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This paper presents a novel target tracking algorithm that uses numerical differentiation to
estimate the velocity and acceleration of maneuvering targets. By applying adaptive input and
state estimation, the first and second derivatives of noisy, sampled position data are computed
with minimal latency. The estimated derivatives are then used to predict the target’s position.
The predicted motion of the target can be used to distinguish between ballistic and maneuvering
targets, as well as to facilitate target interception. The performance of the proposed method is
validated through detailed, comparative simulations, demonstrating significant improvements
in tracking prediction and efficiency compared to existing methodologies.

I. Introduction

Target tracking is a pivotal aspect of guidance, navigation, and control applications, necessitating robust algorithms
to handle target dynamics and environmental conditions. Control systems often rely on accurate tracking of targets

to make informed decisions and adjustments. Numerous methodologies have been developed, leveraging different
mathematical models and estimation techniques to enhance the accuracy and efficiency of target tracking systems.

Prior research has explored various approaches for improving target tracking. [1] employs target acceleration
predictions produced by a recurrent neural network for a predictive pursuer guidance algorithm. [2] discusses straight-line
target tracking for unmanned surface vehicles using constant-bearing guidance to calculate a desired velocity. [3]
presents a tracking scheme based on the Kalman filter, estimating acceleration inputs from residuals and updating the
filter accordingly. [4] enhances real-time performance using vision-based state estimators for target tracking.

The extended Kalman filter (EKF) has been used to estimate the kinematic state of reentry ballistic targets, as shown
by [5], while [6] uses the Kalman filter to track the movements of ballistic vehicles. Adaptive input estimation techniques
for estimating the acceleration of maneuvering targets are demonstrated by [7–9]. [10] compares the performance and
accuracy of EKF, unscented Kalman filter (UKF), and particle filter (PF) for tracking ballistic targets and predicting
impact points using measurements from 3D radar.

Iterative solutions employing state transition matrices to correct the initial conditions of ballistic vehicles for
trajectory calculation have been presented by [11]. To overcome the limitations of conventional constant-level maneuver
models, [12, 13] proposes a target-tracking technique using input estimation. [14] introduces a Kalman-filter-based
tracking scheme incorporating input estimation for maneuvering targets.

Advanced filter motion models capable of reproducing a wide variety of target motions and tested using EKF, UKF,
and PF are developed by [15]. [16] proposes an intelligent Kalman filter for tracking maneuvering targets, using a fuzzy
system optimized by genetic algorithms and DNA coding methods to compute time-varying process noise. Machine
learning techniques, such as expert prediction, have also been applied to collaborative sensor network target tracking
methods by [17].

The performance characterization of 𝛼-𝛽-𝛾 filters constant-acceleration targets is discussed in [18], whereas [19]
presents a procedure for selecting tracking parameters for all orders of tracking models. [20] provides the analytical
expression for the tracking index, which is useful for real time applications. [21] presents an optimal reduced state
estimator for the consistent tracking of maneuvering targets, addressing the limitations found in Kalman filters and
interacting multiple model (IMM) estimators commonly used for this purpose. The accuracy of these methods depends
on the 𝛼-𝛽-𝛾 parameter values. To facilitate the selection of these parameters, [22] proposes an adaptive 𝛼-𝛽 filter,
where the 𝛼-𝛽 parameters are adjusted in real time using genetic algorithms.
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Incorporating real-time target orientation data acquired by imaging sensors into EKF for target tracking was
demonstrated in [23]. [24] employs EKF to estimate the states of a moving target using position data from unmanned
aerial vehicles, using these estimates to predict target trajectories.

Building on the “current model” concept for maneuvering targets, [25] introduces a modified Rayleigh density
function to describe the probability density of target acceleration and presents an adaptive Kalman-filter algorithm to
estimate the mean and variance of the maneuvering acceleration.

The present paper proposes a target tracking algorithm based on adaptive input and state estimation (AISE) for
estimating the velocity and acceleration of the target using sampled position data. This approach minimizes the need
for prior information about the spectrum of the position signal and its measurement noise. Additionally, the proposed
approach avoids any assumptions of target maneuvers and target models. We then use the estimated velocity and
acceleration to predict the trajectory of the target. The performance of the proposed method is evaluated through detailed
comparative simulations.

The contents of this paper are as follows. Section II presents the problem statement. Section III summarizes the
adaptive input and state estimation algorithm. Section IV provides a numerical example illustrating the accuracy of the
algorithm for a simulated trajectory. Finally, Section V offers concluding remarks and directions for future research.

