the flowfield at steps 1 and 250. where the
pressure is reduced near the bleed port. Similar to the previous case, the pressure unsteadiness is greatly reduced as a
result of bleed. ⋄

Example 5. Higher Pressure Setpoint. In order to further test the ability of the active control methodology,
Example 3 is repeated with a higher static-pressure setpoint of 12 kPa. PCAC begins immediately at step 1 and is able
to bring the measured static pressure near the setpoint pressure in approximately 200 steps. However, at step 400 the
measured pressure remains 283.6 Pa above the setpoint, as shown in Figure 12. The requested bleed and measured
pressure continue to have low amplitude oscillations but do not reach a steady state value even after 400 steps. Figure 13
shows pressure contours of the flowfield at steps 1 and 400. ⋄

Example 6. Modified initialization. In this example, we attempt to refine the results in Example 5. Namely, we
target the following issues. First issue is that even though the controller is enabled at step 1, no bleed is requested until
later steps, thus slowing the response of the system. Second, high-frequency oscillations in the bleed are requested by
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Fig. 10 Example 4: (a) shows that the static pressure at the sensor location is reduced and oscillates around the
setpoint. (b) shows the PCAC-commanded bleed mass-flow rate. (c) shows the time histories of the numerator
(blue) and denominator (red) coefficients of the identified model. (d) shows the variable-rate forgetting factor,
which is inactive.

Fig. 11 Example 4: Static-pressure contours of the flow at step 1 (left) and step 250 (right).

Fig. 12 Example 5: (a) shows that the static pressure at the sensor location is reduced and oscillates above
the commanded value. (b) shows the PCAC-commanded bleed mass-flow rate. (c) shows the time histories of
the numerator (blue) and denominator (red) coefficients of the identified model. (d) shows the variable-rate
forgetting factor, which is inactive.

the controller, and the resulting effects on the flow are undesirable. Third, although the measured pressures are reduced,
the pressure does not converge to the setpoint.

Numerical experiments (not shown) indicated that, in the absence of the unilateral constraint on bleed rate, PCAC
requested a positive mass-flow rate, which defines flow into the inlet, due to the specified initial system model 𝜃0. Since
the actuator performs only bleed out of the inlet, the initial control inputs are constrained to 0 kg/s, and remain at 0
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Fig. 13 Example 5: Static pressure contours of the flow at step 1 (left) and step 400 (right).

kg/s until the identified model is updated. When the requested bleed is 0 kg/s, the identified model is slowly updated
by noise in the solution and by other system dynamics not involving the bleed actuation. These dynamics require an
unpredictable number of steps to update the model sufficiently to allow a nonzero bleed to be requested. This issue
was resolved by selecting an initial system model 𝜃0 that resulted in an initial requested bleed-rate consistent with the
unilateral constraint.

In Figure 14, the controller is enabled at step 10. Immediately at step 10, the controller requests a nonzero bleed rate.
Additional adjustments are made to the controller hyperparameters to bring the measured pressure to an oscillation
around the setpoint. However, the oscillations have larger amplitude than in Example 5. ⋄

Fig. 14 Example 6: (a) shows that the static pressure at the sensor location is reduced but does not converge to
the commanded value. (b) shows the PCAC-commanded bleed mass-flow rate, which is nonzero as soon as the
controller is enabled at step 10 (indicated by the green line). (c) shows the time histories of the numerator (blue)
and denominator (red) coefficients of the identified model. (d) shows the variable-rate forgetting factor, which is
inactive.

Example 7. Open-loop Bleed. Motivated by the inability to reduce the oscillations in the measured pressure and to
reduce the error between the measured and setpoint pressures, the time-varying effect of the bleed on the pressure at the
sensor location was studied. First, a harmonic bleed mass-flow rate is prescribed, where the bleed rate cycles between
0 and 0.7 kg/s as shown in Figure 15 After the initial transient response, the measured pressure exhibits a nonlinear
response. Specifically, the measured pressure increases rapidly once it rises above about 11 kPa and decreases slowly
after it falls below about 11 kPa. While this simulation does not use closed-loop feedback control, RLS is still used to
identify a system model. Figure 15 shows that the identified model coefficients do not converge, which indicates poor
system identification. The poor identification hinders system performance, particularly when the setpoint pressure is
near 11 kPa.

