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This paper presents a data-driven terrain-following autopilot that operates within the
framework of traditional flight-control systems. In particular, the data-driven controller follows
altitude commands, which represent the terrain-following objective, by generating pitch-rate
commands, which are followed using a fixed-gain, inner-loop, pitch-rate controller. The paper
demonstrates the ability of the terrain-following autopilot to operate reliably when the fixed-gain,
inner-loop, pitch-rate loop becomes unstable due to an unknown sensor delay. This failure is
mitigated by the data-driven terrain-following autopilot, which stabilizes the vehicle despite
the unknown instability in the inner loop. This ability demonstrates the benefit of having a
data-driven outer-loop autopilot that can compensate for an unforeseen and unknown failure of
the fixed-gain inner loop controller.

I. Introduction

Terrain following is a key capability for military aircraft that wish to avoid detection by adversaries while entering
contested airspace [1]. In particular, flying as closely as possible to the terrain allows an aircraft to avoid radar

detection by flying under the radar’s horizon, which is the lowest altitude for which a radar can track targets due to the
curvature of the Earth and terrain [2, 3]. A related concept is terrain avoidance, which aims to fly a path that may be
three-dimensional. However, terrain following focuses on straight-line flight from one point to another point, while
attempting to follow the terrain between those points as closely as possible.

Flying close to the terrain is challenging due to several reasons. The aircraft must maneuver rapidly in response to
the terrain in order to follow it as closely as possible. These trajectories usually require excessive pilot workload, and
thus are flown using autopilots [4–7]. Furthermore, accurate knowledge of the terrain is required if terrain following
is to avoid obstacles. Constraints that are inherent to terrain following include vertical acceleration limits due to the
vertical maneuvering ability of the aircraft, the required level of comfort for the pilot, and, because of transient behavior,
the need for a safety margin.

Before the advent of extensive satellite scanning, terrain-following autopilots relied primarily on terrain-following
radars, which would scan the terrain immediately ahead of the aircraft [2, 8]. However, contemporary terrain-following
autopilots can use widely available terrain data [9, 10] to anticipate obstacles and plan terrain-following trajectories. In
practice, the two techniques are combined using data-fusion methods to merge radar-scans of the terrain and terrain data
to provide an up-to-date map of the terrain [11–13].

Since terrain-following autopilots are employed on non-experimental aircraft, they must utilize the existing flight-
control system architecture. Modern aircraft utilize a stability augmentation systems (SAS) as an inner-loop flight-control
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system to regulate aircraft body rates 𝑝, 𝑞, and 𝑟 [14]. Since terrain following is restricted to the pitch plane, only the
pitch-rate 𝑞 SAS is of relevance for terrain following. In particular, terrain-following autopilots generate a commanded
pitch rate, which is passed to the pitch-rate SAS, which, in turn, requests actuator deflections that facilitate following of
the commanded pitch rate.

Although the inner-/outer-loop architecture is standard in practice, this architecture may be problematic when the
pitch-rate SAS fails to stabilize body rates. Failure of the pitch-rate SAS is especially dangerous in flight close to the
ground, which leaves little time for remedial measures. This situation motivates the present paper.

A promising approach to terrain following is model predictive control (MPC), which applies receding-horizon
optimization to the vehicle model and desired trajectory to determine a future sequence of control inputs subject to
constraints on actuator magnitude and rate [15–18]. The ability of predictive control methods to handle nonlinear
dynamics, incorporate actuation constraints, and include knowledge of the desired trajectory make them viable candidates
for developing terrain following algorithms [7, 19–21]. The ability of MPC to consider a future horizon allows it to
anticipate challenging terrain profiles, which makes MPC ideal for terrain following. A key advantage of MPC is its
ability to use knowledge of the dynamics of the aircraft and limitations of its actuators when computing an optimal
trajectory. A challenge in the embedded implementation of MPC, however, is computational complexity due to the
requirement to solve an online optimization problem, which may be nonlinear.

The main contribution of the present paper is the development of a data-driven, MPC-based, terrain-following
autopilot that takes into account constraints that are crucial for terrain-following applications. In particular, the
terrain-following autopilot specifies control actions that enable the vehicle to fly as closely as possible to the terrain,
while not descending below a safety height. Since the terrain-following autopilot in this paper is data-driven, it
utilizes no prior modeling information but rather learns the dynamics of the aircraft using online, closed-loop system
identification. This allows the terrain-following autopilot to be applied to different aircraft with minimal modification.
Another consequence of the data-driven nature of the autopilot is that constraints are satisfied only with respect to the
latest identified model, which may not be accurate when the autopilot starts. The terrain-following autopilot presented
in this paper may also be used as an offline planning tool to chart feasible routes for particular aircraft, even before they
are flown.