II. Problem Statement
We assume the Earth is inertially nonrotating and nonaccelerating. The right-handed frame FE =

[
𝚤E 𝚥E 𝑘̂E

]
is fixed to the Earth, and the origin oE of FE is any convenient point fixed on the Earth; hence, oE has zero inertial
acceleration. 𝑘̂E points downward, and 𝚤E and 𝚥E are horizontal. oT is any point fixed on the target vehicle.

The location of the target vehicle center of mass oT relative to oE at each time instant is given by the physical position
vector ⇀

𝑟 oT/oE as shown in Figure 1. We assume a ground radar sensor is measuring the position of the target vehicle in
the frame FE as 

𝑟𝑥,𝑘

𝑟𝑦,𝑘

𝑟𝑧,𝑘


△
=

⇀
𝑟 oT/oE (𝑡𝑘)

����
E
, (1)

where 𝑘 is the time step and 𝑡𝑘
△
= 𝑘𝑇s. Here, 𝑟𝑞,𝑘 = 𝑟𝑞 (𝑘𝑇s) is the position measurements of the target at time step 𝑘 ,

with 𝑇s being the sample time and 𝑞 representing either 𝑥, 𝑦, or 𝑧. The first and second derivatives of ⇀
𝑟 oT/oE with

Target

Fig. 1 ⇀
𝑟 oT/oE is the physical position vector between oT and oE.

respect to FE represent the physical velocity and acceleration vector
E•
⇀
𝑟 oT/oE and

E••
⇀
𝑟 oT/oE , respectively. Single and double
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differentiating (1) to resolve
E•
⇀
𝑟 oT/oE and

E••
⇀
𝑟 oT/oE in frame FE as

¤𝑟𝑥,𝑘
¤𝑟𝑦,𝑘
¤𝑟𝑧,𝑘


△
=

E•
⇀
𝑟 oT/oE (𝑡𝑘)

����
E
,


¥𝑟𝑥,𝑘
¥𝑟𝑦,𝑘
¥𝑟𝑧,𝑘


△
=

E••
⇀
𝑟 oT/oE (𝑡𝑘)

����
E
. (2)

Using the position measurements of the target vehicle given by (1), along with the velocity and acceleration in (2),
we predict the trajectories 𝑟𝑞,𝑘+𝑙 of the target vehicle 𝑙 steps into the future. In particular, at each step 𝑘 , we use a
second-order approximation to define the predicted position

𝑟𝑞,𝑘+𝑙
△
= 𝑟𝑞,𝑘 + 𝑙𝑇s ¤̂𝑟𝑞,𝑘 + 1

2 𝑙
2𝑇2

s ¥̂𝑟𝑞,𝑘 , (3)

where 𝑞 represents 𝑥, 𝑦, or 𝑧, ¤̂𝑟𝑞,𝑘 and ¥̂𝑟𝑞,𝑘 are estimates of ¤𝑟𝑞,𝑘 and ¥𝑟𝑞,𝑘 , respectively, 𝑘 + 𝑙 is the future time step, and
𝑙 ∈ {1, . . . , 𝑙max}, where 𝑙max is the prediction horizon. Note that (3) assumes that the velocity and acceleration are
constant over the prediction horizon.

We use the position measurements and AISE to obtain the estimates ¤̂𝑟𝑞,𝑘 and ¥̂𝑟𝑞,𝑘 . Table 1 shows the data from the
ground radar along with the derivatives that are obtained to compute 𝑟𝑞,𝑘+𝑙 in (3).

Sensors Data Processed Data
Ground radar 𝑟𝑞,𝑘 ¤̂𝑟𝑞,𝑘 , ¥̂𝑟𝑞,𝑘

Table 1 Ground radar is used to obtain position data 𝑟𝑞,𝑘 . AISE uses the position data to compute the estimates
¤̂𝑟𝑞,𝑘 and ¥̂𝑟𝑞,𝑘 . Here, 𝑞 represents 𝑥, 𝑦, or 𝑧.