In Figure 16, a harmonic bleed is applied with reduced amplitude and bias such that the measured pressure remains
below 11 kPa. The response in pressure in this region appears harmonic, indicating that the response is approximately
linear over this range of bleed rates and measured pressures. As shown in, Figure 16, the resulting system identification
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Fig. 15 Example 7: (a) shows the resulting effect on pressure at the sensor location due to the harmonic bleed
shown in (b). A sudden change in the rate of pressure change occurs near 11 kPa. While the controller is not
specifying the control inputs in a closed loop, identification is active and (c) shows that the identified model does
not converge.

converges, indicating a more accurate system identification. ⋄

Fig. 16 Example 7: (a) shows the resulting effect on pressure at the sensor location due to the harmonic
bleed shown in (b), where the bleed is prescribed to keep the pressure below 11 kPa. While the controller is
not specifying the control inputs in closed loop, identification is active, and (c) shows that the identified model
converges.

Example 8. Pressure Setpoint in Linear Region. Motivated by the findings in Example 7, and with the improvement
in the controller initialization from Example 6, a pressure setpoint of 9 kPa, which is in the approximately linear region
of pressures found in Example 7, is specified. Figure 17 shows that the controller requests nonzero bleed immediately
once it is enabled and that the measured pressure approaches the pressure setpoint with an oscillation that damps out.
The amplitude of the oscillations are reduced from those in Example 5 and have a smaller effect on the measured
pressure. The measured pressure approaches the pressure setpoint and is 9.62 kPa at step 400. Figure 20 shows pressure
contours of the flowfield where the pressure is reduced near the bleed port.

While the pressure setpoint is in the approximately linear range, the controller must bring the pressure through the
nonlinear range to converge to the pressure setpoint, which may have an adverse effect on the system identification. To
avoid this, the example was repeated by prescribing 0.7 kg/s of bleed mass-flow rate for the 10 steps before the controller
was enabled. As soon as the controller was enabled, PCAC specified the requested bleed rate. Figure 19 shows that, by
prescribing this initial bleed, the controller began its ID with the pressure in the approximately linear region, and the

11

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
on

 J
an

ua
ry

 1
7,

 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
5-

06
73

 



Fig. 17 Example 8: With a bleed mass-flow rate of 0 kg/s over the first 10 steps, (a) shows that the static pressure
approaches the setpoint. (b) shows the PCAC-commanded bleed mass-flow rate. (c) shows the time histories
of the numerator (blue) and denominator (red) coefficients of the identified model. (d) shows the variable-rate
forgetting factor, which is inactive.

Fig. 18 Example 8: Static pressure contours of the flow at step 1 (left) and step 400 (right).

resulting system response showed low amplitude oscillations. The measured pressure approached the setpoint, and the
error between the measured pressure and the setpoint at step 400 is 8 Pa, which is a very small value with respect to the
target static pressure. Figure 20 shows pressure contours of the flowfield where the pressure is reduced near the bleed
port. ⋄

IV. Conclusions
This paper presented results on active flow control using predictive cost adaptive control (PCAC) working in-situ

with supersonic inlet flow-physics via an interface developed under this research. It was found that PCAC can control
the boundary-layer separation phenomenon, which is a known instability mechanism with the potential to begin inlet
unstart. In-situ active control of a scramjet with an optimized sensor and actuator placement based upon the scramjet
flow physics will have numerous benefits including the ability to fly aggressive trajectories, achieve larger ranges with
reduced takeoff weights, and increase payload weights. Future work will involve the study of changing conditions
including incoming flow velocity and angle of attack. Additionally, the effectiveness of PCAC with the inclusion of
integral action and of PCAC with a nonlinear identification scheme will be considered.
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Fig. 19 Example 8: With a bleed mass-flow rate of -0.7 kg/s over the first 10 steps, (a) shows that the static
pressure at the sensor location approaches the setpoint with lower oscillations (b) shows the PCAC-commanded
bleed mass-flow rate which is smooth compared to previous examples. (c) shows the time histories of the
numerator (blue) and denominator (red) coefficients of the identified model. (d) shows the variable-rate forgetting
factor, which is inactive.

Fig. 20 Example 8: Static pressure contours of the flow at step 1 (left) and step 200 (right).
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