In addition to the above benefits of a data-driven autopilot for terrain following, the present paper focuses on
the situation where the fixed-gain, inner-loop, pitch-rate SAS becomes unstable during flight. When the outer-loop
controller is also fixed gain, this failure mode will almost surely lead to loss of the vehicle, especially since flying close
to the terrain presents an unrecoverable situation. The present paper thus investigates the ability of the data-driven
outer-loop controller to compensate for the destabilized inner loop. In particular, the data-driven controller follows
altitude commands, which represent the terrain-following objective, by generating pitch-rate commands, which are
followed using a fixed-gain, inner-loop, pitch-rate controller. During flight, the fixed-gain, inner-loop, pitch-rate loop
becomes unstable due to an unknown sensor delay. This failure is mitigated by the data-driven terrain-following
autopilot, which stabilizes the vehicle despite the unknown instability in the inner loop. This ability demonstrates the
benefit of having a data-driven outer-loop autopilot that can compensate for an unforeseen and unknown failure of the
fixed-gain, inner-loop, pitch-rate controller.

The contents of this paper as as follows. Section II presents the model of the aircraft used for simulations in this
paper and the pitch-rate stability augmentation system (SAS) used as the inner loop. Section III presents the architecture
used for terrain following. Section IV reviews predictive cost adaptive control (PCAC) [22], which is the data-driven
model-predictive autopilot used for terrain following in this paper. Section V presents simulations that demonstrate the
ability of PCAC to function as a terrain-following autopilot, with no prior modeling information, in the presence of SAS
failure, and in the presence of previously undetected obstacles. Finally, section VI provides concluding remarks and
directions for future research.

II. Aircraft Model and Stability Augmentation System
The aircraft model used in this paper is the nonlinear F-16 model described in [14, 23, 24]. In order to simplify

autopilot development, we restrict the aircraft’s motion to the longitudinal plane. The aircraft model is represented by
M in Figure 1 and includes actuator models for the elevator and the engine. The inputs to the actuators are the requested
elevator deflection 𝛿e,r ∈ [−25◦, 25◦] ∈ R and the requested thrust 𝛿t,r ∈ [0, 1]. In addition to the elevator and throttle,
the nonlinear F-16 model takes as input the deflection of the leading edge flap. In this paper, the leading edge flap is set
to zero, and is not used as a control input. We assume that measurements of angle-of-attack 𝛼(𝑡), flight-path angle 𝛾(𝑡),
pitch-rate 𝑞(𝑡), altitude ℎ(𝑡), normal acceleration 𝑛𝑧 (𝑡), and airspeed 𝑉 (𝑡) are available.
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Fig. 1 Continuous-time longitudinal stability augmentation system for a fixed-wing aircraft. M represents
the nonlinear fixed-wing aircraft dynamics. The pitch-rate controller 𝐺𝑞 (𝑠) is designed to follow pitch-rate
commands 𝑞c (𝑡) by generating requested elevator deflections 𝛿e,r (𝑡). The airspeed controller 𝐺𝑉 (𝑠) is designed to
follow a constant airspeed command 𝑉c = 200 by generating the requested throttle settings 𝛿t,r (𝑡). 𝑦(𝑡) includes
measurements made from sensors on the aircraft.

In order to design an inner-loop stability augmentation system (SAS), the nonlinear F-16 model is trimmed at an
airspeed of 𝑉 ≡ 200 m/s and an altitude of ℎ ≡ 1000 m. Next, a linear model is obtained for the aircraft’s longitudinal
dynamics about the trim state. To design the pitch-rate controller, the transfer function from 𝛿e to 𝑞 is computed where
the poles corresponding to the phugoid mode are removed. A first-order actuator model transfer function, which relates
𝛿e to 𝛿e,r is also included. Multiplying these transfer functions yields the transfer function from 𝛿e,r to 𝑞, which is given
by

𝐺sp (𝑠) = − 348.73(𝑠 + 1.249)
(𝑠 + 20.2) (𝑠2 + 2.888𝑠 + 2.914)

,

where the actuator pole is at 𝑠 = −20.2. The designed pitch-rate PI controller is given by

𝐺𝑞 (𝑠) = −0.2251(𝑠 + 3.5911)
𝑠

,

which yields 60◦ phase margin, infinite gain margin, loop crossover frequency 4.65 rad/s, rise time 0.285 s, overshoot
10.9%, and settling time 1.69 s.

In order to design the speed controller, the closed-loop transfer function from 𝛿t,r to 𝑉 is obtained, which includes
𝐺𝑞 (𝑠). In particular, this transfer function is given by

𝐺as (𝑠) =
7.8325(𝑠 + 1.144)

(𝑠 + 1) (𝑠 + 1.141) (𝑠 + 0.02224) ,

where the actuator pole is at 𝑠 = −1. The designed speed PI controller is given by

𝐺𝑉 (𝑠) =
0.063(𝑠 + 0.061087)

𝑠
,

which yields 60.7◦ phase margin, infinite gain margin, loop crossover frequency 0.454 rad/s, rise time 2.81 s, overshoot
11.5%, and settling time 24.9 s. The commanded airspeed 𝑉c is set to be constant at 200 m/s.