III. Adaptive Input and State Estimation
We summarize AISE [26–28] for real-time numerical differentiation of position data of the target to estimate its

velocity and acceleration.
Consider the linear discrete-time SISO system

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑑𝑘 , (4)
𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷2,𝑘𝑣𝑘 , (5)

where 𝑘 ≥ 0 is the step, 𝑥𝑘 ∈ R𝑛 is the unknown state, 𝑑𝑘 ∈ R is unknown input, 𝑦𝑘 ∈ R is a measured output, 𝑣𝑘 ∈ R is
standard white noise, and 𝐷2,𝑘𝑣𝑘 ∈ R is the sensor noise at time 𝑡 = 𝑘𝑇s, where 𝑇s is the sample time. The matrices
𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×1, and 𝐶 ∈ R1×𝑛, are assumed to be known and 𝐷2,𝑘 is assumed to be unknown. The sensor-noise
covariance is 𝑉2,𝑘

△
= 𝐷2,𝑘𝐷

T
2,𝑘 . The goal of adaptive input estimation (AIE) is to estimate 𝑑𝑘 and 𝑥𝑘 .

In the application of AIE to real-time numerical differentiation, we use (4) and (5) to model a discrete-time integrator.
As a result, AIE furnishes an estimate denoted by 𝑑𝑘 for the derivative of the sampled output 𝑦𝑘 . For single discrete-time
differentiation, the values are 𝐴 = 1, 𝐵 = 𝑇s, and 𝐶 = 1. However, in the case of double discrete-time differentiation,

𝐴 =

[
1 𝑇s

0 1

]
, 𝐵 =

[
1
2𝑇

2
s

𝑇s

]
, 𝐶 =

[
1 0

]
. (6)

A. Input Estimation
AIE comprises three subsystems, namely, the Kalman-filter forecast subsystem, the input-estimation subsystem, and

the Kalman-filter data-assimilation subsystem. First, consider the Kalman-filter forecast step
𝑥fc,𝑘+1 = 𝐴𝑥da,𝑘 + 𝐵𝑑𝑘 , (7)

𝑦fc,𝑘 = 𝐶𝑥fc,𝑘 , (8)
𝑧𝑘 = 𝑦fc,𝑘 − 𝑦𝑘 , (9)
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where 𝑥da,k ∈ R𝑛 is the data-assimilation state, 𝑥fc,𝑘 ∈ R𝑛 is the forecast state, 𝑑𝑘 is the estimate of 𝑑𝑘 , 𝑦fc,𝑘 ∈ R is the
forecast output, 𝑧𝑘 ∈ R is the residual, and 𝑥fc,0 = 0.

Next, in order to obtain 𝑑𝑘 , the input-estimation subsystem of order 𝑛e is given by the exactly proper dynamics

𝑑𝑘 =

𝑛e∑︁
𝑖=1

𝑃𝑖,𝑘𝑑𝑘−𝑖 +
𝑛e∑︁
𝑖=0

𝑄𝑖,𝑘𝑧𝑘−𝑖 , (10)

where 𝑃𝑖,𝑘 ∈ R and 𝑄𝑖,𝑘 ∈ R. AIE minimizes 𝑧𝑘 by updating 𝑃𝑖,𝑘 and 𝑄𝑖,𝑘 as shown below. The subsystem (10) can be
reformulated as

𝑑𝑘 = Φ𝑘𝜃𝑘 , (11)

where the estimated coefficient vector 𝜃𝑘 ∈ R𝑙𝜃 is defined by

𝜃𝑘
△
=

[
𝑃1,𝑘 · · · 𝑃𝑛e ,𝑘 𝑄0,𝑘 · · · 𝑄𝑛e ,𝑘

]T
, (12)

the regressor matrix Φ𝑘 ∈ R1×𝑙𝜃 is defined by

Φ𝑘
△
=

[
𝑑𝑘−1 · · · 𝑑𝑘−𝑛e 𝑧𝑘 · · · 𝑧𝑘−𝑛e

]
, (13)

and 𝑙𝜃
△
= 2𝑛e + 1. The subsystem (10) can be written using backward shift operator q−1 as

𝑑𝑘 = 𝐺𝑑𝑧,𝑘 (q
−1)𝑧𝑘 , (14)

where

𝐺𝑑𝑧,𝑘

△
= 𝐷−1

𝑑𝑧,𝑘
Nd̂z,k, (15)

𝐷𝑑𝑧,𝑘 (q
−1) △

= 𝐼𝑙𝑑 − 𝑃1,𝑘q−1 − · · · − 𝑃𝑛e ,𝑘q−𝑛e , (16)

𝑁𝑑𝑧,𝑘 (q
−1) △

= 𝑄0,𝑘 +𝑄1,𝑘q−1 + · · · +𝑄𝑛e ,𝑘q−𝑛e . (17)

Next, define the filtered signals

Φf,𝑘
△
= 𝐺f,𝑘 (q−1)Φ𝑘 , 𝑑f,𝑘

△
= 𝐺f,𝑘 (q−1)𝑑𝑘 , (18)

where, for all 𝑘 ≥ 0,

𝐺f,𝑘 (q−1) =
𝑛f∑︁
𝑖=1

q−𝑖𝐻𝑖,𝑘 , (19)

𝐻𝑖,𝑘
△
=


𝐶𝐵, 𝑘 ≥ 𝑖 = 1,
𝐶𝐴𝑘−1 · · · 𝐴𝑘−(𝑖−1)𝐵, 𝑘 ≥ 𝑖 ≥ 2,
0, 𝑖 > 𝑘,

(20)

and 𝐴𝑘
△
= 𝐴(𝐼 + 𝐾da,𝑘𝐶), where 𝐾da,𝑘 is the Kalman-filter gain given by (32) below. Furthermore, for all 𝑘 ≥ 0, define

the retrospective variable 𝑧r,𝑘 : R𝑙𝜃 → R by
𝑧r,𝑘 (𝜃)

△
= 𝑧𝑘 − (𝑑f,𝑘 −Φf,𝑘𝜃), (21)

and define the retrospective cost function J𝑘 : R𝑙𝜃 → R by

J𝑘 (𝜃)
△
=

( 𝑘∏
𝑗=1
𝜆 𝑗

)
(𝜃 − 𝜃0)T𝑅𝜃 (𝜃 − 𝜃0) +

𝑘∑︁
𝑖=0

( 𝑘−𝑖∏
𝑗=1
𝜆 𝑗

)
[𝑅𝑧𝑧

2
r,𝑖 (𝜃) + 𝑅d (Φ𝑖𝜃)2]

where 𝑅𝜃 ∈ R𝑙𝜃×𝑙𝜃 is positive definite, 𝑅𝑧 ∈ (0,∞), 𝑅𝑑 ∈ (0,∞), and 𝜆𝑘 ∈ (0, 1] is the forgetting factor. Then, for all
𝑘 ≥ 0, the unique global minimizer 𝜃𝑘+1 ≜ arg min𝜃∈R𝑙𝜃 J𝑘 (𝜃) is given recursively by the RLS update equations [29]
as

𝑃−1
𝑘+1 = 𝜆𝑘𝑃

−1
𝑘 + (1 − 𝜆𝑘)𝑅∞ + Φ̃T

𝑘𝑅Φ̃𝑘 , (22)

𝜃𝑘+1 = 𝜃𝑘 − 𝑃𝑘+1Φ̃
T
𝑘𝑅( 𝑧̃𝑘 + Φ̃𝑘𝜃𝑘), (23)
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where 𝑃0
△
= 𝑅−1

𝜃
, for all 𝑘 ≥ 0, positive-definite 𝑃𝑘 ∈ R𝑙𝜃×𝑙𝜃 is the covariance matrix, the positive-definite matrix

𝑅∞ ∈ R𝑙𝜃×𝑙𝜃 is the user-selected resetting matrix, and where, for all 𝑘 ≥ 0,

Φ̃𝑘
△
=

[
Φf,𝑘

Φ𝑘

]
, 𝑧̃𝑘

△
=

[
𝑧𝑘 − 𝑑f,𝑘

0

]
, 𝑅

△
=

[
𝑅𝑧 0
0 𝑅d

]
.

Hence, (22) and (23) recursively update the input-estimation subsystem (10).
A forgetting factor 𝜆𝑘 < 1 in (22) enables the eigenvalues of 𝑃𝑘 to decrease, facilitating ongoing adaptation of the

input-estimation subsystem (10), even after extensive data collection [30]. Conversely, the resetting matrix 𝑅∞ in (22)
prevents the eigenvalues of 𝑃𝑘 from becoming excessively large under conditions of poor excitation [31], a phenomenon
known as covariance windup [32].