III. Architecture used for Terrain Following
This paper utilizes PCAC for terrain-following in the presence of constraints. As shown in Figure 2 we consider

sampled-data control of the nonlinear F-16 model, where the commanded pitch-rate 𝑞c (𝑡) is generated by PCAC. For all
𝑡 ≥ 0, 𝑞c (𝑡) ∈ R is the control, and 𝑦(𝑡) is the the output of G. The sample operation yields 𝑦𝑘

△
= 𝑦(𝑘𝑇s), where 𝑇s is

the sampling time.
The tracking output 𝑦t,𝑘 ∈ R is defined by

𝑦t,𝑘
△
= 𝐶t𝑦𝑘 , (1)
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PCAC ZOH G
𝑟𝑘

𝑢𝑘 𝑞c (𝑡)
𝑇s

𝑦(𝑡) 𝑦𝑘

Fig. 2 Command following under sampled-data data-driven predictive control. 𝑞c (𝑡) and 𝑦(𝑡) are the commanded
pitch-rate and measurements in Figure 1, respectively. That is, the relationship from 𝑞c (𝑡) to 𝑦(𝑡) is represented
by G. PCAC has access to the command 𝑟𝑘 and sampled measurements 𝑦𝑘 . The objective is to have linear
combinations of 𝑦𝑘 follow the commands 𝑟𝑘 , while enforcing constraints on additional linear combinations of 𝑦𝑘 ,
the control 𝑢𝑘 , and the control move-size 𝑢𝑘 − 𝑢𝑘−1. A zero-order hold circuit with input 𝑢𝑘 generates the control
signal 𝑞c (𝑡) for the stability augmentation system. All sample-and-hold operations are synchronous.

which specifies the sampled altitude as the the tracking output. The performance objective is to have the sampled
altitude 𝑦t,𝑘 follow a commanded terrain trajectory 𝑟𝑘 ∈ R, whose future values are known, and thus command preview
is available. It can be assumed that command preview of the terrain is possible through the availability of offline terrain
data [10] and online radar-scan information [11–13].

In addition to the performance objective, the constrained output 𝑦c,𝑘 ∈ R𝑝c is defined by

𝑦c,𝑘
△
= 𝐶c𝑦𝑘 , (2)

where 𝐶c ∈ R𝑝c×𝑝 . In this paper 𝐶c is selected to implement soft constraints on altitude and normal acceleration. The
objective is to enforce the inequality constraint

C𝑦c,𝑘 + D ≤ 0𝑛c×1, (3)

where C ∈ R𝑛c×𝑝c and D ∈ R𝑛c . Note that (3), where “≤” is interpreted component-wise, defines a convex set.
Additionally, the control is constrained in both magnitude and rate. The magnitude control constraint has the form

𝑢min ≤ 𝑢𝑘 ≤ 𝑢max, (4)

where 𝑢min ∈ R is the value of the minimum control magnitude and 𝑢max ∈ R is the value of maximum control magnitude.
In addition, the move-size control constraint has the form

Δ𝑢min ≤ 𝑢𝑘 − 𝑢𝑘−1 ≤ Δ𝑢max, (5)

where Δ𝑢min ∈ R is the value of minimum control move size and Δ𝑢max ∈ R is the value of maximum control move
sizes. As shown in Figure 2, the inputs to PCAC are the command 𝑟𝑘 , tracking output 𝑦t,𝑘 , and constrained output 𝑦c,𝑘 .
Using these signals, PCAC produces the discrete-time control 𝑢𝑘 ∈ R at each step 𝑘 , which minimizes the norm of the
difference between the command following output and the command over a horizon.

IV. Review of Predictive Cost Adaptive Control
In this paper, we use PCAC as the data-driven, terrain-following autopilot. PCAC combines online identification

with output-feedback MPC, which is presented in this section. Subsection IV.A describes the technique used for online
identification, namely, recursive least squares. Subsection IV.B presents the block observable canonical form (BOCF),
which is used to represent the input-output dynamics model as a state space model whose state is given explicitly in terms
of inputs, outputs, and model-coefficient estimates. Subsection IV.C reviews the MPC technique for receding-horizon
optimization.

A. Online Identification Using Recursive Least Squares
Let 𝑛̂ ≥ 0 and, for all 𝑘 ≥ 0, let 𝐹̂1,𝑘 , . . . , 𝐹̂𝑛̂,𝑘 ∈ R𝑝×𝑝 and 𝐺̂0,𝑘 , . . . , 𝐺̂ 𝑛̂,𝑘 ∈ R𝑝×𝑚 be the coefficient matrices to

be estimated using RLS. Furthermore, let 𝑦̂𝑘 ∈ R𝑝 be an estimate of 𝑦𝑘 defined by

𝑦̂𝑘 = −
𝑛̂∑︁
𝑖=1

𝐹̂𝑖,𝑘𝑦𝑘−𝑖 +
𝑛̂∑︁
𝑖=0

𝐺̂𝑖,𝑘𝑢𝑘−𝑖 , (6)
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Predictive Cost Adaptive Control

Model Predictive Control
QP/BOCF for output feedback

with control and output constraints

Online System Identification
RLS for online identification

Aircraft Dynamics
Matlab simulation environment

Measurement 𝑦𝑘

Estimated Model Coefficients 𝜃𝑘

Control 𝑢𝑘
Command 𝑟𝑘

Disturbance 𝑤𝑘

Fig. 3 PCAC block diagram. The online, closed-loop system identification is based on recursive least squares
(RLS). The model predictive control (MPC) algorithm, which is based on quadratic programming (QP), uses the
estimated model coefficients 𝜃𝑘 to form a block-observable canonical form (BOCF) state-space model, which is
used by QP to determine the control input 𝑢𝑘 .

where

𝑦−𝑛̂ = · · · = 𝑦−1 = 0, (7)
𝑢−𝑛̂ = · · · = 𝑢−1 = 𝑢0 = 0. (8)

For online identification, RLS is used to estimate the coefficients of the input-output model (6). To do this, RLS
minimizes the cumulative cost

𝐽𝑘 (𝜃𝑘) =
𝑘∑︁
𝑖=0

𝑧T
𝑖 (𝜃𝑘)𝑧𝑖 (𝜃𝑘) + (𝜃𝑘 − 𝜃0)T𝑃−1

0 (𝜃𝑘 − 𝜃0), (9)

where, for all 𝑘 ≥ 0, 𝑃0 ∈ R[𝑛̂𝑝 (𝑚+𝑝)+𝑚𝑝]×[𝑛̂𝑝 (𝑚+𝑝)+𝑚𝑝] is positive definite, and 𝜃0 ∈ R𝑛̂𝑝 (𝑚+𝑝)+𝑚𝑝 is the initial
estimate of the coefficient vector. The performance variable 𝑧𝑘 (𝜃𝑘) ∈ R𝑝 is defined by

𝑧𝑘 (𝜃𝑘)
△
= 𝑦𝑘 +

𝑛̂∑︁
𝑖=1

𝐹̂𝑖,𝑘𝑦𝑘−𝑖 −
𝑛̂∑︁
𝑖=0

𝐺̂𝑖,𝑘𝑢𝑘−𝑖 , (10)

where the vector 𝜃𝑘 ∈ R𝑛̂𝑝 (𝑚+𝑝)+𝑚𝑝 of estimated coefficients is defined by

𝜃𝑘
△
= vec

[
𝐹̂1,𝑘 · · · 𝐹̂𝑛̂,𝑘 𝐺̂0,𝑘 · · · 𝐺̂ 𝑛̂,𝑘

]
. (11)

Defining the regressor matrix 𝜙𝑘 ∈ R𝑝×[𝑛̂𝑝 (𝑚+𝑝)+𝑚𝑝] by

𝜙𝑘
△
=

[
−𝑦T

𝑘−1 · · · −𝑦T
𝑘−𝑛̂ 𝑢T

𝑘
· · · 𝑢T

𝑘−𝑛̂

]T
⊗ 𝐼𝑝 , (12)

it follows that the performance variable (10) can be rewritten as

𝑧𝑘 (𝜃𝑘) = 𝑦𝑘 − 𝜙𝑘𝜃𝑘 . (13)

Note that, with (13), the cost function (9) is strictly convex and quadratic, and thus has a unique global minimizer. The
unique global minimizer is computed by RLS using

𝑃𝑘+1 = 𝑃𝑘 − 𝑃𝑘𝜙
T
𝑘 (𝐼𝑝 + 𝜙𝑘𝑃𝑘𝜙

T
𝑘 )

−1𝜙𝑘𝑃𝑘 , (14)
𝜃𝑘+1 = 𝜃𝑘 + 𝑃𝑘+1𝜙

T
𝑘 (𝑦𝑘 − 𝜙𝑘𝜃𝑘). (15)

Note that 𝜃𝑘+1 computed using (15) is available at step 𝑘, and thus, 𝐹̂1,𝑘+1, . . . , 𝐹̂𝑛̂,𝑘+1, 𝐺̂0,𝑘+1, . . . , 𝐺̂ 𝑛̂,𝑘+1 are available
at step 𝑘 .
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B. Input-Output Model and the Block Observable Canonical Form
Considering the estimate 𝑦̂𝑘 of 𝑦𝑘 given by (6), it follows that, for all 𝑘 ≥ 0,