Next, variable-rate forgetting based on the F-test [33] is used for all 𝑘 ≥ 0 to select the forgetting factor 𝜆𝑘 ∈ (0, 1].
For all 𝑘 ≥ 0, we define the residual error at step 𝑘 as

𝜀𝑘
△
= 𝑧̃𝑘 + Φ̃𝑘𝜃𝑘 ∈ R2. (24)

Note that the residual error is a metric of how well the input-estimation subsystem (10) predicts the input one step into
the future. Furthermore, for all 𝑘 ≥ 0, the sample mean of the residual errors over the past 𝜏 ≥ 1 steps is defined as

𝜀𝜏,𝑘
△
=

1
𝜏

𝑘∑︁
𝑖=𝑘−𝜏+1

𝜀𝑖 ∈ R2, (25)

and the sample variance of the residual errors over the past 𝜏 steps is defined as

Σ𝜏,𝑘
△
=

1
𝜏

𝑘∑︁
𝑖=𝑘−𝜏+1

(𝜀𝑖 − 𝜀𝜏,𝑘) (𝜀𝑖 − 𝜀𝜏,𝑘)T ∈ R2×2. (26)

The approach in [33] compares Σ𝜏𝑛 ,𝑘 to Σ𝜏𝑑 ,𝑘 , where 𝜏𝑛 ≥ 1 is the short-term sample size, and 𝜏𝑑 > 𝜏𝑛 is
the long-term sample size. If the short-term variance Σ𝜏𝑛 ,𝑘 is found to be statistically more significant than the
long-term variance Σ𝜏𝑑 ,𝑘 , according to the Lawley-Hotelling trace approximation [34], then 𝜆𝑘 < 1 is chosen, inversely
proportional to its statistical significance. Otherwise, 𝜆𝑘 is set to 1. In particular, for all 𝑘 ≥ 0, the forgetting factor is
selected as

𝜆𝑘
△
=

1
1 + 𝜂𝑔𝑘1[𝑔𝑘]

, (27)

where 𝜂 ≥ 0 is a tuning parameter, 1 : R→ {0, 1} is the unit step function, and, for all 𝑘 ≥ 0,

𝑔𝑘
△
=

√︄
𝜏𝑛

𝜏𝑑

tr(Σ𝜏𝑛 ,𝑘Σ
−1
𝜏𝑑 ,𝑘

)
𝑐

−
√︃
𝐹−1

2𝜏𝑛 ,𝑏 (1 − 𝛼), (28)

𝑎
△
=
(𝜏𝑛 + 𝜏𝑑 − 3) (𝜏𝑑 − 1)
(𝜏𝑑 − 5) (𝜏𝑑 − 2) , (29)

𝑏
△
=4 + 2(𝜏𝑛 + 1)

𝑎 − 1
, 𝑐

△
=

2𝜏𝑛 (𝑏 − 2)
𝑏(𝜏𝑑 − 3) , (30)

and where 𝛼 ∈ [0, 1] is the significance level and 𝐹−1
2𝜏𝑛 ,𝑏 : [0, 1] → R is the inverse cumulative distribution function of

the F-distribution with degrees of freedom 2𝜏𝑛 and 𝑏. For further details, see [33] and [34].

B. State Estimation
The forecast variable 𝑥fc,𝑘 , given by (7), is used to obtain the estimate 𝑥da,𝑘 of 𝑥𝑘 given, for all 𝑘 ≥ 0, by the

Kalman-filter data-assimilation step

𝑥da,𝑘 = 𝑥fc,𝑘 + 𝐾da,𝑘𝑧𝑘 , (31)
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where the Kalman-filter gain 𝐾da,𝑘 ∈ R𝑛, the data-assimilation error covariance 𝑃da,𝑘 ∈ R𝑛×𝑛, and the forecast error
covariance 𝑃f,𝑘+1 ∈ R𝑛×𝑛 are given by

𝐾da,𝑘 = −𝑃f,𝑘𝐶
T (𝐶𝑃f,𝑘𝐶

T +𝑉2,𝑘)−1, (32)
𝑃da,𝑘 = (𝐼𝑛 + 𝐾da,𝑘𝐶)𝑃f,𝑘 , (33)
𝑃f,𝑘+1 = 𝐴𝑃da,𝑘𝐴

T +𝑉1,𝑘 , (34)

where 𝑉2,𝑘 ∈ R is the measurement covariance matrix and

𝑉1,𝑘
△
= 𝐵 var (𝑑𝑘 − 𝑑𝑘)𝐵T + 𝐴 cov (𝑥𝑘 − 𝑥da,𝑘 , 𝑑𝑘 − 𝑑𝑘)𝐵T + 𝐵 cov (𝑑𝑘 − 𝑑𝑘 , 𝑥𝑘 − 𝑥da,𝑘)𝐴T (35)

and 𝑃f,0 = 0.