𝑦̂𝑘 = −
𝑛̂∑︁
𝑖=1

𝐹̂𝑖,𝑘 𝑦̂𝑘−𝑖 +
𝑛̂∑︁
𝑖=0

𝐺̂𝑖,𝑘𝑢𝑘−𝑖 . (16)

It follows that, for all 𝑘 ≥ 0, the BOCF state-space realization of (16) is given by [25]

𝑥𝑘+1 = 𝐴̂𝑘𝑥𝑘 + 𝐵̂𝑘𝑢𝑘 , (17)
𝑦̂𝑘 = 𝐶̂𝑥𝑘 + 𝐷̂𝑘𝑢𝑘 , (18)

where

𝐴̂𝑘
△
=



−𝐹̂1,𝑘+1 𝐼𝑝 · · · · · · 0𝑝×𝑝

−𝐹̂2,𝑘+1 0𝑝×𝑝

. . .
...

...
...

. . .
. . . 0𝑝×𝑝

...
...

. . . 𝐼𝑝

−𝐹̂𝑛̂,𝑘+1 0𝑝×𝑝 · · · · · · 0𝑝×𝑝


∈ R𝑛̂𝑝×𝑛̂𝑝 , 𝐵̂𝑘

△
=


𝐺̂1,𝑘+1 − 𝐹̂1,𝑘+1𝐺̂0,𝑘+1

𝐺̂2,𝑘+1 − 𝐹̂2,𝑘+1𝐺̂0,𝑘+1
...

𝐺̂ 𝑛̂,𝑘+1 − 𝐹̂𝑛̂,𝑘+1𝐺̂0,𝑘+1


∈ R𝑛̂𝑝×𝑚, (19)

𝐶̂
△
=

[
𝐼𝑝 0𝑝×𝑝 · · · 0𝑝×𝑝

]
∈ R𝑝×𝑛̂𝑝 , 𝐷̂𝑘

△
= 𝐺̂0,𝑘+1 ∈ R𝑚×𝑚, (20)

𝑥𝑘
△
=


𝑥𝑘,1
...

𝑥𝑘,𝑛̂

 ∈ R𝑛̂𝑝 , 𝑥𝑘,1
△
= 𝑦𝑘 − 𝐺̂0,𝑘+1𝑢𝑘 , (21)

and, for all 𝑗 = 2, . . . , 𝑛̂,

𝑥𝑘, 𝑗
△
= −

𝑛̂− 𝑗+1∑︁
𝑖=1

𝐹̂𝑖+ 𝑗−1,𝑘+1𝑦𝑘−𝑖 +
𝑛̂− 𝑗+1∑︁
𝑖=1

𝐺̂𝑖+ 𝑗−1,𝑘+1𝑢𝑘−𝑖 . (22)

C. Model Predictive Control (MPC)
Let ℓ ≥ 1 be the horizon and, for all 𝑘 ≥ 0 and all 𝑖 = 1, . . . , ℓ, let 𝑥𝑘 |𝑖 ∈ R𝑛̂𝑝 be the 𝑖-step predicted state, 𝑦̂𝑘 |𝑖 ∈ R𝑝

be the 𝑖-step predicted output, and 𝑢𝑘 |𝑖 ∈ R𝑚 be the 𝑖-step predicted control. Then, the ℓ-step predicted output of (18)
for a sequence of ℓ future controls is given by

𝑌ℓ,𝑘 |1 = Γℓ,𝑘𝑥𝑘 |1 + 𝑇ℓ,𝑘𝑈ℓ,𝑘 |1, (23)

where

𝑌ℓ,𝑘 |1
△
=


𝑦̂𝑘 |1
...

𝑦̂𝑘 |ℓ

 ∈ Rℓ 𝑝 , 𝑈ℓ,𝑘 |1
△
=


𝑢𝑘 |1
...

𝑢𝑘 |ℓ

 ∈ Rℓ𝑚, (24)

Γℓ,𝑘
△
=


𝐶̂

𝐶̂ 𝐴̂𝑘

...

𝐶̂ 𝐴̂ℓ−1
𝑘


∈ Rℓ 𝑝×𝑛̂𝑝 , 𝑇ℓ,𝑘

△
=



𝐷̂𝑘 · · · · · · · · · · · · 0𝑝×𝑚
𝐻𝑘,1 𝐷̂𝑘 · · · · · · · · · 0𝑝×𝑚
𝐻𝑘,2 𝐻𝑘,1 𝐷̂𝑘 · · · · · · 0𝑝×𝑚
𝐻𝑘,3 𝐻𝑘,2 𝐻𝑘,1 𝐷̂𝑘 · · · 0𝑝×𝑚
...

...
...