C. Adaptive State Estimation
This section summarizes adaptive state estimation of AISE. Assuming that, for all 𝑘 ≥ 0, 𝑉1,𝑘 and 𝑉2,𝑘 are unknown

in (34) and (32), the goal is to adapt 𝑉1,adapt,𝑘 and 𝑉2,adapt,𝑘 at each step 𝑘 to estimate 𝑉1,𝑘 and 𝑉2,𝑘 , respectively. To do
this, we define, for all 𝑘 ≥ 0, the performance metric 𝐽𝑘 : R𝑛×𝑛 × R→ R as

𝐽𝑘 (𝑉1, 𝑉2)
△
= |𝑆𝑘 − 𝑆𝑘 |, (36)

where 𝑆𝑘 is the sample variance of 𝑧𝑘 over [0, 𝑘] given by

𝑆𝑘
△
=

1
𝑘

𝑘∑︁
𝑖=0

(𝑧𝑖 − 𝑧𝑘)2, 𝑧𝑘
△
=

1
𝑘 + 1

𝑘∑︁
𝑖=0

𝑧𝑖 , (37)

and 𝑆𝑘 is the variance of the residual 𝑧𝑘 given by the Kalman filter, defined as

𝑆𝑘
△
= 𝐶 (𝐴𝑃da,𝑘−1𝐴

T +𝑉1)𝐶T +𝑉2. (38)

For all 𝑘 ≥ 0, we assume that 𝑉1,adapt,𝑘 ≜ 𝜂𝑘 𝐼𝑛 and we define 𝜂𝑘 ∈ R and 𝑉2,adapt,𝑘 as

𝜂𝑘 , 𝑉2,adapt,𝑘
△
= arg min

𝜂∈[𝜂𝐿 ,𝜂U ],𝑉2≥0
𝐽𝑘 (𝜂𝐼𝑛, 𝑉2), (39)

where 0 ≤ 𝜂𝐿 ≤ 𝜂U. Next, defining 𝐽f,𝑘 : R→ R as

𝐽f,𝑘 (𝑉1)
△
= 𝑆𝑘 − 𝐶 (𝐴𝑃da,𝑘−1𝐴

T +𝑉1)𝐶T, (40)

and using (38), (36) can be rewritten as

𝐽𝑘 (𝑉1, 𝑉2) = |𝐽f,𝑘 (𝑉1) −𝑉2 |. (41)

We construct a set of positive values of 𝐽f,𝑘 as

Jf,𝑘
△
= {𝐽f,𝑘 (𝜂𝐼𝑛) : 𝐽f,𝑘 (𝜂𝐼𝑛) > 0, 𝜂𝐿 ≤ 𝜂 ≤ 𝜂U} ⊆ R. (42)

Finally, Proposition 1 gives a method to compute 𝜂𝑘 and 𝑉2,adapt,𝑘 , defined in (39).

Proposition 1 Let 𝑘 ≥ 0 and let 𝜂𝑘 ∈ [𝜂𝐿 , 𝜂𝑈] and 𝑉2,𝑘 ≥ 0 be given by (39). If Jf,𝑘 , defined in (42), is nonempty,
then, for any 𝛽 ∈ [0, 1], 𝜂𝑘 and 𝑉2,𝑘 are given by

𝜂𝑘 = arg min
𝜂∈[𝜂𝐿 ,𝜂𝑈 ]

|𝐽f,𝑘 (𝜂𝐼𝑛) − 𝐽f,𝑘 (𝛽) |, (43)

𝑉2,adapt,𝑘 = 𝐽f,𝑘 (𝜂𝑘 𝐼𝑛), (44)

where

𝐽f,𝑘 (𝛽)
△
= 𝛽min Jf,𝑘 + (1 − 𝛽) max Jf,𝑘 , (45)

If Jf,𝑘 is empty, then 𝜂𝑘 and 𝑉2,𝑘 are given by

𝜂𝑘 = arg min
𝜂∈[𝜂𝐿 ,𝜂𝑈 ]

|𝐽f,𝑘 (𝜂𝐼𝑛) |, (46)

𝑉2,adapt,𝑘 = 0. (47)

Proof: See Section 5.2 of [26].
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IV. Numerical Examples
In this section, a numerical example is provided to compare the accuracy of the predicted trajectory of the target

vehicle (3) using velocity and acceleration estimates. For comparison, the estimates are obtained from two different
numerical differentiation methods and using 𝛼-𝛽-𝛾 filter (ABG). The first differentiation method is the backward
difference with Butterworth filter (BDB), and the second is AISE. In BDB, the noisy position measurements are first
refined using a Butterworth filter, and then the backward difference is applied. We assume a planar 𝑥-𝑦 model in this
section, hence ignoring the 𝑧 component. The tracking index Γ is a well-known parameter in the 𝛼-𝛽-𝛾 filter [19]. Here,
we also compare the performance of the 𝛼-𝛽-𝛾 filter for a range of values of Γ.