. . .
. . . 0𝑝×𝑚

𝐻𝑘,ℓ−1 𝐻𝑘,ℓ−2 𝐻𝑘,ℓ−3 · · · 𝐻𝑘,1 𝐷̂𝑘


∈ Rℓ 𝑝×ℓ𝑚, (25)
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where 𝐻𝑘,𝑖
△
= 𝐶̂ 𝐴̂𝑖−1

𝑘
𝐵̂𝑘 ∈ R𝑝×𝑚 for all 𝑖 = 1, . . . , ℓ − 1.

Let Rℓ,𝑘
△
=

[
𝑟T
𝑘+1 · · · 𝑟T

𝑘+ℓ

]T
∈ Rℓ 𝑝t be a vector composed of ℓ future commands, let 𝑦̂t,𝑘 |𝑖

△
= 𝐶t 𝑦̂𝑘 |𝑖 ∈ R𝑝t

be the 𝑖-step predicted command-following output, let 𝑌t,ℓ,𝑘 |1
△
=

[
𝑦̂T

t,𝑘 |1 · · · 𝑦̂T
t,𝑘 |ℓ

]T
= 𝐶t,ℓ𝑌ℓ,𝑘 |1 ∈ Rℓ 𝑝t , where

𝐶t,ℓ
△
= 𝐼ℓ ⊗ 𝐶t ∈ Rℓ 𝑝t×ℓ 𝑝 , and define

Δ𝑈ℓ,𝑘 |1
△
= [(𝑢𝑘 |1 − 𝑢𝑘)T (𝑢𝑘 |2 − 𝑢𝑘 |1)T · · · (𝑢𝑘 |ℓ − 𝑢𝑘 |ℓ−1)T]T ∈ Rℓ𝑚. (26)

Then, the receding horizon optimization problem is given by

min
𝑈ℓ,𝑘 |1

(
𝑌t,ℓ,𝑘 |1 − Rℓ,𝑘

)T
𝑄

(
𝑌t,ℓ,𝑘 |1 − Rℓ,𝑘

)
+ Δ𝑈T

ℓ,𝑘 |1𝑅Δ𝑈ℓ,𝑘 |1 + 𝜀T𝑆𝜀, (27)

subject to

Cℓ𝑌1 |𝑘,ℓ + Dℓ ≤ 𝜀, (28)
𝑈min ≤ 𝑈1 |𝑘,ℓ ≤ 𝑈max, (29)

Δ𝑈min ≤ Δ𝑈1 |𝑘,ℓ ≤ Δ𝑈max, (30)
0ℓ𝑛c×1 ≤ 𝜀, (31)

where 𝑄 ∈ Rℓ 𝑝t×ℓ 𝑝t is the positive-definite output weighting, 𝑅 ∈ Rℓ𝑚×ℓ𝑚 is the positive definite control move-size
weight, 𝑆 ∈ Rℓ𝑛c×ℓ𝑛c is the positive-definite constraint relaxation weight, 𝑈min

△
= 1ℓ ⊗ 𝑢min ∈ Rℓ𝑚, 𝑈max

△
= 1ℓ ⊗ 𝑢max ∈

Rℓ𝑚, Δ𝑈min
△
= 1ℓ ⊗ Δ𝑢min ∈ Rℓ𝑚, Δ𝑈max

△
= 1ℓ ⊗ Δ𝑢max ∈ Rℓ𝑚, and Cℓ ∈ Rℓ𝑛c×ℓ 𝑝 and Dℓ ∈ Rℓ𝑛c . are matrices that

specify the desired inequality constraints. The quadratic program (QP) optimization (27)–(31) is solved using Nesterov’s
accelerated gradient descent algorithm [26, p. 76] on the dual problem, where for each step 𝑘 , the Lagrange multipliers
are initialized at zero.

In summary, at each time step, online identification is performed to find input-output model coefficients 𝜃𝑘+1, which
are then used to create a state space realization ( 𝐴̂𝑘 , 𝐵̂𝑘 , 𝐶̂, 𝐷̂𝑘). Then, the state-space realization is used in a receding
horizon optimization problem to solve for the ℓ-step controls 𝑈ℓ,𝑘 |1. The control input for the next step is then given by
𝑢𝑘 |1, and the rest of the components of 𝑈ℓ,𝑘 |1 are discarded.

V. Simulations
For all of the examples in this paper the measured outputs are selected as

𝑦 =

[
𝛼 𝛾 𝑞 ℎ 𝑛𝑧

]⊤
∈ R5, (32)

where 𝛼 is the angle of attack, 𝛾 is the flight path angle, 𝑞 is the pitch-rate, ℎ is the altitude, and 𝑛𝑧 is the normal
acceleration defined as

𝑛𝑧
△
= −1

𝑔

(
𝐹𝑧

𝑚
+ 𝑔 cos 𝜃

)
, (33)

𝐹𝑧 is the net force on the aircraft in the aircraft-frame 𝑧 direction, 𝑚 is the aircraft mass, 𝜃 is the aircraft pitch angle, and
𝑔 is the acceleration due to gravity. Note that 𝑛𝑧 is the gravity-corrected acceleration of the aircraft in g’s, positive
towards the head of the pilot. Furthermore, 𝑛𝑧 = 0 in steady-level flight.