We further assess the value of acceleration estimates for trajectory prediction by presenting six versions of BDB,
ABG, and AISE prediction using either only the velocity estimate or both the velocity and acceleration estimates in (3),
as shown in Table 2.

Prediction Methods ¤̂𝑟𝑞,𝑘 ¥̂𝑟𝑞,𝑘
BDB/v Used Not used
BDB/va Used Used
ABG/v Used Not used
ABG/va Used Used
AISE/v Used Not used
AISE/va Used Used

Table 2 Definitions of the prediction methods using BDB, ABG, and AISE. Each version includes either only
the velocity estimate ¤̂𝑟𝑞,𝑘 or both the velocity estimate ¤̂𝑟𝑞,𝑘 and the acceleration estimate ¥̂𝑟𝑞,𝑘 in the trajectory
prediction equation (3). Here 𝑞 represents 𝑥 or 𝑦.

To quantify the accuracy of the predicted trajectory, we define the error metric for the prediction horizon of 𝑙max steps

RMSE𝑞,𝑙max
△
=

1
𝑁 − 𝑙max − 499

√√√
𝑁−𝑙max∑︁
𝑘=500

(𝑟𝑞,𝑘+𝑙max − 𝑟𝑞,𝑘+𝑙max )2, (48)

where 𝑞 represents 𝑥 or 𝑦, and to avoid the transient phase for the adaptation of AISE, 𝑘 starts from 500 in (48).

Example 1 Trajectory Prediction for a Parabolic Trajectory. In this simulation scenario, the target follows a parabolic
trajectory in the planer model under constant gravity of 9.8 m/s2 in the negative 𝑦 direction. The discrete-time equations
governing the trajectory are defined as

𝑟𝑥,𝑘 = 100𝑘𝑇s, (49)

𝑟𝑦,𝑘 = 200𝑘𝑇s − 9.8
(𝑘𝑇s)2

2
, (50)

where 𝑇s = 0.01 s and for all 𝑘 ≥ 0. To simulate the noisy measurement of the target position 𝑟𝑥,𝑘 and 𝑟𝑦,𝑘 , white
Gaussian noise is added to each position measurement, with standard deviation 𝜎 = 1. We perform Monte-Carlo
simulations with 100 trials.

For single differentiation using AISE, we set 𝑛e = 25, 𝑛f = 50, 𝑅𝑧 = 1, 𝑅𝑑 = 10−6.7, 𝑅𝜃 = 10−1𝐼51, 𝜂 = 0.008, 𝜏𝑛 =

20, 𝜏𝑑 = 160, 𝛼 = 0.0008, and 𝑅∞ = 102. The parameters 𝑉1,𝑘 and 𝑉2,𝑘 are adapted, with 𝜂𝐿 = 10−6 and 𝜂U = 1
as described in Section III.C. For double differentiation using AISE, we set 𝑛e = 25, 𝑛f = 20, 𝑅𝑧 = 1, 𝑅𝑑 = 10−4,
𝑅𝜃 = 10−2𝐼51, 𝜂 = 0.008, 𝜏𝑛 = 20, 𝜏𝑑 = 160, 𝛼 = 0.0008, and 𝑅∞ = 101. Similarly, 𝑉1,𝑘 and 𝑉2,𝑘 are adapted, with
𝜂𝐿 = 10−6 and 𝜂U = 10−2 in Section III.C. For BDB, the Butterworth filter is 10𝑡ℎ order with a cutoff frequency of
0.8𝜋 rad/step. For ABG, the tracking index Γ = 0.6.