We implement PCAC as shown in the architecture in Figure 2. In particular, PCAC generates a sequence 𝑢𝑘 , which
is processed through a zero-order hold to generate a pitch-rate command 𝑞c (𝑡) signal. An SAS operates to achieve this
commanded pitch-rate, in addition to a speed command of 200 m/s, as shown in Figure 1. The controllers in Figure 1
are designed through the process explained in Section III.

For PCAC, we set 𝑝 = 5 and 𝑚 = 1. For online ID we set 𝑛̂ = 5, 𝑃0 = 106, and 𝜃0 = 0.1 · 1(𝑛̂𝑝 (𝑚+𝑝)+𝑚𝑝)×1. Note
that this choice of 𝜃0 corresponds to an initialization of PCAC without prior modeling information. We choose the
PCAC step time as 𝑇s = 0.1 s/step, and the prediction horizon as ℓ = 100. This corresponds to a prediction time of 10 s,
and prediction over a flown distance of approximately 2 km, assuming that the aircraft flies at an airspeed close to 200
m/s.
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Terrain data is obtained from the online databases provided by the U.S. Geological Survey [10]. In particular, the
terrain profile starts at 39.5◦N, 32◦E, extends directly eastwards for a downrange distance of approximately 45 km, and
has a downrange resolution of 1-arc-second, that is, 30 m. An offset of 300 m is added to the terrain profile to give an
initial altitude of 1000 m, which is the altitude at which the aircraft is trimmed and linearized for controller design.
The terrain profile is extended with a flat region to give an initial distance of approximately 2 km for warm start of the
terrain-following algorithm. We denote the terrain data as T =

[
T1 · · · T𝑁

]
∈ R1×𝑁 where 𝑁 is the number of

terrain data points. At each step 𝑘 , we set Rℓ,𝑘 =

[
T𝜏 + 50 · · · T𝜏+ℓ + 50

]T
∈ Rℓ , where T𝜏 is the element of T that

corresponds to the terrain height immediately below the aircraft. That is, PCAC has data of the ℓ-step future terrain.
Note that 𝑁 is selected so that at the end of the simulation ℓ additional data points of T remain.

The desired constraints on the commanded pitch-rate are 𝑞c ∈ [−20, 30] ◦/s and ¤𝑞c ∈ [−100, 100] ◦/s2. These are
specified as 𝑢min = −20 ◦/s, 𝑢max = 30 ◦/s, Δ𝑢min = −100 · 𝑇𝑠 ◦/s2, and Δ𝑢max = 100 · 𝑇𝑠 ◦/s2. Furthermore, we select
𝑄 = 100𝐼 , 𝑅 = 104𝐼, 𝑆 = 1012𝐼, 𝑝t = 1, and ℎ as the tracking output, that is,

𝐶t =
[
0 0 0 1 0

]
∈ R1×5.

Lastly, we choose 𝑛𝑧 and ℎ as the constrained output by setting 𝑝c = 2, 𝑛c = 3,

𝐶c =

[
0 0 0 0 1
0 0 0 1 0

]
∈ R2×5,

where the desired constraints are −1 ≤ 𝑛𝑧 ≤ 2 and
[
T𝜏 + 37.5 · · · T𝜏+ℓ + 37.5

]
≤

[
ℎ𝑘 |1 · · · ℎ𝑘 |ℓ

]
, where the

inequality is interpreted element-wise, and ℎ𝑘 |𝑖 is the predicted altitude at step 𝑘 + 𝑖 using the data at step 𝑘 . That is, we
desire a one-sided inequality constraint on the predicted altitude, which is based on the terrain preview that is available
to PCAC. The terrain following command Rℓ,𝑘 is a trajectory that is the terrain shifted up vertically by 50 m and the
desired one-sided constraint on the altitude is a trajectory that is the terrain shifted up vertically by 37.5 m, which the
aircraft should remain above of for all time.

Note that the constraints in PCAC are soft due to the inclusion of the slack variable and slack weight in (27). This
implies that the amount of command-following and constraint-satisfaction performance achieved depends on the relative
magnitudes of the weighting matrices 𝑄 and 𝑆. That is the user may choose the right balance of command following
versus constraint satisfaction through the selection of the weights in (27).

The total simulation length is set to 250 s and a discrete-time solver with sample time 0.01 s is used in Simulink.

Example 1. Terrain following with nominal SAS. We consider the case where the SAS operates without failure.
Figure 4 shows that terrain following is achieved while PCAC is initialized with no prior modeling information, as
shown in Figure 5(h). Furthermore, Figure 5(a) shows that the soft constraints on 𝑛𝑧 and ℎ are respected most of the
time and the airspeed is maintained around 200 𝑚/𝑠. ⋄

Example 2. Terrain following with SAS failure due to unknown delay. We consider the case where the SAS fails
due to unknown delay in the measurement 𝑞𝑘 . In particular, an increasing amount of delays are added and the SAS fails
with 23 steps of delay and as shown in Figure 7(c), and the delay for 𝑡 > 140 s is 39 steps. This shows that PCAC is
compensating for the failure of the inner-loop SAS. Figure 6 shows that terrain following is achieved while PCAC is
initialized with no prior modeling information, as shown in Figure 6(h). Furthermore, Figure 7(a) shows that the soft
constraints on 𝑛𝑧 and ℎ are respected most of the time and the airspeed is maintained around 200 𝑚/𝑠. ⋄

Example 3. Terrain following with previously undetected obstacle. We consider the case where due to outdated
terrain data, a previously undetected obstacle appears within the preview horizon of PCAC. This represents a situation
where through data-fusion of radar measurements with pre-stored terrain maps, a terrain element is detected very close
to the aircraft that was previously not present in the terrain data. Recall that the PCAC horizon has the horizontal-flown
distance of approximately 2 km. When the aircraft is at the 20 km downrange position, the terrain element 1 km ahead
of the aircraft is raised in altitude by 60 m. This represents an obstacle that is detected only 1 km ahead due to previously
being undetected. As shown in Figure 8 and its inset, PCAC maneuvers the aircraft to avoid the previously undetected
obstacle that appears approximately half-way along its horizon. Figure 8 shows that terrain following is achieved while
PCAC is initialized with no prior modeling information, as shown in Figure 8(h). Furthermore, Figure 9(a) shows that
the soft constraints on 𝑛𝑧 and ℎ are respected most of the time and the airspeed is maintained around 200 𝑚/𝑠. ⋄
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Fig. 4 Example 1: Terrain following with nominal SAS. The terrain is shown in black, the commanded altitude
in red dashed, and the aircraft altitude in blue. Note that the commanded altitude is the terrain altitude increased
by a safety height of 50 m.

Fig. 5 Example 1: Terrain following with nominal SAS. (a) shows the achieved and commanded airspeeds; (b)
shows the aircraft altitude above ground level and the soft constraint on ℎ, which is 37.5 m above the terrain; (c)
shows normal acceleration and its soft constraints; (d) shows the angle of attack 𝛼; (e) shows the achieved elevator
deflection; (f) shows the achieved and commanded pitch rates; (g) shows the engine thrust as a percentage of
the total thrust, which is equal to 100𝛿t; (h) shows the PCAC estimated model coefficients 𝜃𝑘 , where PCAC is
initialized with no prior modeling information.
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Fig. 6 Example 2: Terrain following with SAS failure due to delayed pitch-rate measurements. The terrain
is shown in black, the commanded altitude in red dashed, and the aircraft altitude in blue. The commanded
altitude is the terrain altitude increased by a safety height of 50 m. The shaded red region indicates the time
interval during which the delay in the pitch-rate measurements exceeds 0.23 s, which is the time-delay margin of
the inner-loop pitch-rate controller, and thus the SAS is destabilizing.

VI. Conclusions and Future Work
This paper presented a digital, data-driven, terrain-following algorithm based on predictive cost adaptive control

(PCAC). PCAC combines concurrent online identification and output-feedback receding horizon control, within a
discrete-time control framework. Magnitude and move-size limits on the actuation were also incorporated. Most
importantly, PCAC’s ability to consider a future horizon allows it to anticipate challenging terrain profiles, which makes
PCAC ideal for terrain following, thus allowing the soft constraints on altitude and normal acceleration to be satisfied.
A key advantage of PCAC is its ability to use knowledge of the dynamics of the aircraft and limitations of its actuators
when computing an optimal trajectory.

PCAC-based terrain-following was applied in the framework of traditional inner-outer loop flight control where the
inner-loop control was made up of fixed-design pitch-rate and speed controllers, and PCAC generated the commanded
pitch-rate values, acting as the outer-loop autopilot. We demonstrated that when the inner-loop pitch-rate controller was
destabilized due to delays beyond the allowable delay margin, PCAC-based terrain-following was able to continue to
perform terrain following despite the failed inner-loop, pitch-rate controller. Additionally, we applied PCAC-based
terrain-following to a case where a previously undetected obstacle was detected half-way within PCAC’s horizon.
PCAC-based terrain-following successfully maneuvered the aircraft to avoid this obstacle.

The next step for this research is to extend PCAC-based terrain following to explicitly include sensor fusion of radar
measurements of the terrain with pre-stored terrain data. Being a data-driven algorithm, PCAC may be able to do sensor
fusion without any modification. Additionally, we would extend PCAC-based terrain following to PCAC-based terrain
avoidance, which is flying close to the ground in three-dimensions as opposed to being restricted to the pitch plane.
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