Figure 2a compares the predicted trajectory of 𝑙max = 100-steps prediction horizon using BDB/v, ABG/v, and
AISE/v to the measured position of the target. Figure 2b, a zoomed-in view of Figure 2a, demonstrates that the predicted
trajectory by AISE/v is closer to the measured trajectory than that of BDB/v and ABG/v. AISE/va in Figure 3c,
outperforms BDB/va in Figure 3a and ABG/va in Figure 3b. Figure 4a compares AISE/v and AISE/va, showing that
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the prediction by AISE/va is initially less accurate, as evidenced in the lower-left corner, due to the transient phase of
AISE adaptation, particularly for double differentiation. Figure 4b, a zoomed-in view of Figure 4a, indicates that the
performances of AISE/va and AISE/v are similar.

These observations are further verified by the RMSE𝑞,𝑙max error metric (48), as shown in Table 3. Table 3 presents
RMSE values for 100, 200, and 300-step prediction horizons, comparing the true position with the predicted position.
For RMSE𝑥,𝑙max , AISE/v has the lowest values, whereas for RMSE𝑦,𝑙max , AISE/va has the lowest values across all
𝑙max = 100, 200, and 300. This discrepancy is due to the fact that the true acceleration ¥𝑟𝑥,𝑘 is zero for the entire
duration of the parabolic trajectory in (49), whereas the estimated acceleration ¥̂𝑟 𝑥,𝑘 is not zero for all 𝑘 > 0, resulting in
marginally worse performance when the acceleration estimate is considered in AISE/va. Figure 5 shows the variation of
RMSE𝑞,300 with respect to the tracking parameter Γ ∈ [0, 1] for ABG/v and ABG/va prediction method, with 𝑞 = 𝑥

and 𝑞 = 𝑦.

Prediction Method RMSE𝑥,100 RMSE𝑦,100 RMSE𝑥,200 RMSE𝑦,200 RMSE𝑥,300 RMSE𝑦,300

BDB/v 1.05 5.14 2.27 19.69 3.36 44.17
BDB/va 87.63 81.99 347.65 323.66 805.44 777.71
ABG/v 1.24 4.95 2.53 19.36 3.95 43.97
ABG/va 40.72 42.51 181.87 178.12 388.08 407.97
AISE/v 0.13 6.16 0.20 22.05 0.28 47.73
AISE/va 0.23 1.58 0.87 3.46 1.84 5.69

Table 3 RMSE values for 100, 200, and 300 steps prediction horizons. The value in bold represents the minimum
RMSE value in each column.

(a) (b)

Fig. 2 Example 1: Trajectory prediction for a parabolic trajectory. (a) The dashed black line, green line, and blue
line show the predicted trajectory using BDB/v, ABG/v, and AISE/v, respectively. (b) Zoomed view of (a). AISE/v
provides a more accurate prediction than BDB/v and ABG/v. The prediction horizon 𝑙max = 100 steps.

V. Conclusions
This paper investigated the performance of a novel target tracking algorithm that uses adaptive real-time numerical

differentiation to estimate the velocity and acceleration of a maneuvering target. Adaptive input and state estimation
(AISE) is used to estimate the first and second derivatives of noisy, sampled position data with minimal latency. The
velocity and acceleration estimates are then used to predict the position of the target over an 𝑙-step prediction horizon.
Future research will consider three-dimensional target-tracking scenarios such as ballistic trajectories with aerodynamic
and central gravity effects, integrate bearing and range-rate data, estimate the curvature and torsion of the trajectory,
and apply the methodology to maneuvering targets with the ultimate goal of discriminating between maneuvering and
non-maneuvering targets.
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Fig. 3 Example 1: Trajectory prediction for a parabolic trajectory. The dashed black line, green line, and blue line
show the predicted trajectory using BDB/va, ABG/va, and AISE/va in (a), (b), and (c) subfigures, respectively.
AISE/va provides a more accurate prediction than BDB/va. The prediction horizon 𝑙max = 100 steps.
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Fig. 4 Example 1: Trajectory prediction for a parabolic trajectory. (a) The dashed black line shows the predicted
trajectory using AISE/v. The blue line shows the predicted trajectory using AISE/va. (b) Zoomed view of (a).
AISE/va provides similar accuracy to AISE/v. The prediction horizon 𝑙max = 100 steps.
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(a) Using only velocity (v) estimate for prediction.
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(b) Using only velocity (v) estimate for prediction.
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(c) Using both velocity (v) and acceleration (a) estimates
for prediction.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

(d) Using both velocity (v) and acceleration (a) estimates
for prediction.

Fig. 5 Example 1: Trajectory prediction for a parabolic trajectory. RMSE𝒒,300 versus tracking index Γ for 𝑞 = 𝑥, 𝑦.
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